Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
87b97776
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
87b97776
编写于
11月 29, 2021
作者:
Z
Zhanlue Yang
提交者:
GitHub
11月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Added performance benchmakrs for Eager Dygraph (#37643)
上级
51804e4d
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
842 addition
and
0 deletion
+842
-0
paddle/fluid/eager/tests/performance_tests/benchmark_eager_cpu.cc
...luid/eager/tests/performance_tests/benchmark_eager_cpu.cc
+180
-0
paddle/fluid/eager/tests/performance_tests/benchmark_eager_cuda.cc
...uid/eager/tests/performance_tests/benchmark_eager_cuda.cc
+187
-0
paddle/fluid/eager/tests/performance_tests/benchmark_fluid_cpu.cc
...luid/eager/tests/performance_tests/benchmark_fluid_cpu.cc
+221
-0
paddle/fluid/eager/tests/performance_tests/benchmark_fluid_cuda.cc
...uid/eager/tests/performance_tests/benchmark_fluid_cuda.cc
+254
-0
未找到文件。
paddle/fluid/eager/tests/performance_tests/benchmark_eager_cpu.cc
0 → 100644
浏览文件 @
87b97776
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Eager Dygraph
#include <chrono>
#include "gtest/gtest.h"
#include "paddle/fluid/platform/flags.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/eager/tests/benchmark/benchmark_utils.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#ifdef WITH_GPERFTOOLS
#include "gperftools/profiler.h"
#endif
// TODO(jiabin): remove nolint here!!!
using
namespace
egr
;
// NOLINT
// Disable pten path
DECLARE_bool
(
run_pten_kernel
);
TEST
(
Benchmark
,
Init
)
{
FLAGS_run_pten_kernel
=
false
;
}
TEST
(
Benchmark
,
EagerScaleCPU
)
{
// Prepare Device Contexts
egr
::
InitEnv
(
paddle
::
platform
::
CPUPlace
());
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"Performance"
})
{
paddle
::
framework
::
DDim
ddim
=
paddle
::
framework
::
make_ddim
({
2
,
4
,
4
,
4
});
egr
::
EagerTensor
tensor
=
EagerUtils
::
CreateTensorWithValue
(
ddim
,
paddle
::
platform
::
CPUPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
5.0
,
true
);
RetainGradForTensor
(
tensor
);
if
(
mode
==
"Accuracy"
)
{
benchmark_eager_scale
(
tensor
,
true
/* accuracy_check*/
);
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"eager_scale_cpu.out"
);
#endif
benchmark_eager_scale
(
tensor
);
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
TEST
(
Benchmark
,
EagerIntermediateMatmulCPU
)
{
// Prepare Device Contexts
InitEnv
(
paddle
::
platform
::
CPUPlace
());
auto
tracer
=
std
::
make_shared
<
paddle
::
imperative
::
Tracer
>
();
paddle
::
imperative
::
SetCurrentTracer
(
tracer
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"Performance"
})
{
paddle
::
framework
::
DDim
ddimX
=
paddle
::
framework
::
make_ddim
({
2
,
2
});
egr
::
EagerTensor
X
=
EagerUtils
::
CreateTensorWithValue
(
ddimX
,
paddle
::
platform
::
CPUPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
1.0
,
true
);
RetainGradForTensor
(
X
);
paddle
::
framework
::
DDim
ddimY
=
paddle
::
framework
::
make_ddim
({
2
,
2
});
egr
::
EagerTensor
Y
=
EagerUtils
::
CreateTensorWithValue
(
ddimY
,
paddle
::
platform
::
CPUPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
2.0
,
true
);
RetainGradForTensor
(
Y
);
if
(
mode
==
"Accuracy"
)
{
benchmark_eager_intermediate_matmul
(
X
,
Y
,
true
/* accuracy_check */
);
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"eager_intermediate_matmul_cpu.out"
);
#endif
benchmark_eager_intermediate_matmul
(
X
,
Y
);
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
TEST
(
Benchmark
,
EagerIntermediateMLPCPU
)
{
// Prepare Device Contexts
InitEnv
(
paddle
::
platform
::
CPUPlace
());
auto
tracer
=
std
::
make_shared
<
paddle
::
imperative
::
Tracer
>
();
paddle
::
imperative
::
SetCurrentTracer
(
tracer
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"Performance"
})
{
paddle
::
framework
::
DDim
ddimX
=
paddle
::
framework
::
make_ddim
({
MLP_M
,
MLP_N
});
egr
::
EagerTensor
X
=
EagerUtils
::
CreateTensorWithValue
(
ddimX
,
paddle
::
platform
::
CPUPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
MLP_X_VAL
,
true
);
RetainGradForTensor
(
X
);
std
::
vector
<
EagerTensor
>
Ws
;
std
::
vector
<
EagerTensor
>
Bs
;
for
(
size_t
i
=
0
;
i
<
MLP_NUM_LINEAR
;
i
++
)
{
paddle
::
framework
::
DDim
ddimW
=
paddle
::
framework
::
make_ddim
({
MLP_N
,
MLP_K
});
egr
::
EagerTensor
W
=
EagerUtils
::
CreateTensorWithValue
(
ddimW
,
paddle
::
platform
::
CPUPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
MLP_W_VAL
,
true
);
RetainGradForTensor
(
W
);
paddle
::
framework
::
DDim
ddimB
=
paddle
::
framework
::
make_ddim
({
MLP_K
});
egr
::
EagerTensor
B
=
EagerUtils
::
CreateTensorWithValue
(
ddimB
,
paddle
::
platform
::
CPUPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
MLP_B_VAL
,
true
);
RetainGradForTensor
(
B
);
Ws
.
emplace_back
(
std
::
move
(
W
));
Bs
.
emplace_back
(
std
::
move
(
B
));
}
if
(
mode
==
"Accuracy"
)
{
benchmark_eager_intermediate_mlp
(
X
,
Ws
,
Bs
,
true
/* accuracy_check */
);
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"eager_intermediate_mlp_cpu.out"
);
#endif
benchmark_eager_intermediate_mlp
(
X
,
Ws
,
Bs
);
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
paddle/fluid/eager/tests/performance_tests/benchmark_eager_cuda.cc
0 → 100644
浏览文件 @
87b97776
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Eager Dygraph
#include <chrono>
#include "gtest/gtest.h"
#include "paddle/fluid/platform/flags.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/eager/tests/benchmark/benchmark_utils.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#ifdef WITH_GPERFTOOLS
#include "gperftools/profiler.h"
#endif
// TODO(jiabin): remove nolint here!!!
using
namespace
egr
;
// NOLINT
DECLARE_bool
(
run_pten_kernel
);
TEST
(
Benchmark
,
Init
)
{
FLAGS_run_pten_kernel
=
false
;
}
TEST
(
Benchmark
,
EagerScaleCUDA
)
{
egr
::
InitEnv
(
paddle
::
platform
::
CUDAPlace
());
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"WarmUp"
,
"Performance"
})
{
paddle
::
framework
::
DDim
ddim
=
paddle
::
framework
::
make_ddim
({
2
,
4
,
4
,
4
});
egr
::
EagerTensor
tensor
=
EagerUtils
::
CreateTensorWithValue
(
ddim
,
paddle
::
platform
::
CUDAPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
