Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
86fa8c05
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
86fa8c05
编写于
1月 05, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Wei Xu's comments, set up right inouts.
上级
1dd972f9
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
124 addition
and
79 deletion
+124
-79
paddle/function/ContextProjectionOp.cpp
paddle/function/ContextProjectionOp.cpp
+82
-42
paddle/function/ContextProjectionOp.h
paddle/function/ContextProjectionOp.h
+10
-10
paddle/function/ContextProjectionOpGpu.cu
paddle/function/ContextProjectionOpGpu.cu
+14
-11
paddle/function/ContextProjectionOpTest.cpp
paddle/function/ContextProjectionOpTest.cpp
+18
-16
未找到文件。
paddle/function/ContextProjectionOp.cpp
浏览文件 @
86fa8c05
...
...
@@ -70,10 +70,11 @@ void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
}
/**
* \param outputs[0] output value.
*
* \param inputs[0] input value.
* \param inputs[1] input weight.
* \param inputs[2] input sequence.
* \param outputs[0] output value.
*/
template
<
DeviceType
Device
>
class
ContextProjectionForwardFunc
:
public
FunctionBase
{
...
...
@@ -123,7 +124,8 @@ private:
};
template
<
>
void
ContextProjectionBackward
<
DEVICE_TYPE_CPU
>
(
CpuMatrix
&
out_grad_mat
,
<<<<<<<
HEAD
void
ContextProjectionBackward
<
DEVICE_TYPE_CPU
>
(
const
CpuMatrix
&
out_grad_mat
,
CpuMatrix
&
in_grad_mat
,
CpuMatrix
&
w_grad_mat
,
const
CpuIVector
&
seq_vec
,
...
...
@@ -176,10 +178,10 @@ void ContextProjectionBackward<DEVICE_TYPE_CPU>(CpuMatrix& out_grad_mat,
}
/**
* \param inputs[0]
input grad
.
* \param inputs[1]
weigh
t grad.
* \param in
puts[2] input sequence
.
* \param
outputs[0] output value
.
* \param inputs[0]
input sequence
.
* \param inputs[1]
outpu
t grad.
* \param in
outs[0] input grad
.
* \param
inouts[1] weight grad
.
*/
template
<
DeviceType
Device
>
class
ContextProjectionBackwardFunc
:
public
FunctionBase
{
...
...
@@ -192,6 +194,7 @@ public:
total_pad_
=
config
.
get
<
size_t
>
(
"total_pad"
);
}
<<<<<<<
HEAD
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
((
size_t
)
3
,
inputs
.
size
());
CHECK_EQ
((
size_t
)
1
,
outputs
.
size
());
...
...
@@ -210,6 +213,42 @@ public:
CHECK_EQ
(
outputs
[
0
].
shape
()[
1
],
inputs
[
0
].
shape
()[
1
]
*
context_length_
);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
=======
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
CHECK_EQ
(
2
,
inputs
.
size
());
CHECK_EQ
(
0
,
outputs
.
size
());
CHECK_EQ
(
2
,
inouts
.
size
());
CHECK
(
inputs
[
0
].
getData
()
&&
inputs
[
1
].
getData
());
CHECK_EQ
(
inputs
[
0
].
dims_
.
size
(),
1
);
CHECK_EQ
(
inputs
[
1
].
dims_
.
size
(),
2
);
CHECK_EQ
(
inouts
[
0
].
dims_
.
size
(),
2
);
CHECK_EQ
(
inouts
[
1
].
dims_
.
size
(),
2
);
/// dim of input grad == dim of weight grad
CHECK_EQ
(
inouts
[
0
].
dims_
[
1
],
inouts
[
1
].
dims_
[
1
]);
/// input grad and output grad have the same batch_size
CHECK_EQ
(
inouts
[
0
].
dims_
[
0
],
inputs
[
1
].
dims_
[
0
]);
/// dim of output = dim of input * context_length
CHECK_EQ
(
inputs
[
1
].
dims_
[
1
],
inputs
[
0
].
dims_
[
1
]
*
context_length_
);
typename
SequenceT
<
Device
>::
type
seq_vec
(
inputs
[
0
].
dims_
[
0
],
reinterpret_cast
<
int
*>
(
inputs
[
0
].
getData
()));
const
auto
out_grad_mat
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
1
].
getData
(),
inputs
[
1
].
dims_
[
0
],
inputs
[
1
].
dims_
[
1
]);
auto
in_grad_mat
=
!
inouts
[
0
].
getData
()
?
nullptr
:
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inouts
[
0
].
getData
(),
inouts
[
0
].
dims_
[
0
],
inouts
[
0
].
dims_
[
1
]);
auto
w_grad_mat
=
!
inouts
[
1
].
getData
()
?
nullptr
:
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inouts
[
1
].
getData
(),
inouts
[
1
].
dims_
[
0
],
inouts
[
1
].
dims_
[
1
]);
>>>>>>>
Wei
Xu
'
s
comments
,
set
up
right
inouts
.
auto
out_grad_mat
=
outputs
[
0
].
matrix
<
Device
>
();
auto
in_grad_mat
=
...
