diff --git a/python/paddle/fluid/backward.py b/python/paddle/fluid/backward.py index 605846de1ec3cd777bf1608e805c5e41565fcfc1..e72f7a04e6057c652f653d8901ca178b094a0de7 100644 --- a/python/paddle/fluid/backward.py +++ b/python/paddle/fluid/backward.py @@ -1196,6 +1196,8 @@ def append_backward(loss, callbacks=None, checkpoints=None): """ + :api_attr: Static Graph + This function appends backward part to main_program. A complete neural network training is made up of forward and backward @@ -1724,6 +1726,8 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None): def gradients(targets, inputs, target_gradients=None, no_grad_set=None): """ + :api_attr: Static Graph + Backpropagate the gradients of targets to inputs. Args: diff --git a/python/paddle/fluid/clip.py b/python/paddle/fluid/clip.py index 0b9abdf38d82647739b3823482990130f1c94cb6..7b301ac19d1d3dc1f4aabb6cf3af2f0874faa677 100644 --- a/python/paddle/fluid/clip.py +++ b/python/paddle/fluid/clip.py @@ -158,6 +158,10 @@ class GradientClipBase(object): class GradientClipByValue(GradientClipBase): """ + :alias_main: paddle.nn.GradientClipByValue + :alias: paddle.nn.GradientClipByValue,paddle.nn.clip.GradientClipByValue + :old_api: paddle.fluid.clip.GradientClipByValue + Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max]. - Any values less than min are set to ``min``. @@ -296,6 +300,10 @@ class GradientClipByValue(GradientClipBase): class GradientClipByNorm(GradientClipBase): """ + :alias_main: paddle.nn.GradientClipByNorm + :alias: paddle.nn.GradientClipByNorm,paddle.nn.clip.GradientClipByNorm + :old_api: paddle.fluid.clip.GradientClipByNorm + Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` . - If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio. @@ -447,6 +455,10 @@ class GradientClipByNorm(GradientClipBase): class GradientClipByGlobalNorm(GradientClipBase): """ + :alias_main: paddle.nn.GradientClipByGlobalNorm + :alias: paddle.nn.GradientClipByGlobalNorm,paddle.nn.clip.GradientClipByGlobalNorm + :old_api: paddle.fluid.clip.GradientClipByGlobalNorm + Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in :math:`t\_list` , and limit it to ``clip_norm`` . @@ -691,6 +703,8 @@ class GradientClipByGlobalNorm(GradientClipBase): @framework.dygraph_not_support def set_gradient_clip(clip, param_list=None, program=None): """ + :api_attr: Static Graph + Warning: This API must be used after building network, and before ``minimize`` , diff --git a/python/paddle/fluid/compiler.py b/python/paddle/fluid/compiler.py index 4441de50be4727e779d00448ec4bc30f1dc3441e..3923620379df0cd1ec198ce9a2baa77de590a39d 100644 --- a/python/paddle/fluid/compiler.py +++ b/python/paddle/fluid/compiler.py @@ -86,6 +86,8 @@ def _has_optimizer_in_control_flow(program): class CompiledProgram(object): """ + :api_attr: Static Graph + The CompiledProgram is used to transform a program or graph for various optimizations according to the configuration of build_strategy, for example, the operators' fusion in the computation graph, memory diff --git a/python/paddle/fluid/data.py b/python/paddle/fluid/data.py index 28923bfb27a9f5b2d0188a6b8ac44912657ec932..2c75c493cba02dc21a5e2518a8a5e52b6eb4fd81 100644 --- a/python/paddle/fluid/data.py +++ b/python/paddle/fluid/data.py @@ -24,6 +24,11 @@ __all__ = ['data'] def data(name, shape, dtype='float32', lod_level=0): """ + :api_attr: Static Graph + :alias_main: paddle.nn.data + :alias: paddle.nn.data,paddle.nn.input.data + :old_api: paddle.fluid.data + **Data Layer** This function creates a variable on the global block. The global variable diff --git a/python/paddle/fluid/data_feed_desc.py b/python/paddle/fluid/data_feed_desc.py index 4878c25fde5f7f90bd893639a58dbc2664ecff5a..eaa8985092d0d17e6a662a1a64d2345137ef3a3b 100644 --- a/python/paddle/fluid/data_feed_desc.py +++ b/python/paddle/fluid/data_feed_desc.py @@ -20,6 +20,8 @@ __all__ = ['DataFeedDesc'] class DataFeedDesc(object): """ + :api_attr: Static Graph + Datafeed descriptor, describing input training data format. This class is currently only used for AsyncExecutor (See comments for class AsyncExecutor for a brief introduction) diff --git a/python/paddle/fluid/data_feeder.py b/python/paddle/fluid/data_feeder.py index 26c935451138798a26d96c82ca02e200248c398c..03e14a3fefb0aa31d4600665af6fb507ccf518ec 100644 --- a/python/paddle/fluid/data_feeder.py +++ b/python/paddle/fluid/data_feeder.py @@ -211,6 +211,8 @@ class BatchedTensorProvider(object): class DataFeeder(object): """ + :api_attr: Static Graph + DataFeeder converts the data that returned by a reader into a data structure that can feed into Executor. The reader is usually a python generator that returns a list of mini-batch data entries. diff --git a/python/paddle/fluid/dataset.py b/python/paddle/fluid/dataset.py index 93296b020a9da1fb683f9488b933f1d57d50878d..10fd3d1a3f50496c8053ff9c6a72be2351d8a1ed 100644 --- a/python/paddle/fluid/dataset.py +++ b/python/paddle/fluid/dataset.py @@ -728,6 +728,8 @@ class InMemoryDataset(DatasetBase): def release_memory(self): """ + :api_attr: Static Graph + Release InMemoryDataset memory data, when data will not be used again. Examples: diff --git a/python/paddle/fluid/dygraph/base.py b/python/paddle/fluid/dygraph/base.py index fd20001a6e43285203c482742acdbb5feafac301..cc6e097b9ebe3a18c367b8e91019ff29f0bcee08 100644 --- a/python/paddle/fluid/dygraph/base.py +++ b/python/paddle/fluid/dygraph/base.py @@ -111,6 +111,10 @@ def enabled(): def enable_dygraph(place=None): """ + :alias_main: paddle.enable_dygraph + :alias: paddle.enable_dygraph,paddle.enable_imperative.enable_dygraph + :old_api: paddle.fluid.dygraph.base.enable_dygraph + This function enables dynamic graph mode. Parameters: @@ -141,6 +145,10 @@ def enable_dygraph(place=None): def disable_dygraph(): """ + :alias_main: paddle.disable_dygraph + :alias: paddle.disable_dygraph,paddle.disable_imperative.disable_dygraph + :old_api: paddle.fluid.dygraph.base.disable_dygraph + This function disables dynamic graph mode. return: @@ -178,6 +186,8 @@ def _switch_tracer_mode_guard_(is_train=True): def no_grad(func=None): """ + :api_attr: imperative + Create a context which disables dygraph gradient calculation. In this mode, the result of every computation will have `stop_gradient=True`. @@ -236,6 +246,8 @@ def no_grad(func=None): @signature_safe_contextmanager def guard(place=None): """ + :api_attr: imperative + This context will create a dygraph context for dygraph to run, using python ``with`` statement. Parameters: @@ -520,6 +532,8 @@ def grad(outputs, @framework.dygraph_only def to_variable(value, name=None, zero_copy=None): """ + :api_attr: imperative + The API will create a ``Variable`` or ``ComplexVariable`` object from numpy\.ndarray, Variable or ComplexVariable object. diff --git a/python/paddle/fluid/dygraph/checkpoint.py b/python/paddle/fluid/dygraph/checkpoint.py index 3a6e46bc64ec9af4dfcc4164a5078b2af85dca7a..7bc10a97768a4f9451b4ed7e01df1c82cd796b84 100644 --- a/python/paddle/fluid/dygraph/checkpoint.py +++ b/python/paddle/fluid/dygraph/checkpoint.py @@ -32,6 +32,8 @@ __all__ = [ @dygraph_only def save_dygraph(state_dict, model_path): ''' + :api_attr: imperative + Save Layer's state_dict to disk. This will generate a file with suffix ".pdparams" The state_dict is get from Layers.state_dict function @@ -95,6 +97,8 @@ def save_dygraph(state_dict, model_path): @dygraph_only def load_dygraph(model_path, keep_name_table=False): ''' + :api_attr: imperative + Load parameter state_dict from disk. Args: diff --git a/python/paddle/fluid/dygraph/jit.py b/python/paddle/fluid/dygraph/jit.py index 8da05f89c977a724ca7d5762ed0dcba153569c90..a60e03f8a881685e91145bf680324023882ca93d 100644 --- a/python/paddle/fluid/dygraph/jit.py +++ b/python/paddle/fluid/dygraph/jit.py @@ -203,6 +203,8 @@ def _trace(layer, class TracedLayer(object): """ + :api_attr: imperative + TracedLayer is used to convert a forward dygraph model to a static graph model. This is mainly used to save the dygraph model for online inference using C++. Besides, users can also do inference in Python diff --git a/python/paddle/fluid/dygraph/layers.py b/python/paddle/fluid/dygraph/layers.py index d7572cfe1e0e4638773f3ca7e79b0712b9274a02..d80170800deab146f7062da1e8f884c8afe12e24 100644 --- a/python/paddle/fluid/dygraph/layers.py +++ b/python/paddle/fluid/dygraph/layers.py @@ -58,7 +58,12 @@ class HookRemoveHelper(object): class Layer(core.Layer): - """Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on. + """ + :alias_main: paddle.nn.Layer + :alias: paddle.nn.Layer + :old_api: paddle.fluid.dygraph.layers.Layer + + Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on. Parameters: name_scope (str, optional): prefix name used by the layer to name parameters. diff --git a/python/paddle/fluid/dygraph/learning_rate_scheduler.py b/python/paddle/fluid/dygraph/learning_rate_scheduler.py index 047e35deb4144041e163d002dfb6908a0dcfe956..9dfc73da0bc74ba3f8a20149f8bfbbc4206039a5 100644 --- a/python/paddle/fluid/dygraph/learning_rate_scheduler.py +++ b/python/paddle/fluid/dygraph/learning_rate_scheduler.py @@ -69,6 +69,8 @@ class LearningRateDecay(object): class PiecewiseDecay(LearningRateDecay): """ + :api_attr: imperative + Piecewise decay scheduler. The algorithm can be described as the code below. @@ -128,6 +130,8 @@ class PiecewiseDecay(LearningRateDecay): class NaturalExpDecay(LearningRateDecay): """ + :api_attr: imperative + Applies natural exponential decay to the initial learning rate. The algorithm can be described as following. @@ -207,6 +211,8 @@ class NaturalExpDecay(LearningRateDecay): class ExponentialDecay(LearningRateDecay): """ + :api_attr: imperative + Applies exponential decay to the learning rate. The algorithm can be described as following. @@ -287,6 +293,8 @@ class ExponentialDecay(LearningRateDecay): class InverseTimeDecay(LearningRateDecay): """ + :api_attr: imperative + Applies inverse time decay to the initial learning rate. The algorithm can be described as following. @@ -363,6 +371,8 @@ class InverseTimeDecay(LearningRateDecay): class PolynomialDecay(LearningRateDecay): """ + :api_attr: imperative + Applies polynomial decay to the initial learning rate. The algorithm can be described as following. @@ -455,6 +465,8 @@ class PolynomialDecay(LearningRateDecay): class CosineDecay(LearningRateDecay): """ + :api_attr: imperative + Applies cosine decay to the learning rate. The algorithm can be described as following. @@ -511,6 +523,8 @@ class CosineDecay(LearningRateDecay): class NoamDecay(LearningRateDecay): """ + :api_attr: imperative + Applies Noam decay to the initial learning rate. The algorithm can be described as following. diff --git a/python/paddle/fluid/dygraph/nn.py b/python/paddle/fluid/dygraph/nn.py index b06fddf59fbe6a6e623110573d2f804a70702a66..e798ec5fc1f60e617f5c5c424c5552b994046e46 100644 --- a/python/paddle/fluid/dygraph/nn.py +++ b/python/paddle/fluid/dygraph/nn.py @@ -696,6 +696,10 @@ class Conv3DTranspose(layers.Layer): class Pool2D(layers.Layer): """ + :alias_main: paddle.nn.Pool2D + :alias: paddle.nn.Pool2D,paddle.nn.layer.Pool2D,paddle.nn.layer.common.Pool2D + :old_api: paddle.fluid.dygraph.Pool2D + This interface is used to construct a callable object of the ``Pool2D`` class. For more details, refer to code examples. The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride, @@ -867,6 +871,10 @@ class Pool2D(layers.Layer): class Linear(layers.Layer): """ + :alias_main: paddle.nn.Linear + :alias: paddle.nn.Linear,paddle.nn.layer.Linear,paddle.nn.layer.common.Linear + :old_api: paddle.fluid.dygraph.Linear + Fully-connected linear transformation layer: .. math:: @@ -1100,6 +1108,10 @@ class InstanceNorm(layers.Layer): class BatchNorm(layers.Layer): """ + :alias_main: paddle.nn.BatchNorm + :alias: paddle.nn.BatchNorm,paddle.nn.layer.BatchNorm,paddle.nn.layer.norm.BatchNorm + :old_api: paddle.fluid.dygraph.BatchNorm + This interface is used to construct a callable object of the ``BatchNorm`` class. For more details, refer to code examples. It implements the function of the Batch Normalization Layer and can be used @@ -1443,6 +1455,10 @@ class Dropout(layers.Layer): class Embedding(layers.Layer): """ + :alias_main: paddle.nn.Embedding + :alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding + :old_api: paddle.fluid.dygraph.Embedding + **Embedding Layer** This interface is used to construct a callable object of the ``Embedding`` class. @@ -1599,6 +1615,10 @@ class Embedding(layers.Layer): class LayerNorm(layers.Layer): """ + :alias_main: paddle.nn.LayerNorm + :alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm + :old_api: paddle.fluid.dygraph.LayerNorm + This interface is used to construct a callable object of the ``LayerNorm`` class. For more details, refer to code examples. It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data. @@ -2289,6 +2309,10 @@ class PRelu(layers.Layer): class BilinearTensorProduct(layers.Layer): """ + :alias_main: paddle.nn.BilinearTensorProduct + :alias: paddle.nn.BilinearTensorProduct,paddle.nn.layer.BilinearTensorProduct,paddle.nn.layer.common.BilinearTensorProduct + :old_api: paddle.fluid.dygraph.BilinearTensorProduct + **Add Bilinear Tensor Product Layer** This layer performs bilinear tensor product on two inputs. @@ -2809,6 +2833,10 @@ class RowConv(layers.Layer): class GroupNorm(layers.Layer): """ + :alias_main: paddle.nn.GroupNorm + :alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm + :old_api: paddle.fluid.dygraph.GroupNorm + This interface is used to construct a callable object of the ``GroupNorm`` class. For more details, refer to code examples. It implements the function of the Group Normalization Layer. @@ -2909,6 +2937,10 @@ class GroupNorm(layers.Layer): class SpectralNorm(layers.Layer): """ + :alias_main: paddle.nn.SpectralNorm + :alias: paddle.nn.SpectralNorm,paddle.nn.layer.SpectralNorm,paddle.nn.layer.norm.SpectralNorm + :old_api: paddle.fluid.dygraph.SpectralNorm + This interface is used to construct a callable object of the ``SpectralNorm`` class. For more details, refer to code examples. It implements the function of the Spectral Normalization Layer. This layer calculates the spectral normalization value of weight parameters of diff --git a/python/paddle/fluid/dygraph/parallel.py b/python/paddle/fluid/dygraph/parallel.py index 7064d6956a3a7cee2cc15fa4033177deb4fc2d8b..3fbf66554c3834805c8440f9783e06252a7ae39c 100644 --- a/python/paddle/fluid/dygraph/parallel.py +++ b/python/paddle/fluid/dygraph/parallel.py @@ -28,6 +28,9 @@ ParallelStrategy = core.ParallelStrategy def prepare_context(strategy=None): + ''' + :api_attr: imperative + ''' if strategy is None: strategy = ParallelStrategy() strategy.nranks = Env().nranks diff --git a/python/paddle/fluid/dygraph/tracer.py b/python/paddle/fluid/dygraph/tracer.py index 2d2e238d629136bb6e1930bbb99e800512de9459..6b1d237881705eacaaaa8ce19cd0c1bd63fcb93a 100644 --- a/python/paddle/fluid/dygraph/tracer.py +++ b/python/paddle/fluid/dygraph/tracer.py @@ -23,6 +23,8 @@ from paddle.fluid import framework class Tracer(core.Tracer): """ + :api_attr: imperative + Tracer is used to execute and record the operators executed, to construct the computation graph in dygraph model. Tracer has two mode, :code:`train_mode` and :code:`eval_mode`. In :code:`train_mode`, Tracer would add backward network diff --git a/python/paddle/fluid/executor.py b/python/paddle/fluid/executor.py index 0f1567fcd502770d416117d124b99e4986bd3c0f..0d9d617c4d220e0b7fb36fad1be1dcd5fa1625b5 100644 --- a/python/paddle/fluid/executor.py +++ b/python/paddle/fluid/executor.py @@ -40,6 +40,8 @@ InferAnalysisConfig = core.AnalysisConfig def global_scope(): """ + :api_attr: Static Graph + Get the global/default scope instance. There are a lot of APIs use :code:`global_scope` as its default value, e.g., :code:`Executor.run` @@ -68,6 +70,8 @@ def _switch_scope(scope): @signature_safe_contextmanager def scope_guard(scope): """ + :api_attr: Static Graph + This function switches scope through python `with` statement. Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ), similar to brackets in programming languages. @@ -456,6 +460,8 @@ handler = FetchHandlerExample(var_dict=var_dict) class Executor(object): """ + :api_attr: Static Graph + An Executor in Python, supports single/multiple-GPU running, and single/multiple-CPU running. diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 5b491bf3b0e03c487a709f54bab32030584021af..32508923a217aafc56906e445166a86080d1e666 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -179,6 +179,10 @@ def require_version(min_version, max_version=None): def in_dygraph_mode(): """ + :alias_main: paddle.in_dygraph_mode + :alias: paddle.in_dygraph_mode + :old_api: paddle.fluid.framework.in_dygraph_mode + This function checks whether the program runs in dynamic graph mode or not. You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api, or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable` @@ -436,6 +440,8 @@ _name_scope = NameScope() @signature_safe_contextmanager def name_scope(prefix=None): """ + :api_attr: Static Graph + Generate hierarchical name prefix for the operators. Note: @@ -5277,6 +5283,8 @@ def switch_startup_program(program): @signature_safe_contextmanager def program_guard(main_program, startup_program=None): """ + :api_attr: Static Graph + Change the global main program and startup program with `"with"` statement. Layer functions in the Python `"with"` block will append operators and variables to the new main programs. @@ -5376,6 +5384,8 @@ def _dygraph_place_guard(place): def load_op_library(lib_filename): """ + :api_attr: Static Graph + Load a dynamic library, including custom operators and kernels. When library is loaded, ops and kernels registered in the library will be available in PaddlePaddle main process. diff --git a/python/paddle/fluid/input.py b/python/paddle/fluid/input.py index acfc7464439a5acfcb9fdb6899481427420aca10..347927509e6d539555bd4d1b7a594febbc68f57b 100644 --- a/python/paddle/fluid/input.py +++ b/python/paddle/fluid/input.py @@ -23,6 +23,9 @@ __all__ = ['one_hot', 'embedding'] def one_hot(input, depth, allow_out_of_range=False): """ + :alias_main: paddle.nn.functional.one_hot + :alias: paddle.nn.functional.one_hot,paddle.nn.functional.common.one_hot + :old_api: paddle.fluid.one_hot The operator converts each id in the input to an one-hot vector with a depth length. The value in the vector dimension corresponding to the id @@ -132,6 +135,7 @@ def embedding(input, param_attr=None, dtype='float32'): """ + :api_attr: Static Graph The operator is used to lookup embeddings vector of ids provided by :attr:`input` . It automatically constructs a 2D embedding matrix based on the diff --git a/python/paddle/fluid/io.py b/python/paddle/fluid/io.py index 63432b78077d675d1e08b43dc83d14a5a913909d..e127c3dd47c496fa28cc4154163d7ebebb913ac7 100644 --- a/python/paddle/fluid/io.py +++ b/python/paddle/fluid/io.py @@ -124,6 +124,8 @@ def is_belong_to_optimizer(var): @dygraph_not_support def get_program_parameter(program): """ + :api_attr: Static Graph + Get all the parameters from Program. Args: @@ -147,6 +149,8 @@ def get_program_parameter(program): @dygraph_not_support def get_program_persistable_vars(program): """ + :api_attr: Static Graph + Get all the persistable vars from Program. Args: @@ -223,6 +227,8 @@ def save_vars(executor, predicate=None, filename=None): """ + :api_attr: Static Graph + This API saves specific variables in the `Program` to files. There are two ways to specify the variables to be saved: set variables in @@ -365,6 +371,8 @@ def save_vars(executor, @dygraph_not_support def save_params(executor, dirname, main_program=None, filename=None): """ + :api_attr: Static Graph + This operator saves all parameters from the :code:`main_program` to the folder :code:`dirname` or file :code:`filename`. You can refer to :ref:`api_guide_model_save_reader_en` for more details. @@ -588,6 +596,8 @@ def _save_distributed_persistables(executor, dirname, main_program): @dygraph_not_support def save_persistables(executor, dirname, main_program=None, filename=None): """ + :api_attr: Static Graph + This operator saves all persistable variables from :code:`main_program` to the folder :code:`dirname` or file :code:`filename`. You can refer to :ref:`api_guide_model_save_reader_en` for more details. And then @@ -661,6 +671,8 @@ def load_vars(executor, predicate=None, filename=None): """ + :api_attr: Static Graph + This API loads variables from files by executor. There are two ways to specify the variables to be loaded: the first way, set @@ -829,6 +841,8 @@ def load_vars(executor, @dygraph_not_support def load_params(executor, dirname, main_program=None, filename=None): """ + :api_attr: Static Graph + This API filters out all parameters from the give ``main_program`` and then tries to load these parameters from the directory ``dirname`` or the file ``filename``. @@ -887,6 +901,8 @@ def load_params(executor, dirname, main_program=None, filename=None): @dygraph_not_support def load_persistables(executor, dirname, main_program=None, filename=None): """ + :api_attr: Static Graph + This API filters out all variables with ``persistable==True`` from the given ``main_program`` and then tries to load these variables from the directory ``dirname`` or the file ``filename``. @@ -1084,6 +1100,8 @@ def save_inference_model(dirname, export_for_deployment=True, program_only=False): """ + :api_attr: Static Graph + Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` . If you just want to save parameters of your trained model, please use the @@ -1288,6 +1306,8 @@ def load_inference_model(dirname, params_filename=None, pserver_endpoints=None): """ + :api_attr: Static Graph + Load the inference model from a given directory. By this API, you can get the model structure(Inference Program) and model parameters. If you just want to load parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API. @@ -1577,6 +1597,11 @@ def _load_persistable_nodes(executor, dirname, graph): @dygraph_not_support def save(program, model_path): """ + :api_attr: Static Graph + :alias_main: paddle.save + :alias: paddle.save,paddle.tensor.save,paddle.tensor.io.save + :old_api: paddle.fluid.save + This function save parameters, optimizer information and network description to model_path. The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams". @@ -1636,6 +1661,11 @@ def save(program, model_path): @dygraph_not_support def load(program, model_path, executor=None, var_list=None): """ + :api_attr: Static Graph + :alias_main: paddle.load + :alias: paddle.load,paddle.tensor.load,paddle.tensor.io.load + :old_api: paddle.fluid.io.load + This function get parameters and optimizer information from program, and then get corresponding value from file. An exception will throw if shape or dtype of the parameters is not match. @@ -1803,6 +1833,8 @@ def load(program, model_path, executor=None, var_list=None): @dygraph_not_support def load_program_state(model_path, var_list=None): """ + :api_attr: Static Graph + Load program state from local file Args: @@ -1934,6 +1966,8 @@ def load_program_state(model_path, var_list=None): @dygraph_not_support def set_program_state(program, state_dict): """ + :api_attr: Static Graph + Set program parameter from state_dict An exception will throw if shape or dtype of the parameters is not match. diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index a8efe99278b4a81cb88e9bb9ab852b23e97f0182..af849f5b80a1cb04a07cb2c295f36045a105fd51 100755 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -222,6 +222,8 @@ def Print(input, print_tensor_lod=True, print_phase='both'): ''' + :api_attr: Static Graph + **Print operator** This creates a print op that will print when a tensor is accessed. @@ -446,6 +448,8 @@ class StaticRNNMemoryLink(object): class StaticRNN(object): """ + :api_attr: Static Graph + StaticRNN class. The StaticRNN can process a batch of sequence data. The first dimension of inputs @@ -923,6 +927,8 @@ class WhileGuard(BlockGuard): class While(object): """ + :api_attr: Static Graph + while loop control flow. Repeat while body until cond is False. Note: @@ -1061,6 +1067,11 @@ def assign_skip_lod_tensor_array(inputs, outputs): def while_loop(cond, body, loop_vars, is_test=False, name=None): """ + :api_attr: Static Graph + :alias_main: paddle.nn.while_loop + :alias: paddle.nn.while_loop,paddle.nn.control_flow.while_loop + :old_api: paddle.fluid.layers.while_loop + while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False. Notice: @@ -1529,6 +1540,10 @@ def create_array(dtype): @templatedoc() def less_than(x, y, force_cpu=None, cond=None): """ + :alias_main: paddle.less_than + :alias: paddle.less_than,paddle.tensor.less_than,paddle.tensor.logic.less_than + :old_api: paddle.fluid.layers.less_than + ${comment} Args: @@ -1594,6 +1609,10 @@ def less_than(x, y, force_cpu=None, cond=None): @templatedoc() def less_equal(x, y, cond=None): """ + :alias_main: paddle.less_equal + :alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal + :old_api: paddle.fluid.layers.less_equal + This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`. Args: @@ -1642,6 +1661,10 @@ def less_equal(x, y, cond=None): @templatedoc() def greater_than(x, y, cond=None): """ + :alias_main: paddle.greater_than + :alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than + :old_api: paddle.fluid.layers.greater_than + This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`. Args: @@ -1689,6 +1712,10 @@ def greater_than(x, y, cond=None): @templatedoc() def greater_equal(x, y, cond=None): """ + :alias_main: paddle.greater_equal + :alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal + :old_api: paddle.fluid.layers.greater_equal + This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`. Args: @@ -1782,6 +1809,10 @@ def equal(x, y, cond=None): def