5.0
/*value*/
,
true
/*is_leaf*/
);
RetainGradForTensor
(
tensor
);
if
(
mode
==
"Accuracy"
)
{
benchmark_eager_scale
(
tensor
,
true
/* accuracy_check */
);
}
else
if
(
mode
==
"WarmUp"
)
{
benchmark_eager_scale
(
tensor
);
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"eager_scale_cuda.out"
);
#endif
benchmark_eager_scale
(
tensor
);
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
TEST
(
Benchmark
,
EagerIntermediateMatmulCUDA
)
{
paddle
::
platform
::
CUDAPlace
place
;
egr
::
InitEnv
(
place
);
auto
tracer
=
std
::
make_shared
<
paddle
::
imperative
::
Tracer
>
();
tracer
->
SetExpectedPlace
(
place
);
paddle
::
imperative
::
SetCurrentTracer
(
tracer
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"WarmUp"
,
"Performance"
})
{
paddle
::
framework
::
DDim
ddimX
=
paddle
::
framework
::
make_ddim
({
2
,
2
});
egr
::
EagerTensor
X
=
EagerUtils
::
CreateTensorWithValue
(
ddimX
,
paddle
::
platform
::
CUDAPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
1.0
,
true
);
RetainGradForTensor
(
X
);
paddle
::
framework
::
DDim
ddimY
=
paddle
::
framework
::
make_ddim
({
2
,
2
});
egr
::
EagerTensor
Y
=
EagerUtils
::
CreateTensorWithValue
(
ddimY
,
paddle
::
platform
::
CUDAPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
2.0
,
true
);
RetainGradForTensor
(
Y
);
if
(
mode
==
"Accuracy"
)
{
benchmark_eager_intermediate_matmul
(
X
,
Y
,
true
/* accuracy_check */
);
}
else
if
(
mode
==
"WarmUp"
)
{
benchmark_eager_intermediate_matmul
(
X
,
Y
);
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"eager_intermediate_matmul_cuda.out"
);
#endif
benchmark_eager_intermediate_matmul
(
X
,
Y
);
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
TEST
(
Benchmark
,
EagerIntermediateMLPCUDA
)
{
paddle
::
platform
::
CUDAPlace
place
;
egr
::
InitEnv
(
place
);
auto
tracer
=
std
::
make_shared
<
paddle
::
imperative
::
Tracer
>
();
tracer
->
SetExpectedPlace
(
place
);
paddle
::
imperative
::
SetCurrentTracer
(
tracer
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"WarmUp"
,
"Performance"
})
{
paddle
::
framework
::
DDim
ddimX
=
paddle
::
framework
::
make_ddim
({
MLP_M
,
MLP_N
});
egr
::
EagerTensor
X
=
EagerUtils
::
CreateTensorWithValue
(
ddimX
,
paddle
::
platform
::
CUDAPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
MLP_X_VAL
,
true
);
RetainGradForTensor
(
X
);
std
::
vector
<
EagerTensor
>
Ws
;
std
::
vector
<
EagerTensor
>
Bs
;
for
(
size_t
i
=
0
;
i
<
MLP_NUM_LINEAR
;
i
++
)
{
paddle
::
framework
::
DDim
ddimW
=
paddle
::
framework
::
make_ddim
({
MLP_N
,
MLP_K
});
egr
::
EagerTensor
W
=
EagerUtils
::
CreateTensorWithValue
(
ddimW
,
paddle
::
platform
::
CUDAPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
MLP_W_VAL
,
true
);
RetainGradForTensor
(
W
);
paddle
::
framework
::
DDim
ddimB
=
paddle
::
framework
::
make_ddim
({
MLP_K
});
egr
::
EagerTensor
B
=
EagerUtils
::
CreateTensorWithValue
(
ddimB
,
paddle
::
platform
::
CUDAPlace
(),
pten
::
DataType
::
FLOAT32
,
pten
::
DataLayout
::
NCHW
,
MLP_B_VAL
,
true
);
RetainGradForTensor
(
B
);
Ws
.
emplace_back
(
std
::
move
(
W
));
Bs
.
emplace_back
(
std
::
move
(
B
));
}
if
(
mode
==
"Accuracy"
)
{
benchmark_eager_intermediate_mlp
(
X
,
Ws
,
Bs
,
true
/* accuracy_check */
);
}
else
if
(
mode
==
"WarmUp"
)
{
benchmark_eager_intermediate_mlp
(
X
,
Ws
,
Bs
);
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"eager_intermediate_mlp_cuda.out"
);
#endif
benchmark_eager_intermediate_mlp
(
X
,
Ws
,
Bs
);
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
paddle/fluid/eager/tests/performance_tests/benchmark_fluid_cpu.cc
0 → 100644
浏览文件 @
87b97776
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <paddle/fluid/framework/op_registry.h>
#include <chrono>
#include <iostream>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/eager/tests/benchmark/benchmark_utils.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"
#ifdef WITH_GPERFTOOLS
#include "gperftools/profiler.h"
#endif
// Disable pten path
DECLARE_bool
(
run_pten_kernel
);
TEST
(
Benchmark
,
Init
)
{
FLAGS_run_pten_kernel
=
false
;
}
namespace
paddle
{
namespace
imperative
{
TEST
(
Benchmark
,
FluidScaleCPU
)
{
// Prepare Device Contexts
platform
::
CPUPlace
place
;
egr
::
InitEnv
(
place
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"Performance"
})
{
std
::
shared_ptr
<
imperative
::
VarBase
>
X
(
new
imperative
::
VarBase
(
true
,
"X"
));
X
->
SetOverridedStopGradient
(
false
);
std
::
vector
<
float
>
src_data
(
128
,
5.0
);
std
::
vector
<
int64_t
>
dims
=
{
2
,
4
,
4
,
4
};
auto
*
x_tensor
=
X
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
Resize
(
framework
::
make_ddim
(
dims
));
auto
*
mutable_x
=
x_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_x
,
place
,
src_data
.
data
(),
sizeof
(
float
)
*
src_data
.
size
());
if
(
mode
==
"Accuracy"
)
{
benchmark_fluid_scale
(
X
,
platform
::
Place
(
place
),
true
/* accuracy_check */
);
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"fluid_scale_cpu.out"
);
#endif
benchmark_fluid_scale
(
X
,
platform
::
Place
(
place
));
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
TEST
(
Benchmark
,
FluidMatmulCPU
)
{
// Prepare Device Contexts
platform
::
CPUPlace
place
;
egr
::
InitEnv
(
place
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"Performance"
})
{
std
::
shared_ptr
<
imperative
::
VarBase
>
X
(
new
imperative
::
VarBase
(
true
,
"X"
));
X
->
SetOverridedStopGradient
(
false
);
std
::
shared_ptr
<
imperative
::
VarBase
>
Y
(
new
imperative
::
VarBase
(
true
,
"Y"
));
Y
->
SetOverridedStopGradient
(
false
);
std
::
vector
<
float
>
x_src_data
(
4
,
1.0
);
std
::
vector
<
float
>
y_src_data
(
4
,
2.0
);
std
::
vector
<
int64_t
>
dims
=
{
2
,
2
};
auto
*
x_tensor
=
X
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
Resize
(
framework
::
make_ddim
(
dims
));
auto
*
mutable_x
=
x_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_x
,
place
,
x_src_data
.
data
(),
sizeof
(
float
)
*
x_src_data
.
size
());
auto
*
y_tensor
=
Y
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
y_tensor
->
Resize
(
framework
::
make_ddim
(
dims
));
auto
*
mutable_y
=
y_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_y
,
place
,
y_src_data
.
data
(),
sizeof
(
float
)
*
y_src_data
.
size
());
if
(
mode
==
"Accuracy"
)
{
benchmark_fluid_matmul
(
X
,
Y
,
platform
::
Place
(
place
),
true
/* accuracy_check */
);
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"fluid_matmul_cpu.out"
);
#endif
benchmark_fluid_matmul
(
X
,
Y
,
platform
::
Place
(
place
));
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
TEST
(
Benchmark
,
FluidMLPCPU
)
{
// Prepare Device Contexts
platform
::
CPUPlace
place
;
egr
::
InitEnv
(
place
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"Performance"
})
{
std
::
vector
<
float
>
x_src_data
(
MLP_M
*
MLP_N
,
MLP_X_VAL
);
std
::
vector
<
float
>
w_src_data
(
MLP_N
*
MLP_K
,
MLP_W_VAL
);
std
::
vector
<
float
>
b_src_data
(
MLP_K
,
MLP_B_VAL
);
std
::
vector
<
int64_t
>
x_dims
=
{
MLP_M
,
MLP_N
};
std
::
vector
<
int64_t
>
w_dims
=
{
MLP_N
,
MLP_K
};
std
::
vector
<
int64_t
>
b_dims
=
{
MLP_K
};
std
::
shared_ptr
<
imperative
::
VarBase
>
X
(
new
imperative
::
VarBase
(
true
,
"X"
));
X
->
SetOverridedStopGradient
(
false
);
auto
*
x_tensor
=
X
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
Resize
(
framework
::
make_ddim
(
x_dims
));
auto
*
mutable_x
=
x_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_x
,
place
,
x_src_data
.
data
(),
sizeof
(
float
)
*
x_src_data
.
size
());
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
Ws
;
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
Bs
;
for
(
size_t
i
=
0
;
i
<
MLP_NUM_LINEAR
;
i
++
)
{
std
::
shared_ptr
<
imperative
::
VarBase
>
W
(
new
imperative
::
VarBase
(
true
,
"W"
));
W
->
SetOverridedStopGradient
(
false
);
std
::
shared_ptr
<
imperative
::
VarBase
>
B
(
new
imperative
::
VarBase
(
true
,
"B"
));
B
->
SetOverridedStopGradient
(
false
);
auto
*
w_tensor
=
W
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
w_tensor
->
Resize
(
framework
::
make_ddim
(
w_dims
));
auto
*
mutable_w
=
w_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_w
,
place
,
w_src_data
.
data
(),
sizeof
(
float
)
*
w_src_data
.
size
());
auto
*
b_tensor
=
B
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
b_tensor
->
Resize
(
framework
::
make_ddim
(
b_dims
));
auto
*
mutable_b
=
b_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_b
,
place
,
b_src_data
.
data
(),
sizeof
(
float
)
*
b_src_data
.
size
());
Ws
.
emplace_back
(
std
::
move
(
W
));
Bs
.
emplace_back
(
std
::
move
(
B
));
}
if
(
mode
==
"Accuracy"
)
{
benchmark_fluid_mlp
(
X
,
Ws
,
Bs
,
platform
::
Place
(
place
),
true
/* accuracy_check */
);
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"fluid_mlp_cpu.out"
);
#endif
benchmark_fluid_mlp
(
X
,
Ws
,
Bs
,
platform
::
Place
(
place
));
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
}
// namespace imperative
}
// namespace paddle
USE_OP
(
scale
);
USE_OP
(
matmul_v2
);
USE_OP
(
reduce_sum
);
paddle/fluid/eager/tests/performance_tests/benchmark_fluid_cuda.cc
0 → 100644
浏览文件 @
87b97776
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <paddle/fluid/framework/op_registry.h>
#include <chrono>
#include <iostream>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/eager/tests/benchmark/benchmark_utils.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"
#ifdef WITH_GPERFTOOLS
#include "gperftools/profiler.h"
#endif
// Disable pten path
DECLARE_bool
(
run_pten_kernel
);
TEST
(
Benchmark
,
Init
)
{
FLAGS_run_pten_kernel
=
false
;
}
namespace
paddle
{
namespace
imperative
{
TEST
(
Benchmark
,
FluidScaleCUDA
)
{
// Prepare Device Contexts
platform
::
CUDAPlace
place
;
egr
::
InitEnv
(
place
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"WarmUp"
,
"Performance"
})
{
std
::
shared_ptr
<
imperative
::
VarBase
>
X
(
new
imperative
::
VarBase
(
true
,
"X"
));
X
->
SetOverridedStopGradient
(
false
);
std
::
vector
<
float
>
src_data
(
128
,
5.0
);
std
::
vector
<
int64_t
>
dims
=
{
2
,
4
,
4
,
4
};
auto
*
x_tensor
=
X
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
Resize
(
framework
::
make_ddim
(
dims
));
auto
*
mutable_x
=
x_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
platform
::
DeviceContextPool
&
pool
=
paddle
::
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
dynamic_cast
<
paddle
::
platform
::
CUDADeviceContext
*>
(
pool
.
Get
(
place
));
auto
stream
=
dev_ctx
->
stream
();
paddle
::
memory
::
Copy
(
place
,
mutable_x
,
platform
::
CPUPlace
(),
src_data
.
data
(),
sizeof
(
float
)
*
src_data
.
size
(),
stream
);
if
(
mode
==
"Accuracy"
)
{
benchmark_fluid_scale
(
X
,
platform
::
Place
(
place
),
true
/* accuracy_check */
);
}
else
if
(
mode
==
"WarmUp"
)
{
benchmark_fluid_scale
(
X
,
platform
::
Place
(
place
));
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"fluid_scale_cuda.out"
);
#endif
benchmark_fluid_scale
(
X
,
platform
::
Place
(
place
));
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
TEST
(
Benchmark
,
FluidMatmulCUDA
)
{
// Prepare Device Contexts
platform
::
CUDAPlace
place
;
egr
::
InitEnv
(
place
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"WarmUp"
,
"Performance"
})
{
std
::
shared_ptr
<
imperative
::
VarBase
>
X
(
new
imperative
::
VarBase
(
true
,
"X"
));
X
->
SetOverridedStopGradient
(
false
);
std
::
shared_ptr
<
imperative
::
VarBase
>
Y
(
new
imperative
::
VarBase
(
true
,
"Y"
));
Y
->
SetOverridedStopGradient
(
false
);
std
::
vector
<
float
>
x_src_data
(
4
,
1.0
);
std
::
vector
<
float
>
y_src_data
(
4
,
2.0
);
std
::
vector
<
int64_t
>
dims
=
{
2
,
2
};
paddle
::
platform
::
DeviceContextPool
&
pool
=
paddle
::
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
dynamic_cast
<
paddle
::
platform
::
CUDADeviceContext
*>
(
pool
.
Get
(
place
));
auto
stream
=
dev_ctx
->
stream
();
auto
*
x_tensor
=
X
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
Resize
(
framework
::
make_ddim
(
dims
));
auto
*
mutable_x
=
x_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_x
,
platform
::
CPUPlace
(),
x_src_data
.
data
(),
sizeof
(
float
)
*
x_src_data
.
size
(),
stream
);
auto
*
y_tensor
=
Y
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
y_tensor
->
Resize
(
framework
::
make_ddim
(
dims
));
auto
*
mutable_y
=
y_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_y
,
platform
::
CPUPlace
(),
y_src_data
.
data
(),
sizeof
(
float
)
*
y_src_data
.
size
(),
stream
);
if
(
mode
==
"Accuracy"
)
{
benchmark_fluid_matmul
(
X
,
Y
,
platform
::
Place
(
place
),
true
/* accuracy_check */
);
}
else
if
(
mode
==
"WarmUp"
)
{
benchmark_fluid_matmul
(
X
,
Y
,
platform
::
Place
(
place
));
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"fluid_matmul_cuda.out"
);
#endif
benchmark_fluid_matmul
(
X
,
Y
,
platform
::
Place
(
place
));
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
TEST
(
Benchmark
,
FluidMLPCUDA
)
{
// Prepare Device Contexts
platform
::
CUDAPlace
place
;
egr
::
InitEnv
(
place
);
for
(
const
std
::
string
&
mode
:
{
"Accuracy"
,
"WarmUp"
,
"Performance"
})
{
paddle
::
platform
::
DeviceContextPool
&
pool
=
paddle
::
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
dynamic_cast
<
paddle
::
platform
::
CUDADeviceContext
*>
(
pool
.
Get
(
place
));
auto
stream
=
dev_ctx
->
stream
();
std
::
vector
<
float
>
x_src_data
(
MLP_M
*
MLP_N
,
MLP_X_VAL
);
std
::
vector
<
float
>
w_src_data
(
MLP_N
*
MLP_K
,
MLP_W_VAL
);
std
::
vector
<
float
>
b_src_data
(
MLP_K
,
MLP_B_VAL
);
std
::
vector
<
int64_t
>
x_dims
=
{
MLP_M
,
MLP_N
};
std
::
vector
<
int64_t
>
w_dims
=
{
MLP_N
,
MLP_K
};
std
::
vector
<
int64_t
>
b_dims
=
{
MLP_K
};
std
::
shared_ptr
<
imperative
::
VarBase
>
X
(
new
imperative
::
VarBase
(
true
,
"X"
));
X
->
SetOverridedStopGradient
(
false
);
auto
*
x_tensor
=
X
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
Resize
(
framework
::
make_ddim
(
x_dims
));
auto
*
mutable_x
=
x_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_x
,
platform
::
CPUPlace
(),
x_src_data
.
data
(),
sizeof
(
float
)
*
x_src_data
.
size
(),
stream
);
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
Ws
;
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
Bs
;
for
(
size_t
i
=
0
;
i
<
MLP_NUM_LINEAR
;
i
++
)
{
std
::
shared_ptr
<
imperative
::
VarBase
>
W
(
new
imperative
::
VarBase
(
true
,
"W"
));
W
->
SetOverridedStopGradient
(
false
);
std
::
shared_ptr
<
imperative
::
VarBase
>
B
(
new
imperative
::
VarBase
(
true
,
"B"
));
B
->
SetOverridedStopGradient
(
false
);
auto
*
w_tensor
=
W
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
w_tensor
->
Resize
(
framework
::
make_ddim
(
w_dims
));
auto
*
mutable_w
=
w_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_w
,
platform
::
CPUPlace
(),
w_src_data
.
data
(),
sizeof
(
float
)
*
w_src_data
.
size
(),
stream
);
auto
*
b_tensor
=
B
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
b_tensor
->
Resize
(
framework
::
make_ddim
(
b_dims
));
auto
*
mutable_b
=
b_tensor
->
mutable_data
<
float
>
(
place
);
paddle
::
memory
::
Copy
(
place
,
mutable_b
,
platform
::
CPUPlace
(),
b_src_data
.
data
(),
sizeof
(
float
)
*
b_src_data
.
size
(),
stream
);
Ws
.
emplace_back
(
std
::
move
(
W
));
Bs
.
emplace_back
(
std
::
move
(
B
));
}
if
(
mode
==
"Accuracy"
)
{
benchmark_fluid_mlp
(
X
,
Ws
,
Bs
,
platform
::
Place
(
place
),
true
/* accuracy_check */
);
}
else
if
(
mode
==
"WarmUp"
)
{
benchmark_fluid_mlp
(
X
,
Ws
,
Bs
,
platform
::
Place
(
place
));
}
else
if
(
mode
==
"Performance"
)
{
auto
t_start
=
std
::
chrono
::
high_resolution_clock
::
now
();
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"fluid_mlp_cuda.out"
);
#endif
benchmark_fluid_mlp
(
X
,
Ws
,
Bs
,
platform
::
Place
(
place
));
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
#endif
auto
t_end
=
std
::
chrono
::
high_resolution_clock
::
now
();
double
elapsed_time_ms
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
(
t_end
-
t_start
).
count
();
std
::
cout
<<
"Duration: "
<<
elapsed_time_ms
<<
" ms"
<<
std
::
endl
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unknown benchmark mode"
));
}
}
}
}
// namespace imperative
}
// namespace paddle
USE_OP
(
scale
);
USE_OP
(
matmul_v2
);
USE_OP
(
reduce_sum
);
USE_OP
(
reduce_sum_grad
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录