...
@@ -240,9 +279,9 @@ private:
#if 0
/**
* \param in
puts[0]
input grad.
* \param inputs[
1]
input sequence.
* \param
outputs[0]
output grad.
* \param in
outs[0]
input grad.
* \param inputs[
0]
input sequence.
* \param
inputs[1]
output grad.
*/
template <DeviceType Device>
class ContextProjectionBackwardDataFunc : public FunctionBase {
...
...
@@ -255,23 +294,24 @@ public:
void calc(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) override {
CHECK_EQ(2, static_cast<int>(inputs.size()));
CHECK_EQ(1, static_cast<int>(outputs.size()));
CHECK_EQ(0, static_cast<int>(inouts.size()));
CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
CHECK_EQ(static_cast<int>(outputs[0].dims_.size()), 2);
CHECK_EQ(static_cast<int>(inputs[0].dims_.size()), 2);
CHECK_EQ(static_cast<int>(inputs[1].dims_.size()), 1);
CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);
/// input and output has the same batch_size
CHECK_EQ(inputs[0].dims_[0], outputs[0].dims_[0]);
CHECK_EQ(2, inputs.size());
CHECK_EQ(0, outputs.size());
CHECK_EQ(1, inouts.size());
CHECK(inouts[0].getData() && inputs[0].getData() && inputs[1].getData());
CHECK_EQ(inputs[0].dims_.size(), 1);
CHECK_EQ(inputs[1].dims_.size(), 2);
CHECK_EQ(inouts[0].dims_.size(), 2);
CHECK_EQ(inputs[1].dims_[1], inouts[0].dims_[1] * context_length_);
/// input and output grad have the same batch_size
CHECK_EQ(inouts[0].dims_[0], inputs[1].dims_[0]);
auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
const auto in_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
typename SequenceT<Device>::type seq_vec(
inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));
inputs[0].dims_[0], reinterpret_cast<int*>(inputs[0].getData()));
const auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);
auto in_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
inouts[0].getData(), inouts[0].dims_[0], inouts[0].dims_[1]);
ContextProjectionBackwardData<Device>(out_grad_mat.get(),
in_grad_mat.get(),
...
...
@@ -286,9 +326,9 @@ private:
};
/**
* \param in
puts[0]
weight grad.
* \param inputs[
1]
input sequence.
* \param
outputs[0]
output grad.
* \param in
outs[0]
weight grad.
* \param inputs[
0]
input sequence.
* \param
inputs[1]
output grad.
*/
template <DeviceType Device>
class ContextProjectionBackwardWeightFunc : public FunctionBase {
...
...
@@ -303,22 +343,22 @@ public:
void calc(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) override {
CHECK_EQ(2, static_cast<int>(inputs.size()));
CHECK_EQ(1, static_cast<int>(outputs.size()));
CHECK_EQ(0, static_cast<int>(inouts.size()));
CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
CHECK_EQ(static_cast<int>(outputs[0].dims_.size()), 2);
CHECK_EQ(static_cast<int>(inputs[0].dims_.size()), 2);
CHECK_EQ(static_cast<int>(inputs[1].dims_.size()), 1);
CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);
auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
auto w_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
CHECK_EQ(2, inputs.size());
CHECK_EQ(0, outputs.size());
CHECK_EQ(1, inouts.size());
CHECK(inouts[0].getData() && inputs[0].getData() && inputs[1].getData());
CHECK_EQ(inputs[0].dims_.size(), 1);
CHECK_EQ(inputs[1].dims_.size(), 2);
CHECK_EQ(inouts[0].dims_.size(), 2);
CHECK_EQ(inputs[1].dims_[1], inouts[0].dims_[1] * context_length_);
typename SequenceT<Device>::type seq_vec(
inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));
inputs[0].dims_[0], reinterpret_cast<int*>(inputs[0].getData()));
const auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);
auto w_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
inouts[0].getData(), inouts[0].dims_[0], inouts[0].dims_[1]);
ContextProjectionBackwardWeight<Device>(out_grad_mat.get(),
w_grad_mat.get(),
...
...
paddle/function/ContextProjectionOp.h
浏览文件 @
86fa8c05
...
...
@@ -21,7 +21,7 @@ namespace paddle {
/**
* \brief Context Projection Forward.
*
* \param[out] outputs output data.
* \param[
in/
out] outputs output data.
* \param[in] input input data.
* \param[in] weight input weight.
* \param[in] sequence input data.
...
...
@@ -68,7 +68,7 @@ void ContextProjectionBackward(
template
<
DeviceType
DType
>
void
ContextProjectionBackwardData
(
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
const
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
typename
Tensor
<
real
,
DType
>::
Matrix
&
in_grad
,
const
typename
Tensor
<
int
,
DType
>::
Vector
&
sequence
,
size_t
context_length
,
...
...
@@ -76,7 +76,7 @@ void ContextProjectionBackwardData(
template
<
DeviceType
DType
>
void
ContextProjectionBackwardWeight
(
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
const
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
typename
Tensor
<
real
,
DType
>::
Matrix
&
w_grad
,
const
typename
Tensor
<
int
,
DType
>::
Vector
&
seq_vec
,
size_t
context_length
,
...
...
paddle/function/ContextProjectionOpGpu.cu
浏览文件 @
86fa8c05
...
...
@@ -138,10 +138,10 @@ void ContextProjectionForward<DEVICE_TYPE_GPU>(GpuMatrix& output,
begin_pad
);
}
__global__
void
KeContextProjectionBackwardData
(
real
*
out_grad
,
__global__
void
KeContextProjectionBackwardData
(
const
real
*
out_grad
,
const
int
*
sequence
,
real
*
in_grad
,
in
t
input_dim
,
size_
t
input_dim
,
int
context_length
,
int
context_start
)
{
int
idx
=
threadIdx
.
x
;
...
...
@@ -152,7 +152,8 @@ __global__ void KeContextProjectionBackwardData(real* out_grad,
real
value
=
0
;
int
instances
=
seq_end
-
seq_start
+
context_length
-
1
;
out_grad
+=
seq_start
*
input_dim
*
context_length
;
auto
out
=
const_cast
<
real
*>
(
out_grad
);
out
+=
seq_start
*
input_dim
*
context_length
;
in_grad
+=
seq_start
*
input_dim
;
for
(
int
k
=
0
;
k
<=
input_dim
/
block_size
;
k
++
)
{
if
(
idx
<
input_dim
)
{
...
...
@@ -169,7 +170,7 @@ __global__ void KeContextProjectionBackwardData(real* out_grad,
int
outx
=
(
i
-
context_length
)
<
0
?
i
:
(
context_length
-
1
);
int
outy
=
(
i
-
context_length
)
<
0
?
0
:
(
i
-
(
context_length
-
1
));
real
*
output_r
=
out
_grad
+
outy
*
input_dim
*
context_length
+
outx
*
input_dim
;
out
+
outy
*
input_dim
*
context_length
+
outx
*
input_dim
;
for
(
int
j
=
outy
;
j
<
seq_end
-
seq_start
;
j
++
)
{
value
+=
output_r
[
idx
];
if
(
j
-
outy
==
outx
)
break
;
...
...
@@ -194,7 +195,7 @@ __global__ void KeContextProjectionBackwardData(real* out_grad,
* @param[in] context_start context start.
*
*/
void
hl_context_projection_backward_data
(
real
*
out_grad
,
void
hl_context_projection_backward_data
(
const
real
*
out_grad
,
const
int
*
sequence
,
real
*
input_grad
,
size_t
num_sequences
,
...
...
@@ -216,7 +217,8 @@ void hl_context_projection_backward_data(real* out_grad,
}
template
<
>
void
ContextProjectionBackwardData
<
DEVICE_TYPE_GPU
>
(
GpuMatrix
&
out_grad
,
<<<<<<<
HEAD
void
ContextProjectionBackwardData
<
DEVICE_TYPE_GPU
>
(
const
GpuMatrix
&
out_grad
,
GpuMatrix
&
in_grad
,
const
GpuIVector
&
sequence
,
size_t
context_length
,
...
...
@@ -231,7 +233,7 @@ void ContextProjectionBackwardData<DEVICE_TYPE_GPU>(GpuMatrix& out_grad,
}
template
<
int
THREADS_X
,
int
THREADS_Y
>
__global__
void
KeContextProjectionBackwardWeight
(
real
*
out_grad
,
__global__
void
KeContextProjectionBackwardWeight
(
const
real
*
out_grad
,
const
int
*
sequence
,
real
*
w_grad
,
int
num_sequences
,
...