not_equal(x, y, cond=None): """ + :alias_main: paddle.not_equal + :alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal + :old_api: paddle.fluid.layers.not_equal + This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`. Args: @@ -2225,6 +2256,11 @@ def copy_var_to_parent_block(var, layer_helper): def cond(pred, true_fn=None, false_fn=None, name=None): """ + :api_attr: Static Graph + :alias_main: paddle.nn.cond + :alias: paddle.nn.cond,paddle.nn.control_flow.cond + :old_api: paddle.fluid.layers.cond + This API returns ``true_fn()`` if the predicate ``pred`` is true else ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to ``None`` if do nothing and this API will treat the callable simply returns @@ -2410,6 +2446,11 @@ def _error_message(what, arg_name, op_name, right_value, error_value): def case(pred_fn_pairs, default=None, name=None): ''' + :api_attr: Static Graph + :alias_main: paddle.nn.case + :alias: paddle.nn.case,paddle.nn.control_flow.case + :old_api: paddle.fluid.layers.case + This operator works like an if-elif-elif-else chain. Args: @@ -2520,6 +2561,7 @@ def case(pred_fn_pairs, default=None, name=None): class Switch(object): """ + :api_attr: Static Graph This class is used to implement Switch branch control function. Switch branch contains several case branches and one default branch. @@ -2677,6 +2719,8 @@ class IfElseBlockGuard(object): class IfElse(object): """ + :api_attr: Static Graph + This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run. Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data. @@ -2853,6 +2897,8 @@ class IfElse(object): class DynamicRNN(object): """ + :api_attr: Static Graph + **Note: the input of this class should be LoDTensor which holds the information of variable-length sequences. If the input is fixed-length Tensor, please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for @@ -3518,6 +3564,8 @@ class DynamicRNN(object): def switch_case(branch_index, branch_fns, default=None, name=None): ''' + :api_attr: Static Graph + This operator is like a C++ switch/case statement. Args: @@ -3701,6 +3749,10 @@ def reorder_lod_tensor_by_rank(x, rank_table): def is_empty(x, cond=None): """ + :alias_main: paddle.is_empty + :alias: paddle.is_empty,paddle.tensor.is_empty,paddle.tensor.logic.is_empty + :old_api: paddle.fluid.layers.is_empty + Test whether a Variable is empty. Args: diff --git a/python/paddle/fluid/layers/loss.py b/python/paddle/fluid/layers/loss.py index 0281c0433f54b157c0ab4c882416eec88558f545..abaa9888c8d7ed019628e708024bbc25b19e3299 100644 --- a/python/paddle/fluid/layers/loss.py +++ b/python/paddle/fluid/layers/loss.py @@ -57,6 +57,11 @@ def center_loss(input, param_attr, update_center=True): """ + :api_attr: Static Graph + :alias_main: paddle.nn.functional.center_loss + :alias: paddle.nn.functional.center_loss,paddle.nn.functional.loss.center_loss + :old_api: paddle.fluid.layers.center_loss + **Center loss Cost layer** This OP accepts input (deep features,the output of the last hidden layer) @@ -147,6 +152,10 @@ def center_loss(input, def bpr_loss(input, label, name=None): """ + :alias_main: paddle.nn.functional.bpr_loss + :alias: paddle.nn.functional.bpr_loss,paddle.nn.functional.loss.bpr_loss + :old_api: paddle.fluid.layers.bpr_loss + **Bayesian Personalized Ranking Loss Operator** This operator belongs to pairwise ranking loss. Label is the desired item. @@ -195,6 +204,10 @@ def bpr_loss(input, label, name=None): def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex): """ + :alias_main: paddle.nn.functional.cross_entropy + :alias: paddle.nn.functional.cross_entropy,paddle.nn.functional.loss.cross_entropy + :old_api: paddle.fluid.layers.cross_entropy + This operator computes the cross entropy between input and label. It supports both hard-label and and soft-label cross entropy computation. @@ -288,6 +301,10 @@ def cross_entropy2(input, label, ignore_index=kIgnoreIndex): def square_error_cost(input, label): """ + :alias_main: paddle.nn.functional.square_error_cost + :alias: paddle.nn.functional.square_error_cost,paddle.nn.functional.loss.square_error_cost + :old_api: paddle.fluid.layers.square_error_cost + This op accepts input predictions and target label and returns the squared error cost. @@ -663,6 +680,8 @@ def nce(input, seed=0, is_sparse=False): """ + :api_attr: Static Graph + ${comment} Args: @@ -874,6 +893,8 @@ def hsigmoid(input, is_custom=False, is_sparse=False): """ + :api_attr: Static Graph + The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity and speed up the model training, especially the training of language model. Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier. @@ -1167,6 +1188,10 @@ def softmax_with_cross_entropy(logits, return_softmax=False, axis=-1): """ + :alias_main: paddle.nn.functional.softmax_with_cross_entropy + :alias: paddle.nn.functional.softmax_with_cross_entropy,paddle.nn.functional.loss.softmax_with_cross_entropy + :old_api: paddle.fluid.layers.softmax_with_cross_entropy + This operator implements the cross entropy loss function with softmax. This function combines the calculation of the softmax operation and the cross entropy loss function to provide a more numerically stable gradient. @@ -1290,6 +1315,10 @@ def softmax_with_cross_entropy(logits, def rank_loss(label, left, right, name=None): """ + :alias_main: paddle.nn.functional.rank_loss + :alias: paddle.nn.functional.rank_loss,paddle.nn.functional.loss.rank_loss + :old_api: paddle.fluid.layers.rank_loss + This operator implements the sort loss layer in the RankNet model. RankNet is a pairwise ranking model with a training sample consisting of a pair of documents (A and B), The label (P) indicates whether A is ranked higher than B or not. Please refer to more details: @@ -1407,6 +1436,10 @@ def sigmoid_cross_entropy_with_logits(x, name=None, normalize=False): """ + :alias_main: paddle.nn.functional.sigmoid_cross_entropy_with_logits + :alias: paddle.nn.functional.sigmoid_cross_entropy_with_logits,paddle.nn.functional.loss.sigmoid_cross_entropy_with_logits + :old_api: paddle.fluid.layers.sigmoid_cross_entropy_with_logits + ${comment} Args: @@ -1464,6 +1497,10 @@ def teacher_student_sigmoid_loss(input, soft_max_up_bound=15.0, soft_max_lower_bound=-15.0): """ + :alias_main: paddle.nn.functional.teacher_student_sigmoid_loss + :alias: paddle.nn.functional.teacher_student_sigmoid_loss,paddle.nn.functional.loss.teacher_student_sigmoid_loss + :old_api: paddle.fluid.layers.teacher_student_sigmoid_loss + **Teacher Student Log Loss Layer** This layer accepts input predictions and target label and returns the @@ -1583,6 +1620,10 @@ def huber_loss(input, label, delta): @templatedoc() def kldiv_loss(x, target, reduction='mean', name=None): """ + :alias_main: paddle.nn.functional.kldiv_loss + :alias: paddle.nn.functional.kldiv_loss,paddle.nn.functional.loss.kldiv_loss + :old_api: paddle.fluid.layers.kldiv_loss + ${comment} Args: @@ -1643,6 +1684,10 @@ from .control_flow import equal def npair_loss(anchor, positive, labels, l2_reg=0.002): ''' + :alias_main: paddle.nn.functional.npair_loss + :alias: paddle.nn.functional.npair_loss,paddle.nn.functional.loss.npair_loss + :old_api: paddle.fluid.layers.npair_loss + **Npair Loss Layer** Read `Improved Deep Metric Learning with Multi class N pair Loss Objective\ @@ -1709,6 +1754,10 @@ def npair_loss(anchor, positive, labels, l2_reg=0.002): def mse_loss(input, label): """ + :alias_main: paddle.nn.functional.mse_loss + :alias: paddle.nn.functional.mse_loss,paddle.nn.functional.loss.mse_loss + :old_api: paddle.fluid.layers.mse_loss + This op accepts input predications and target label and returns the mean square error. The loss can be described as: diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 90cf1ce11cffce9defc516c87691f4b284a9df5f..94e8e779433d4c583ea68d746885ffa25af66ce9 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -213,6 +213,8 @@ def fc(input, act=None, name=None): """ + :api_attr: Static Graph + **Fully Connected Layer** This operator creates a fully connected layer in the network. It can take @@ -370,6 +372,7 @@ def embedding(input, param_attr=None, dtype='float32'): """ + :api_attr: Static Graph **WARING:** This OP will be deprecated in a future release. This OP requires the last dimension of Tensor shape must be equal to 1. It is recommended to use @@ -696,6 +699,8 @@ def _pull_box_sparse(input, size, dtype='float32'): @templatedoc() def linear_chain_crf(input, label, param_attr=None, length=None): """ + :api_attr: Static Graph + Linear Chain CRF. ${comment} @@ -819,6 +824,7 @@ def linear_chain_crf(input, label, param_attr=None, length=None): @templatedoc() def