...
@@ -254,7 +256,8 @@ __global__ void KeContextProjectionBackwardWeight(real* out_grad,
for
(
int
seqId
=
idy
;
seqId
<
num_sequences
;
seqId
+=
THREADS_Y
)
{
int
seq_start
=
sequence
[
seqId
];
int
seq_end
=
sequence
[
seqId
+
1
];
output_r
=
out_grad
+
seq_start
*
w_dim
*
context_length
;
output_r
=
const_cast
<
real
*>
(
out_grad
)
+
seq_start
*
w_dim
*
context_length
;
if
(
context_start
<
0
)
{
if
(
padId
+
context_start
<
0
)
{
...
...
@@ -318,7 +321,7 @@ __global__ void KeContextProjectionBackwardWeight(real* out_grad,
* beginning.
*
*/
void
hl_context_projection_backward_weight
(
real
*
out_grad
,
void
hl_context_projection_backward_weight
(
const
real
*
out_grad
,
const
int
*
sequence
,
real
*
w_grad
,
size_t
num_sequences
,
...
...
@@ -346,7 +349,7 @@ void hl_context_projection_backward_weight(real* out_grad,
template
<
>
void
ContextProjectionBackwardWeight
<
DEVICE_TYPE_GPU
>
(
GpuMatrix
&
out_grad
,
const
GpuMatrix
&
out_grad
,
GpuMatrix
&
w_grad
,
const
GpuIVector
&
seq_vec
,
size_t
context_length
,
...
...
@@ -365,7 +368,7 @@ void ContextProjectionBackwardWeight<DEVICE_TYPE_GPU>(
}
template
<
>
void
ContextProjectionBackward
<
DEVICE_TYPE_GPU
>
(
GpuMatrix
&
out_grad
,
void
ContextProjectionBackward
<
DEVICE_TYPE_GPU
>
(
const
GpuMatrix
&
out_grad
,
GpuMatrix
&
in_grad
,
GpuMatrix
&
w_grad
,
const
GpuIVector
&
sequence
,
...
...
paddle/function/ContextProjectionOpTest.cpp
浏览文件 @
86fa8c05
...
...
@@ -62,16 +62,18 @@ void testMatrixProjectionForward(int context_start,
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
cpu_seq
->
getData
()),
Dims
{
cpu_seq
->
getSize
()})},
{
Tensor
(
cpu_out
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
{},
{
Tensor
(
cpu_out
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})});
compare
.
getGpuFunction
()
->
calc
(
{
Tensor
(
gpu_in
.
getData
(),
Dims
{
batch_size
,
input_dim
}),
Tensor
(
gpu_weight
?
gpu_weight
->
getData
()
:
nullptr
,
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
gpu_seq
->
getData
()),
Dims
{
gpu_seq
->
getSize
()})},
{
Tensor
(
gpu_out
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
{},
{
Tensor
(
gpu_out
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})});
autotest
::
TensorCheckEqual
(
cpu_out
,
gpu_out
);
}
...
...
@@ -118,24 +120,24 @@ void testMatrixProjectionBackward(int context_start,
}
compare
.
getCpuFunction
()
->
calc
(
{
Tensor
(
reinterpret_cast
<
real
*>
(
cpu_seq
->
getData
()),
Dims
{
cpu_seq
->
getSize
()}),
Tensor
(
cpu_out_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{},
{
Tensor
(
cpu_in_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
}),
Tensor
(
cpu_w_grad
?
cpu_w_grad
->
getData
()
:
nullptr
,
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
cpu_seq
->
getData
()),
Dims
{
cpu_seq
->
getSize
()})},
{
Tensor
(
cpu_out_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
Dims
{
pad
,
input_dim
})});
compare
.
getGpuFunction
()
->
calc
(
{
Tensor
(
reinterpret_cast
<
real
*>
(
gpu_seq
->
getData
()),
Dims
{
gpu_seq
->
getSize
()}),
Tensor
(
gpu_out_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{},
{
Tensor
(
gpu_in_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
}),
Tensor
(
gpu_w_grad
?
gpu_w_grad
->
getData
()
:
nullptr
,
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
gpu_seq
->
getData
()),
Dims
{
gpu_seq
->
getSize
()})},
{
Tensor
(
gpu_out_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
Dims
{
pad
,
input_dim
})});
autotest
::
TensorCheckErr
(
cpu_in_grad
,
gpu_in_grad
);
if
(
is_padding
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录