crf_decoding(input, param_attr, label=None, length=None): """ + :api_attr: Static Graph ${comment} Args: @@ -924,6 +930,10 @@ def dropout(x, name=None, dropout_implementation="downgrade_in_infer"): """ + :alias_main: paddle.nn.functional.dropout + :alias: paddle.nn.functional.dropout,paddle.nn.functional.common.dropout + :old_api: paddle.fluid.layers.dropout + Computes dropout. Drop or keep each element of `x` independently. Dropout is a regularization @@ -1169,6 +1179,10 @@ def chunk_eval(input, def softmax(input, use_cudnn=False, name=None, axis=-1): """ + :alias_main: paddle.nn.functional.softmax + :alias: paddle.nn.functional.softmax,paddle.nn.functional.activation.softmax + :old_api: paddle.fluid.layers.softmax + This operator implements the softmax layer. The calculation process is as follows: 1. The dimension :attr:`axis` of the ``input`` will be permuted to the last. @@ -1309,6 +1323,8 @@ def conv2d(input, name=None, data_format="NCHW"): """ + :api_attr: Static Graph + The convolution2D layer calculates the output based on the input, filter and strides, paddings, dilations, groups parameters. Input and Output are in NCHW or NHWC format, where N is batch size, C is the number of @@ -1583,6 +1599,8 @@ def conv3d(input, name=None, data_format="NCDHW"): """ + :api_attr: Static Graph + The convolution3D layer calculates the output based on the input, filter and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of @@ -1846,6 +1864,10 @@ def pool2d(input, exclusive=True, data_format="NCHW"): """ + :alias_main: paddle.nn.functional.pool2d + :alias: paddle.nn.functional.pool2d,paddle.nn.functional.pooling.pool2d + :old_api: paddle.fluid.layers.pool2d + ${comment} Args: @@ -2059,6 +2081,10 @@ def pool3d(input, exclusive=True, data_format="NCDHW"): """ + :alias_main: paddle.nn.functional.pool3d + :alias: paddle.nn.functional.pool3d,paddle.nn.functional.pooling.pool3d + :old_api: paddle.fluid.layers.pool3d + ${comment} Args: @@ -2277,6 +2303,10 @@ def adaptive_pool2d(input, require_index=False, name=None): """ + :alias_main: paddle.nn.functional.adaptive_pool2d + :alias: paddle.nn.functional.adaptive_pool2d,paddle.nn.functional.pooling.adaptive_pool2d + :old_api: paddle.fluid.layers.adaptive_pool2d + This operation calculates the output based on the input, pool_size, pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch size, C is the number of channels, H is the height of the feature, and W is @@ -2420,6 +2450,10 @@ def adaptive_pool3d(input, require_index=False, name=None): """ + :alias_main: paddle.nn.functional.adaptive_pool3d + :alias: paddle.nn.functional.adaptive_pool3d,paddle.nn.functional.pooling.adaptive_pool3d + :old_api: paddle.fluid.layers.adaptive_pool3d + This operation calculates the output based on the input, pool_size, pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch size, C is the number of channels, D is the depth of the feature, H is the height of @@ -2589,6 +2623,8 @@ def batch_norm(input, do_model_average_for_mean_and_var=True, use_global_stats=False): """ + :api_attr: Static Graph + **Batch Normalization Layer** Can be used as a normalizer function for convolution or fully_connected operations. @@ -3041,6 +3077,8 @@ def instance_norm(input, bias_attr=None, name=None): """ + :api_attr: Static Graph + **Instance Normalization Layer** Can be used as a normalizer function for convolution or fully_connected operations. @@ -3166,6 +3204,8 @@ def data_norm(input, summary_decay_rate=0.9999999, enable_scale_and_shift=False): """ + :api_attr: Static Graph + **Data Normalization Layer** This op can be used as a normalizer function for conv2d and fully_connected operations. @@ -3345,6 +3385,8 @@ def layer_norm(input, act=None, name=None): """ + :api_attr: Static Graph + **Layer Normalization Layer** The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data. @@ -3471,6 +3513,8 @@ def group_norm(input, data_layout='NCHW', name=None): """ + :api_attr: Static Graph + **Group Normalization Layer** Refer to `Group Normalization `_ . @@ -3566,6 +3610,8 @@ def group_norm(input, @templatedoc() def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None): """ + :api_attr: Static Graph + **Spectral Normalization Layer** This operation calculates the spectral normalization value of weight parameters of @@ -3682,6 +3728,8 @@ def conv2d_transpose(input, name=None, data_format='NCHW'): """ + :api_attr: Static Graph + The convolution2D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batch size, C is the number of channels, @@ -3970,6 +4018,8 @@ def conv3d_transpose(input, name=None, data_format='NCDHW'): """ + :api_attr: Static Graph + The convolution3D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels, @@ -4256,6 +4306,10 @@ def conv3d_transpose(input, def reduce_sum(input, dim=None, keep_dim=False, name=None): """ + :alias_main: paddle.reduce_sum + :alias: paddle.reduce_sum,paddle.tensor.reduce_sum,paddle.tensor.math.reduce_sum + :old_api: paddle.fluid.layers.reduce_sum + Computes the sum of tensor elements over the given dimension. Args: @@ -4332,6 +4386,10 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None): def reduce_mean(input, dim=None, keep_dim=False, name=None): """ + :alias_main: paddle.reduce_mean + :alias: paddle.reduce_mean,paddle.tensor.reduce_mean,paddle.tensor.stat.reduce_mean + :old_api: paddle.fluid.layers.reduce_mean + Computes the mean of the input tensor's elements along the given dimension. Args: @@ -4409,6 +4467,10 @@ def reduce_mean(input, dim=None, keep_dim=False, name=None): def reduce_max(input, dim=None, keep_dim=False, name=None): """ + :alias_main: paddle.reduce_max + :alias: paddle.reduce_max,paddle.tensor.reduce_max,paddle.tensor.math.reduce_max + :old_api: paddle.fluid.layers.reduce_max + Computes the maximum of tensor elements over the given dimension. Args: @@ -4471,6 +4533,10 @@ def reduce_max(input, dim=None, keep_dim=False, name=None): def reduce_min(input, dim=None, keep_dim=False, name=None): """ + :alias_main: paddle.reduce_min + :alias: paddle.reduce_min,paddle.tensor.reduce_min,paddle.tensor.math.reduce_min + :old_api: paddle.fluid.layers.reduce_min + Computes the minimum of tensor elements over the given dimension. Args: @@ -4533,6 +4599,10 @@ def reduce_min(input, dim=None, keep_dim=False, name=None): def reduce_prod(input, dim=None, keep_dim=False, name=None): """ + :alias_main: paddle.reduce_prod + :alias: paddle.reduce_prod,paddle.tensor.reduce_prod,paddle.tensor.math.reduce_prod + :old_api: paddle.fluid.layers.reduce_prod + Computes the product of tensor elements over the given dimension. Args: @@ -4596,6 +4666,10 @@ def reduce_prod(input, dim=None, keep_dim=False, name=None): def reduce_all(input, dim=None, keep_dim=False, name=None): """ + :alias_main: paddle.reduce_all + :alias: paddle.reduce_all,paddle.tensor.reduce_all,paddle.tensor.logic.reduce_all + :old_api: paddle.fluid.layers.reduce_all + This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result. Args: @@ -4656,6 +4730,10 @@ def reduce_all(input, dim=None, keep_dim=False, name=None): def reduce_any(input, dim=None, keep_dim=False, name=None): """ + :alias_main: paddle.reduce_any + :alias: paddle.reduce_any,paddle.tensor.reduce_any,paddle.tensor.logic.reduce_any + :old_api: paddle.fluid.layers.reduce_any + This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result. Args: @@ -4864,6 +4942,10 @@ def split(input, num_or_sections, dim=-1, name=None): def l2_normalize(x, axis, epsilon=1e-12, name=None): """ + :alias_main: paddle.nn.functional.l2_normalize + :alias: paddle.nn.functional.l2_normalize,paddle.nn.functional.norm.l2_normalize + :old_api: paddle.fluid.layers.l2_normalize + This op normalizes `x` along dimension `axis` using an L2 norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes @@ -5023,6 +5105,10 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None): def topk(input, k, name=None): """ + :alias_main: paddle.topk + :alias: paddle.topk,paddle.tensor.topk,paddle.tensor.search.topk + :old_api: paddle.fluid.layers.topk + This OP is used to find values and indices of the k largest entries for the last dimension. @@ -5284,6 +5370,10 @@ def ctc_greedy_decoder(input, def transpose(x, perm, name=None): """ + :alias_main: paddle.transpose + :alias: paddle.transpose,paddle.tensor.transpose,paddle.tensor.linalg.transpose,paddle.tensor.manipulation.transpose + :old_api: paddle.fluid.layers.transpose + Permute the data dimensions of `input` according to `perm`. The `i`-th dimension of the returned tensor will correspond to the @@ -5376,6 +5466,8 @@ def im2sequence(input, out_stride=1, name=None): """ + :api_attr: Static Graph + Extracts image patches from the input tensor to form a tensor of shape {input.batch_size * output_height * output_width, filter_size_height * filter_size_width * input.channels}. This op use filter to scan images @@ -5513,6 +5605,8 @@ def im2sequence(input, @templatedoc() def row_conv(input, future_context_size, param_attr=None, act=None): """ + :api_attr: Static Graph + ${comment} Args: @@ -5633,6 +5727,10 @@ def multiplex(inputs, index): def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None): """ + :alias_main: paddle.nn.functional.smooth_l1 + :alias: paddle.nn.functional.smooth_l1,paddle.nn.functional.loss.smooth_l1 + :old_api: paddle.fluid.layers.smooth_l1 + This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`. It takes the first dimension of :attr:`x` and :attr:`y` as batch size. For each instance, it computes the smooth L1 loss element by element first @@ -5820,6 +5918,8 @@ def one_hot(input, depth, allow_out_of_range=False): def autoincreased_step_counter(counter_name=None, begin=1, step=1): """ + :api_attr: Static Graph + Create an auto-increase variable. which will be automatically increased by 1 in every iteration. By default, the first return of this counter is 1, and the step size is 1. @@ -5864,6 +5964,10 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1): def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): """ + :alias_main: paddle.reshape + :alias: paddle.reshape,paddle.tensor.reshape,paddle.tensor.manipulation.reshape + :old_api: paddle.fluid.layers.reshape + This operator changes the shape of ``x`` without changing its data. The target shape can be given by ``shape`` or ``actual_shape``. @@ -6359,6 +6463,10 @@ def lod_append(x, level): def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None, data_format='NCHW'): """ + :alias_main: paddle.nn.functional.lrn + :alias: paddle.nn.functional.lrn,paddle.nn.functional.norm.lrn + :old_api: paddle.fluid.layers.lrn + This operator implements the Local Response Normalization Layer. This layer performs a type of "lateral inhibition" by normalizing over local input regions. For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks `_ @@ -6445,6 +6553,10 @@ def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None, def pad(x, paddings, pad_value=0., name=None): """ + :alias_main: paddle.nn.functional.pad + :alias: paddle.nn.functional.pad,paddle.nn.functional.common.pad + :old_api: paddle.fluid.layers.pad + This op will pad a tensor with a constant value given by :attr:`pad_value`, and the padded shape is specified by :attr:`paddings`. @@ -6610,6 +6722,10 @@ def label_smooth(label, dtype="float32", name=None): """ + :alias_main: paddle.nn.functional.label_smooth + :alias: paddle.nn.functional.label_smooth,paddle.nn.functional.common.label_smooth + :old_api: paddle.fluid.layers.label_smooth + Label smoothing is a mechanism to regularize the classifier layer and is called label-smoothing regularization (LSR). @@ -6689,6 +6805,10 @@ def roi_pool(input, spatial_scale=1.0, rois_lod=None): """ + :alias_main: paddle.nn.functional.roi_pool + :alias: paddle.nn.functional.roi_pool,paddle.nn.functional.vision.roi_pool + :old_api: paddle.fluid.layers.roi_pool + This operator implements the roi_pooling layer. Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7). @@ -6776,6 +6896,10 @@ def roi_align(input, name=None, rois_lod=None): """ + :alias_main: paddle.nn.functional.roi_align + :alias: paddle.nn.functional.roi_align,paddle.nn.functional.vision.roi_align + :old_api: paddle.fluid.layers.roi_align + ${comment} Args: @@ -6840,6 +6964,10 @@ def roi_align(input, def dice_loss(input, label, epsilon=0.00001, name=None): """ + :alias_main: paddle.nn.functional.dice_loss + :alias: paddle.nn.functional.dice_loss,paddle.nn.functional.loss.dice_loss + :old_api: paddle.fluid.layers.dice_loss + Dice loss for comparing the similarity between the input predictions and the label. This implementation is for binary classification, where the input is sigmoid predictions of each pixel, usually used for segmentation task. The dice loss can @@ -6899,6 +7027,10 @@ def image_resize(input, align_mode=1, data_format='NCHW'): """ + :alias_main: paddle.nn.functional.image_resize + :alias: paddle.nn.functional.image_resize,paddle.nn.functional.vision.image_resize + :old_api: paddle.fluid.layers.image_resize + This op resizes a batch of images. The input must be a 3-D Tensor of the shape (num_batches, channels, in_w) @@ -7468,6 +7600,10 @@ def resize_bilinear(input, align_mode=1, data_format='NCHW'): """ + :alias_main: paddle.nn.functional.resize_bilinear + :alias: paddle.nn.functional.resize_bilinear,paddle.nn.functional.vision.resize_bilinear + :old_api: paddle.fluid.layers.resize_bilinear + This op resizes the input by performing bilinear interpolation based on given output shape which specified by actual_shape, out_shape and scale in priority order. @@ -7631,6 +7767,10 @@ def resize_trilinear(input, align_mode=1, data_format='NCDHW'): """ + :alias_main: paddle.nn.functional.resize_trilinear + :alias: paddle.nn.functional.resize_trilinear,paddle.nn.functional.vision.resize_trilinear + :old_api: paddle.fluid.layers.resize_trilinear + This op resizes the input by performing trilinear interpolation based on given output shape which specified by actual_shape, out_shape and scale in priority order. @@ -7795,6 +7935,10 @@ def resize_nearest(input, align_corners=True, data_format='NCHW'): """ + :alias_main: paddle.nn.functional.resize_nearest + :alias: paddle.nn.functional.resize_nearest,paddle.nn.functional.vision.resize_nearest + :old_api: paddle.fluid.layers.resize_nearest + This op resizes the input by performing nearest neighbor interpolation in both the height direction and the width direction based on given output shape which is specified by actual_shape, out_shape and scale in priority order. @@ -8132,6 +8276,10 @@ def gather_nd(input, index, name=None): def scatter(input, index, updates, name=None, overwrite=True): """ + :alias_main: paddle.scatter + :alias: paddle.scatter,paddle.tensor.scatter,paddle.tensor.manipulation.scatter + :old_api: paddle.fluid.layers.scatter + **Scatter Layer** Output is obtained by updating the input on selected indices based on updates. @@ -8392,6 +8540,10 @@ def random_crop(x, shape, seed=None): def log(x, name=None): """ + :alias_main: paddle.log + :alias: paddle.log,paddle.tensor.log,paddle.tensor.math.log + :old_api: paddle.fluid.layers.log + Calculates the natural log of the given input tensor, element-wise. .. math:: @@ -8481,6 +8633,10 @@ def relu(x, name=None): def selu(x, scale=None, alpha=None, name=None): """ + :alias_main: paddle.nn.functional.selu + :alias: paddle.nn.functional.selu,paddle.nn.functional.activation.selu + :old_api: paddle.fluid.layers.selu + Selu Operator. The equation is: @@ -8718,6 +8874,10 @@ def crop(x, shape=None, offsets=None, name=None): def crop_tensor(x, shape=None, offsets=None, name=None): """ + :alias_main: paddle.crop_tensor + :alias: paddle.crop_tensor,paddle.tensor.crop_tensor,paddle.tensor.creation.crop_tensor + :old_api: paddle.fluid.layers.crop_tensor + Crop input into output, as specified by offsets and shape. .. code-block:: text @@ -8914,6 +9074,10 @@ def crop_tensor(x, shape=None, offsets=None, name=None): def affine_grid(theta, out_shape, name=None): """ + :alias_main: paddle.nn.functional.affine_grid + :alias: paddle.nn.functional.affine_grid,paddle.nn.functional.vision.affine_grid + :old_api: paddle.fluid.layers.affine_grid + It generates a grid of (x,y) coordinates using the parameters of the affine transformation that correspond to a set of points where the input feature map should be sampled to produce the transformed @@ -8985,6 +9149,10 @@ def pad2d(input, data_format="NCHW", name=None): """ + :alias_main: paddle.nn.functional.pad2d + :alias: paddle.nn.functional.pad2d,paddle.nn.functional.common.pad2d + :old_api: paddle.fluid.layers.pad2d + Pad 2-d images according to 'paddings' and 'mode'. If mode is 'reflect', paddings[0] and paddings[1] must be no greater than height-1. And the width dimension has the same condition. @@ -9082,6 +9250,10 @@ def pad2d(input, @templatedoc() def elu(x, alpha=1.0, name=None): """ + :alias_main: paddle.nn.functional.elu + :alias: paddle.nn.functional.elu,paddle.nn.functional.activation.elu + :old_api: paddle.fluid.layers.elu + ${comment} Args: x(${x_type}): ${x_comment} @@ -9120,6 +9292,10 @@ def elu(x, alpha=1.0, name=None): @templatedoc() def relu6(x, threshold=6.0, name=None): """ + :alias_main: paddle.nn.functional.relu6 + :alias: paddle.nn.functional.relu6,paddle.nn.functional.activation.relu6 + :old_api: paddle.fluid.layers.relu6 + ${comment} Args: @@ -9212,6 +9388,10 @@ def pow(x, factor=1.0, name=None): @templatedoc() def stanh(x, scale_a=0.67, scale_b=1.7159, name=None): """ + :alias_main: paddle.stanh + :alias: paddle.stanh,paddle.tensor.stanh,paddle.tensor.math.stanh + :old_api: paddle.fluid.layers.stanh + ${comment} Args: x(${x_type}): ${x_comment} @@ -9260,6 +9440,10 @@ def stanh(x, scale_a=0.67, scale_b=1.7159, name=None): @templatedoc() def hard_sigmoid(x, slope=0.2, offset=0.5, name=None): """ + :alias_main: paddle.nn.functional.hard_sigmoid + :alias: paddle.nn.functional.hard_sigmoid,paddle.nn.functional.activation.hard_sigmoid + :old_api: paddle.fluid.layers.hard_sigmoid + ${comment} Parameters: x (${x_type}): ${x_comment} @@ -9297,6 +9481,10 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None): @templatedoc() def swish(x, beta=1.0, name=None): """ + :alias_main: paddle.nn.functional.swish + :alias: paddle.nn.functional.swish,paddle.nn.functional.activation.swish + :old_api: paddle.fluid.layers.swish + Elementwise swish activation function. See `Searching for Activation Functions `_ for more details. Equation: @@ -9377,6 +9565,8 @@ def swish(x, beta=1.0, name=None): def prelu(x, mode, param_attr=None, name=None): """ + :api_attr: Static Graph + Equation: .. math:: @@ -9448,6 +9638,10 @@ def prelu(x, mode, param_attr=None, name=None): @templatedoc() def brelu(x, t_min=0.0, t_max=24.0, name=None): """ + :alias_main: paddle.nn.functional.brelu + :alias: paddle.nn.functional.brelu,paddle.nn.functional.activation.brelu + :old_api: paddle.fluid.layers.brelu + ${comment} Args: x(${x_type}): ${x_comment} @@ -9489,6 +9683,10 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None): @templatedoc() def leaky_relu(x, alpha=0.02, name=None): """ + :alias_main: paddle.nn.functional.leaky_relu + :alias: paddle.nn.functional.leaky_relu,paddle.nn.functional.activation.leaky_relu + :old_api: paddle.fluid.layers.leaky_relu + ${comment} Args: x(${x_type}): ${x_comment} @@ -9534,6 +9732,10 @@ def leaky_relu(x, alpha=0.02, name=None): def soft_relu(x, threshold=40.0, name=None): """ + :alias_main: paddle.nn.functional.soft_relu + :alias: paddle.nn.functional.soft_relu,paddle.nn.functional.activation.soft_relu + :old_api: paddle.fluid.layers.soft_relu + SoftRelu Activation Operator. $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$ @@ -9849,6 +10051,10 @@ def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0): def unstack(x, axis=0, num=None): """ + :alias_main: paddle.unstack + :alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack + :old_api: paddle.fluid.layers.unstack + **UnStack Layer** This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`. @@ -9899,6 +10105,10 @@ def unstack(x, axis=0, num=None): def expand(x, expand_times, name=None): """ + :alias_main: paddle.expand + :alias: paddle.expand,paddle.tensor.expand,paddle.tensor.manipulation.expand + :old_api: paddle.fluid.layers.expand + This operation tiles ``x`` multiple times according to the parameter ``expand_times``. The times number for each dimension of ``x`` is set by the parameter ``expand_times``. The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same @@ -10015,6 +10225,10 @@ def expand(x, expand_times, name=None): def expand_as(x, target_tensor, name=None): """ + :alias_main: paddle.expand_as + :alias: paddle.expand_as,paddle.tensor.expand_as,paddle.tensor.manipulation.expand_as + :old_api: paddle.fluid.layers.expand_as + expand_as operator tiles to the input by given expand tensor. You should set expand tensor for each dimension by providing tensor 'target_tensor'. The rank of X should be in [1, 6]. Please note that size of 'target_tensor' must be the same @@ -10471,6 +10685,10 @@ def sum(x): @templatedoc() def slice(input, axes, starts, ends): """ + :alias_main: paddle.slice + :alias: paddle.slice,paddle.tensor.slice,paddle.tensor.manipulation.slice + :old_api: paddle.fluid.layers.slice + This operator produces a slice of ``input`` along multiple axes. Similar to numpy: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and @@ -10634,6 +10852,10 @@ def slice(input, axes, starts, ends): @templatedoc() def strided_slice(input, axes, starts, ends, strides): """ + :alias_main: paddle.strided_slice + :alias: paddle.strided_slice,paddle.tensor.strided_slice,paddle.tensor.manipulation.strided_slice + :old_api: paddle.fluid.layers.strided_slice + This operator produces a slice of ``input`` along multiple axes. Similar to numpy: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and @@ -10839,6 +11061,10 @@ def strided_slice(input, axes, starts, ends, strides): def shape(input): """ + :alias_main: paddle.shape + :alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape + :old_api: paddle.fluid.layers.shape + **Shape Layer** Get the shape of the input. @@ -10878,6 +11104,10 @@ def shape(input): def rank(input): """ + :alias_main: paddle.rank + :alias: paddle.rank,paddle.tensor.rank,paddle.tensor.attribute.rank + :old_api: paddle.fluid.layers.rank + The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor. Args: @@ -10959,6 +11189,10 @@ def _elementwise_op(helper): def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): """ + :alias_main: paddle.scale + :alias: paddle.scale,paddle.tensor.scale,paddle.tensor.math.scale + :old_api: paddle.fluid.layers.scale + Scale operator. Putting scale and bias to the input Tensor as following: @@ -11053,6 +11287,10 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): def elementwise_add(x, y, axis=-1, act=None, name=None): """ + :alias_main: paddle.elementwise_add + :alias: paddle.elementwise_add,paddle.tensor.elementwise_add,paddle.tensor.math.elementwise_add + :old_api: paddle.fluid.layers.elementwise_add + Examples: .. code-block:: python @@ -11137,6 +11375,10 @@ Examples: def elementwise_div(x, y, axis=-1, act=None, name=None): """ + :alias_main: paddle.elementwise_div + :alias: paddle.elementwise_div,paddle.tensor.elementwise_div,paddle.tensor.math.elementwise_div + :old_api: paddle.fluid.layers.elementwise_div + Examples: .. code-block:: python @@ -11221,6 +11463,10 @@ Examples: def elementwise_sub(x, y, axis=-1, act=None, name=None): """ + :alias_main: paddle.elementwise_sub + :alias: paddle.elementwise_sub,paddle.tensor.elementwise_sub,paddle.tensor.math.elementwise_sub + :old_api: paddle.fluid.layers.elementwise_sub + Examples: .. code-block:: python @@ -11305,6 +11551,10 @@ Examples: def elementwise_mul(x, y, axis=-1, act=None, name=None): """ + :alias_main: paddle.elementwise_mul + :alias: paddle.elementwise_mul,paddle.tensor.elementwise_mul,paddle.tensor.math.elementwise_mul + :old_api: paddle.fluid.layers.elementwise_mul + Examples: .. code-block:: python @@ -11389,6 +11639,10 @@ Examples: def elementwise_max(x, y, axis=-1, act=None, name=None): """ + :alias_main: paddle.elementwise_max + :alias: paddle.elementwise_max,paddle.tensor.elementwise_max,paddle.tensor.math.elementwise_max + :old_api: paddle.fluid.layers.elementwise_max + Examples: .. code-block:: python @@ -11447,6 +11701,10 @@ Examples: def elementwise_min(x, y, axis=-1, act=None, name=None): """ + :alias_main: paddle.elementwise_min + :alias: paddle.elementwise_min,paddle.tensor.elementwise_min,paddle.tensor.math.elementwise_min + :old_api: paddle.fluid.layers.elementwise_min + Examples: .. code-block:: python @@ -11503,6 +11761,10 @@ Examples: def elementwise_pow(x, y, axis=-1, act=None, name=None): """ + :alias_main: paddle.elementwise_pow + :alias: paddle.elementwise_pow,paddle.tensor.elementwise_pow,paddle.tensor.math.elementwise_pow + :old_api: paddle.fluid.layers.elementwise_pow + Examples: .. code-block:: python @@ -11535,6 +11797,10 @@ Examples: def elementwise_mod(x, y, axis=-1, act=None, name=None): """ + :alias_main: paddle.elementwise_mod + :alias: paddle.elementwise_mod,paddle.tensor.elementwise_mod,paddle.tensor.math.elementwise_mod + :old_api: paddle.fluid.layers.elementwise_mod + Examples: .. code-block:: python @@ -11568,6 +11834,10 @@ Examples: def elementwise_floordiv(x, y, axis=-1, act=None, name=None): """ + :alias_main: paddle.elementwise_floordiv + :alias: paddle.elementwise_floordiv,paddle.tensor.elementwise_floordiv,paddle.tensor.math.elementwise_floordiv + :old_api: paddle.fluid.layers.elementwise_floordiv + Examples: .. code-block:: python @@ -11701,6 +11971,10 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True): @templatedoc() def logical_and(x, y, out=None, name=None): """ + :alias_main: paddle.logical_and + :alias: paddle.logical_and,paddle.tensor.logical_and,paddle.tensor.logic.logical_and + :old_api: paddle.fluid.layers.logical_and + logical_and Operator It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor. @@ -11750,6 +12024,10 @@ def logical_and(x, y, out=None, name=None): @templatedoc() def logical_or(x, y, out=None, name=None): """ + :alias_main: paddle.logical_or + :alias: paddle.logical_or,paddle.tensor.logical_or,paddle.tensor.logic.logical_or + :old_api: paddle.fluid.layers.logical_or + logical_or Operator It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor. @@ -11799,6 +12077,10 @@ def logical_or(x, y, out=None, name=None): @templatedoc() def logical_xor(x, y, out=None, name=None): """ + :alias_main: paddle.logical_xor + :alias: paddle.logical_xor,paddle.tensor.logical_xor,paddle.tensor.logic.logical_xor + :old_api: paddle.fluid.layers.logical_xor + logical_xor Operator It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor. @@ -11848,6 +12130,10 @@ def logical_xor(x, y, out=None, name=None): @templatedoc() def logical_not(x, out=None, name=None): """ + :alias_main: paddle.logical_not + :alias: paddle.logical_not,paddle.tensor.logical_not,paddle.tensor.logic.logical_not + :old_api: paddle.fluid.layers.logical_not + logical_not Operator It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor. @@ -11894,6 +12180,10 @@ def logical_not(x, out=None, name=None): @templatedoc() def clip(x, min, max, name=None): """ + :alias_main: paddle.nn.clip + :alias: paddle.nn.clip,paddle.nn.clip.clip + :old_api: paddle.fluid.layers.clip + ${comment} Args: @@ -11989,6 +12279,10 @@ def clip_by_norm(x, max_norm, name=None): @templatedoc() def mean(x, name=None): """ + :alias_main: paddle.mean + :alias: paddle.mean,paddle.tensor.mean,paddle.tensor.stat.mean + :old_api: paddle.fluid.layers.mean + ${comment} Args: @@ -12105,6 +12399,10 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None): @templatedoc() def maxout(x, groups, name=None, axis=1): """ + :alias_main: paddle.nn.functional.maxout + :alias: paddle.nn.functional.maxout,paddle.nn.functional.activation.maxout + :old_api: paddle.fluid.layers.maxout + ${comment} Args: @@ -12155,6 +12453,10 @@ def maxout(x, groups, name=None, axis=1): def space_to_depth(x, blocksize, name=None): """ + :alias_main: paddle.nn.functional.space_to_depth + :alias: paddle.nn.functional.space_to_depth,paddle.nn.functional.vision.space_to_depth + :old_api: paddle.fluid.layers.space_to_depth + Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width] This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \ @@ -12262,6 +12564,10 @@ def affine_channel(x, name=None, act=None): """ + :alias_main: paddle.nn.functional.affine_channel + :alias: paddle.nn.functional.affine_channel,paddle.nn.functional.vision.affine_channel + :old_api: paddle.fluid.layers.affine_channel + Applies a separate affine transformation to each channel of the input. Useful for replacing spatial batch norm with its equivalent fixed transformation. The input also can be 2D tensor and applies a affine @@ -12447,6 +12753,10 @@ def similarity_focus(input, axis, indexes, name=None): def hash(input, hash_size, num_hash=1, name=None): """ + :alias_main: paddle.nn.functional.hash + :alias: paddle.nn.functional.hash,paddle.nn.functional.lod.hash + :old_api: paddle.fluid.layers.hash + This OP hash the input to an integer less than the hash_size. The hash algorithm we used was xxHash - Extremely fast hash algorithm (https://github.com/Cyan4973/xxHash/tree/v0.6.5) @@ -12509,6 +12819,10 @@ def hash(input, hash_size, num_hash=1, name=None): @templatedoc() def grid_sampler(x, grid, name=None): """ + :alias_main: paddle.nn.functional.grid_sampler + :alias: paddle.nn.functional.grid_sampler,paddle.nn.functional.vision.grid_sampler + :old_api: paddle.fluid.layers.grid_sampler + This operation samples input X by using bilinear interpolation based on flow field grid, which is usually generated by :code:`affine_grid` . The grid of shape [N, H, W, 2] is the concatenation of (x, y) coordinates @@ -12609,6 +12923,10 @@ def grid_sampler(x, grid, name=None): def log_loss(input, label, epsilon=1e-4, name=None): """ + :alias_main: paddle.nn.functional.log_loss + :alias: paddle.nn.functional.log_loss,paddle.nn.functional.loss.log_loss + :old_api: paddle.fluid.layers.log_loss + **Negative Log Loss Layer** This layer accepts input predictions and target label and returns the @@ -12658,6 +12976,10 @@ def log_loss(input, label, epsilon=1e-4, name=None): def add_position_encoding(input, alpha, beta, name=None): """ + :alias_main: paddle.nn.functional.add_position_encoding + :alias: paddle.nn.functional.add_position_encoding,paddle.nn.functional.extension.add_position_encoding + :old_api: paddle.fluid.layers.add_position_encoding + This operator performs weighted sum of input feature at each position (position in the sequence) and the corresponding position encoding. @@ -12730,6 +13052,8 @@ def bilinear_tensor_product(x, param_attr=None, bias_attr=None): """ + :api_attr: Static Graph + **Bilinear Tensor Product Layer** This layer performs bilinear tensor product on two inputs. @@ -12920,6 +13244,10 @@ def shuffle_channel(x, group, name=None): @templatedoc() def temporal_shift(x, seg_num, shift_ratio=0.25, name=None): """ + :alias_main: paddle.nn.functional.temporal_shift + :alias: paddle.nn.functional.temporal_shift,paddle.nn.functional.extension.temporal_shift + :old_api: paddle.fluid.layers.temporal_shift + **Temporal Shift Operator** ${comment} @@ -13042,6 +13370,8 @@ class PyFuncRegistry(object): @templatedoc() def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None): """ + :api_attr: Static Graph + This OP is used to register customized Python OP to Paddle Fluid. The design principe of py_func is that LodTensor and numpy array can be converted to each other easily. So you can use Python and numpy API to register a python OP. @@ -13269,6 +13599,10 @@ def psroi_pool(input, pooled_width, name=None): """ + :alias_main: paddle.nn.functional.psroi_pool + :alias: paddle.nn.functional.psroi_pool,paddle.nn.functional.vision.psroi_pool + :old_api: paddle.fluid.layers.psroi_pool + ${comment} Parameters: @@ -13335,6 +13669,10 @@ def prroi_pool(input, batch_roi_nums=None, name=None): """ + :alias_main: paddle.nn.functional.prroi_pool + :alias: paddle.nn.functional.prroi_pool,paddle.nn.functional.vision.prroi_pool + :old_api: paddle.fluid.layers.prroi_pool + The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf Args: @@ -13626,6 +13964,10 @@ def where(condition): def sign(x): """ + :alias_main: paddle.sign + :alias: paddle.sign,paddle.tensor.sign,paddle.tensor.math.sign + :old_api: paddle.fluid.layers.sign + This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero. Args: @@ -13659,6 +14001,10 @@ def sign(x): def unique(x, dtype='int32'): """ + :alias_main: paddle.unique + :alias: paddle.unique,paddle.tensor.unique,paddle.tensor.manipulation.unique + :old_api: paddle.fluid.layers.unique + **unique** Return a unique tensor for `x` and an index tensor pointing to this unique tensor. @@ -13772,6 +14118,8 @@ def deformable_conv(input, modulated=True, name=None): """ + :api_attr: Static Graph + **Deformable Convolution op** Compute 2-D deformable convolution on 4-D input. @@ -13984,6 +14332,9 @@ def deformable_conv(input, def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None): """ + :alias_main: paddle.nn.functional.unfold + :alias: paddle.nn.functional.unfold,paddle.nn.functional.common.unfold + :old_api: paddle.fluid.layers.unfold This op returns a col buffer of sliding local blocks of input x, also known as im2col for batched 2D image tensors. For each block under the convolution filter, @@ -14119,6 +14470,10 @@ def deformable_roi_pooling(input, position_sensitive=False, name=None): """ + :alias_main: paddle.nn.functional.deformable_roi_pooling + :alias: paddle.nn.functional.deformable_roi_pooling,paddle.nn.functional.vision.deformable_roi_pooling + :old_api: paddle.fluid.layers.deformable_roi_pooling + Deformable ROI Pooling Layer Performs deformable region-of-interest pooling on inputs. As described @@ -14348,6 +14703,10 @@ def shard_index(input, index_num, nshards, shard_id, ignore_value=-1): @templatedoc() def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None): """ + :alias_main: paddle.nn.functional.hard_swish + :alias: paddle.nn.functional.hard_swish,paddle.nn.functional.activation.hard_swish + :old_api: paddle.fluid.layers.hard_swish + This operator implements the hard_swish activation function. Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function. For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf