Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
85914f7a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
85914f7a
编写于
8月 30, 2019
作者:
S
ShenLiang
提交者:
Yi Liu
8月 30, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gather_nd op and unit test (#19366)
* fixed the code for coverage * fixed the document,test=document_preview test=develop
上级
ecd9f330
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
878 addition
and
2 deletion
+878
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/gather.cu.h
paddle/fluid/operators/gather.cu.h
+77
-1
paddle/fluid/operators/gather.h
paddle/fluid/operators/gather.h
+46
-0
paddle/fluid/operators/gather_nd_op.cc
paddle/fluid/operators/gather_nd_op.cc
+182
-0
paddle/fluid/operators/gather_nd_op.cu
paddle/fluid/operators/gather_nd_op.cu
+105
-0
paddle/fluid/operators/gather_nd_op.h
paddle/fluid/operators/gather_nd_op.h
+91
-0
paddle/fluid/operators/scatter.cu.h
paddle/fluid/operators/scatter.cu.h
+75
-0
paddle/fluid/operators/scatter.h
paddle/fluid/operators/scatter.h
+45
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+86
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/test_gather_nd_op.py
python/paddle/fluid/tests/unittests/test_gather_nd_op.py
+169
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
85914f7a
...
...
@@ -194,6 +194,7 @@ paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale'
paddle.fluid.layers.resize_trilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1)), ('document', '4836e98a634f6fbea26d0cdaa303f867'))
paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners'], varargs=None, keywords=None, defaults=(None, None, None, None, True)), ('document', '32ffc0e8818d7319ed1bf63a791e985d'))
paddle.fluid.layers.gather (ArgSpec(args=['input', 'index', 'overwrite'], varargs=None, keywords=None, defaults=(True,)), ('document', 'f985c9b66e3aec96fa753a8eb44c991c'))
paddle.fluid.layers.gather_nd (ArgSpec(args=['input', 'index', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3cc24f9cf135770aa6263dba25b457f9'))
paddle.fluid.layers.scatter (ArgSpec(args=['input', 'index', 'updates', 'name', 'overwrite'], varargs=None, keywords=None, defaults=(None, True)), ('document', '69b22affd4a6326502af166f04c095ab'))
paddle.fluid.layers.sequence_scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'abe3f714120117a5a3d3e639853932bf'))
paddle.fluid.layers.random_crop (ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,)), ('document', '042af0b8abea96b40c22f6e70d99e042'))
...
...
paddle/fluid/operators/gather.cu.h
浏览文件 @
85914f7a
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
9
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -13,7 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/dim.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
...
...
@@ -39,6 +43,27 @@ __global__ void GatherCUDAKernel(const T* params, const IndexT* indices,
}
}
template
<
typename
T
,
typename
IndexT
=
int
>
__global__
void
GatherNdCUDAKernel
(
const
T
*
input
,
const
int
*
input_dims
,
const
IndexT
*
indices
,
T
*
output
,
size_t
remain_size
,
size_t
slice_size
,
size_t
end_size
)
{
CUDA_1D_KERNEL_LOOP
(
i
,
remain_size
*
slice_size
)
{
int
indices_i
=
i
/
slice_size
;
int
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
IndexT
gather_i
=
0
;
int64_t
temp
=
slice_size
;
for
(
int64_t
j
=
end_size
-
1
;
j
>=
0
;
--
j
)
{
auto
index_value
=
indices
[
indices_i
*
end_size
+
j
];
assert
(
index_value
>=
0
&&
index_value
<
input_dims
[
j
]);
gather_i
+=
(
index_value
*
temp
);
temp
*=
input_dims
[
j
];
}
IndexT
input_i
=
gather_i
+
slice_i
;
*
(
output
+
i
)
=
*
(
input
+
input_i
);
}
}
/**
* A thin wrapper on gpu tensor
* Return a new tensor from source tensor, gathered according to index
...
...
@@ -84,5 +109,56 @@ void GPUGather(const platform::DeviceContext& ctx, const Tensor& src,
p_src
,
p_index
,
p_output
,
index_size
,
slice_size
);
}
template
<
typename
DeviceContext
,
typename
T
,
typename
IndexT
=
int
>
void
GPUGatherNd
(
const
framework
::
ExecutionContext
&
context
,
const
Tensor
&
input
,
const
Tensor
&
index
,
Tensor
*
output
)
{
const
auto
&
ctx
=
context
.
template
device_context
<
DeviceContext
>();
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
auto
cplace
=
platform
::
CPUPlace
();
auto
index_dims
=
index
.
dims
();
auto
index_dims_size
=
index_dims
.
size
();
auto
input_dims
=
input
.
dims
();
auto
input_dims_size
=
input_dims
.
size
();
const
T
*
p_input
=
input
.
data
<
T
>
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
T
*
p_output
=
output
->
data
<
T
>
();
// final dim
int64_t
end_size
=
index_dims
[
index_dims_size
-
1
];
// remain dim
auto
remain_ddim
=
framework
::
slice_ddim
(
index_dims
,
0
,
index_dims_size
-
1
);
int64_t
remain_numel
=
framework
::
product
(
remain_ddim
);
// slice size
int64_t
slice_size
=
1
;
for
(
int64_t
i
=
end_size
;
i
<
input_dims_size
;
++
i
)
{
slice_size
*=
input_dims
[
i
];
}
// source dim
std
::
vector
<
int
>
v_input_dims
(
input_dims_size
);
for
(
int
i
=
0
;
i
<
input_dims_size
;
++
i
)
{
v_input_dims
[
i
]
=
static_cast
<
int
>
(
input_dims
[
i
]);
}
auto
&
dev_ctx
=
context
.
cuda_device_context
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
int
bytes
=
input_dims_size
*
sizeof
(
int
);
auto
p_input_dims
=
allocator
.
Allocate
(
bytes
);
int
*
g_input_dims
=
reinterpret_cast
<
int
*>
(
p_input_dims
->
ptr
());
memory
::
Copy
(
gplace
,
g_input_dims
,
cplace
,
v_input_dims
.
data
(),
bytes
,
ctx
.
stream
());
int
block
=
512
;
int
n
=
slice_size
*
remain_numel
;
int
grid
=
(
n
+
block
-
1
)
/
block
;
GatherNdCUDAKernel
<
T
,
IndexT
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
).
stream
()
>>>
(
p_input
,
g_input_dims
,
p_index
,
p_output
,
remain_numel
,
slice_size
,
end_size
);
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/gather.h
浏览文件 @
85914f7a
...
...
@@ -60,5 +60,51 @@ void CPUGather(const platform::DeviceContext& ctx, const Tensor& src,
}
}
template
<
typename
T
,
typename
IndexT
=
int
>
void
CPUGatherNd
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
input
,
const
Tensor
&
index
,
Tensor
*
output
)
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
"It should be running on the CPU"
);
auto
index_dims
=
index
.
dims
();
auto
index_dims_size
=
index_dims
.
size
();
auto
input_dims
=
input
.
dims
();
auto
input_dims_size
=
input_dims
.
size
();
const
T
*
p_input
=
input
.
data
<
T
>
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
T
*
p_output
=
output
->
data
<
T
>
();
// final dim
int64_t
end_size
=
index_dims
[
index_dims_size
-
1
];
// remain dim
auto
remain_ddim
=
framework
::
slice_ddim
(
index_dims
,
0
,
index_dims_size
-
1
);
int64_t
remain_numel
=
framework
::
product
(
remain_ddim
);
// slice size
int64_t
slice_size
=
1
;
for
(
int64_t
i
=
end_size
;
i
<
input_dims_size
;
++
i
)
{
slice_size
*=
input_dims
[
i
];
}
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
for
(
int64_t
i
=
0
;
i
<
remain_numel
;
++
i
)
{
int64_t
index_
=
0
;
int64_t
temp
=
1
;
for
(
int64_t
j
=
end_size
-
1
;
j
>=
0
;
--
j
)
{
IndexT
index_value
=
p_index
[
i
*
end_size
+
j
];
PADDLE_ENFORCE_LT
(
index_value
,
input_dims
[
j
],
"Input(index[-1)] has wrong value, it is %d"
,
index_value
);
PADDLE_ENFORCE_GE
(
index_value
,
0UL
,
"The value of Input(index) must be no less than 0"
);
index_
+=
(
index_value
*
temp
);
temp
*=
input_dims
[
j
];
}
memcpy
(
p_output
+
i
*
slice_size
,
p_input
+
index_
*
slice_size
,
slice_bytes
);
}
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/gather_nd_op.cc
0 → 100644
浏览文件 @
85914f7a
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/gather_nd_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
namespace
paddle
{
namespace
operators
{
class
GatherNdOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) of GatherNdOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Index"
),
true
,
"Input(Index) of GatherNdOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
"Output(Out) of GatherNdOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims_size
=
x_dims
.
size
();
auto
index_dims
=
ctx
->
GetInputDim
(
"Index"
);
auto
index_dims_size
=
index_dims
.
size
();
PADDLE_ENFORCE_LE
(
index_dims
[
index_dims_size
-
1
],
x_dims_size
,
"Input(Index).shape[-1] <= Input(X).rank"
);
PADDLE_ENFORCE_GE
(
index_dims_size
,
2UL
,
"The rank of Input(Index) should be greater than 1"
);
std
::
vector
<
int64_t
>
result_dims
;
// The result dims is
// Index.shape[:-1] + X.shape[Index.shape[-1]:]
for
(
int
i
=
0
;
i
<
index_dims_size
-
1
;
++
i
)
{
result_dims
.
emplace_back
(
index_dims
[
i
]);
}
for
(
int
i
=
index_dims
[
index_dims_size
-
1
];
i
<
x_dims_size
;
++
i
)
{
result_dims
.
emplace_back
(
x_dims
[
i
]);
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
result_dims
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
}
};
class
GatherNdGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*-->*/
framework
::
GradVarName
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
(),
ctx
.
device_context
());
}
};
class
GatherNdOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The source input of gather_nd op"
);
AddInput
(
"Index"
,
"The index input of gather_nd op"
);
AddOutput
(
"Out"
,
"The output of gather_nd op"
);
AddComment
(
R"DOC(
Gather_Nd Operator.
This function is actually a high-dimensional extension of gather
and supports for simultaneous indexing by multiple axes. Out is
obtained by gathering slices from X into a tensor with shape
Index.shape[:-1] + X.shape[Index.shape[-1]:].
Example:
Given:
X = [[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]
X.shape = (2, 3, 4)
*Case 1:
Index = [[1]]
we get:
Out =
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]
*Case 2:
Index = [[0,2]]
we get:
Out = [8, 9, 10, 11]
*Case 3:
Index = [[1, 2, 3]]
we get:
Out = [23]
)DOC"
);
}
};
class
GatherNdGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"gather_nd_grad"
);
op
->
SetInput
(
"Index"
,
Input
(
"Index"
));
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE
(
GatherNdGradNoNeedBufferVarInference
,
"X"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
gather_nd
,
ops
::
GatherNdOp
,
ops
::
GatherNdOpMaker
,
ops
::
GatherNdGradOpDescMaker
);
REGISTER_OPERATOR
(
gather_nd_grad
,
ops
::
GatherNdGradOp
,
ops
::
GatherNdGradNoNeedBufferVarInference
);
REGISTER_OP_CPU_KERNEL
(
gather_nd
,
ops
::
GatherNdOpKernel
<
float
>
,
ops
::
GatherNdOpKernel
<
double
>
,
ops
::
GatherNdOpKernel
<
int64_t
>
,
ops
::
GatherNdOpKernel
<
int
>
,
ops
::
GatherNdOpKernel
<
uint8_t
>
);
REGISTER_OP_CPU_KERNEL
(
gather_nd_grad
,
ops
::
GatherNdGradOpKernel
<
float
>
,
ops
::
GatherNdGradOpKernel
<
double
>
,
ops
::
GatherNdGradOpKernel
<
int64_t
>
,
ops
::
GatherNdGradOpKernel
<
int
>
,
ops
::
GatherNdGradOpKernel
<
uint8_t
>
);
paddle/fluid/operators/gather_nd_op.cu
0 → 100644
浏览文件 @
85914f7a
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/gather_nd_op.h"
#include "paddle/fluid/operators/scatter.cu.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
GatherNdOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
"This kernel only runs on GPU device."
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
x
->
numel
()
==
0
)
return
;
const
auto
&
index_type
=
index
->
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
"Index holds the wrong type, it holds %s, but desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
GPUGatherNd
<
DeviceContext
,
T
,
int
>
(
ctx
,
*
x
,
*
index
,
output
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
GPUGatherNd
<
DeviceContext
,
T
,
int64_t
>
(
ctx
,
*
x
,
*
index
,
output
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
GatherNdGradOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
"This kernel only runs on GPU device."
);
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dO
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dxt
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
&
place
=
*
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>()
.
eigen_device
();
dxt
.
device
(
place
)
=
dxt
.
constant
(
static_cast
<
T
>
(
0
));
if
(
dO
->
numel
()
==
0
)
return
;
const
auto
&
index_type
=
index
->
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
"Index holds the wrong type, it holds %s, but desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
GPUScatterNdAdd
<
DeviceContext
,
T
,
int
>
(
ctx
,
*
dO
,
*
index
,
dX
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
GPUScatterNdAdd
<
DeviceContext
,
T
,
int64_t
>
(
ctx
,
*
dO
,
*
index
,
dX
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
using
CUDA
=
paddle
::
platform
::
CUDADeviceContext
;
REGISTER_OP_CUDA_KERNEL
(
gather_nd
,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
float
>
,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
double
>
,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
int64_t
>
,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
int
>
,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
gather_nd_grad
,
ops
::
GatherNdGradOpCUDAKernel
<
CUDA
,
float
>
,
ops
::
GatherNdGradOpCUDAKernel
<
CUDA
,
double
>
,
ops
::
GatherNdGradOpCUDAKernel
<
CUDA
,
int64_t
>
,
ops
::
GatherNdGradOpCUDAKernel
<
CUDA
,
int
>
,
ops
::
GatherNdGradOpCUDAKernel
<
CUDA
,
plat
::
float16
>
);
paddle/fluid/operators/gather_nd_op.h
0 → 100644
浏览文件 @
85914f7a
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/scatter.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
GatherNdOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
"This kernel only runs on CPU."
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
x
->
numel
()
==
0
)
return
;
const
auto
&
index_type
=
index
->
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
"Index holds the wrong type, it holds %s, but desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
CPUGatherNd
<
T
,
int
>
(
ctx
.
device_context
(),
*
x
,
*
index
,
output
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
CPUGatherNd
<
T
,
int64_t
>
(
ctx
.
device_context
(),
*
x
,
*
index
,
output
);
}
}
};
template
<
typename
T
>
class
GatherNdGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
"This kernel only runs on CPU."
);
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dO
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dxt
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
&
place
=
*
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>()
.
eigen_device
();
dxt
.
device
(
place
)
=
dxt
.
constant
(
static_cast
<
T
>
(
0
));
if
(
dO
->
numel
()
==
0
)
return
;
const
auto
&
index_type
=
index
->
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
"Index holds the wrong type, it holds %s, but desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
ScatterNdAdd
<
T
,
int32_t
>
(
ctx
,
*
dO
,
*
index
,
dX
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
ScatterNdAdd
<
T
,
int64_t
>
(
ctx
,
*
dO
,
*
index
,
dX
);
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/scatter.cu.h
浏览文件 @
85914f7a
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <unordered_set>
#include <vector>
#include "math/math_function.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/cuda_primitives.h"
...
...
@@ -57,6 +58,26 @@ __global__ void ScatterCUDAKernel(const T* params, const IndexT* indices,
}
}
template
<
typename
T
,
typename
IndexT
=
int
>
__global__
void
ScatterNdCUDAKernel
(
const
T
*
update
,
const
IndexT
*
indices
,
T
*
output
,
const
int
*
output_dims
,
size_t
remain_size
,
size_t
slice_size
,
size_t
end_size
)
{
CUDA_1D_KERNEL_LOOP
(
i
,
remain_size
*
slice_size
)
{
int
indices_i
=
i
/
slice_size
;
int
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
IndexT
gather_i
=
0
;
int64_t
temp
=
slice_size
;
for
(
int64_t
j
=
end_size
-
1
;
j
>=
0
;
--
j
)
{
IndexT
index_value
=
indices
[
indices_i
*
end_size
+
j
];
gather_i
+=
(
index_value
*
temp
);
temp
*=
output_dims
[
j
];
}
IndexT
output_i
=
gather_i
+
slice_i
;
paddle
::
platform
::
CudaAtomicAdd
(
output
+
output_i
,
*
(
update
+
i
));
}
}
/**
* A thin wrapper on gpu tensor
* Return a new updated tensor from source tensor, scatter-assigned according to
...
...
@@ -109,5 +130,59 @@ void GPUScatterAssign(const framework::ExecutionContext& context,
p_src
,
p_index
,
p_output
,
index_size
,
slice_size
,
overwrite
);
}
template
<
typename
DeviceContext
,
typename
T
,
typename
IndexT
=
int
>
void
GPUScatterNdAdd
(
const
framework
::
ExecutionContext
&
context
,
const
Tensor
&
update
,
const
Tensor
&
index
,
Tensor
*
output
)
{
auto
index_dims
=
index
.
dims
();
auto
index_dims_size
=
index_dims
.
size
();
auto
output_dims
=
output
->
dims
();
auto
output_dims_size
=
output_dims
.
size
();
const
T
*
p_update
=
update
.
data
<
T
>
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
T
*
p_output
=
output
->
data
<
T
>
();
// final dim
int64_t
end_size
=
index_dims
[
index_dims_size
-
1
];
// remain dim
auto
remain_ddim
=
framework
::
slice_ddim
(
index_dims
,
0
,
index_dims_size
-
1
);
int64_t
remain_numel
=
framework
::
product
(
remain_ddim
);
// slice size
int64_t
slice_size
=
1
;
for
(
int64_t
i
=
end_size
;
i
<
output_dims_size
;
++
i
)
{
slice_size
*=
output_dims
[
i
];
}
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
// put output_dims int CUDA
// gplace and cplace
const
auto
&
ctx
=
context
.
template
device_context
<
DeviceContext
>();
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
auto
cplace
=
platform
::
CPUPlace
();
std
::
vector
<
int
>
v_output_dims
(
output_dims_size
);
for
(
int
i
=
0
;
i
<
output_dims_size
;
++
i
)
{
v_output_dims
[
i
]
=
static_cast
<
int
>
(
output_dims
[
i
]);
}
auto
&
dev_ctx
=
context
.
cuda_device_context
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
int
bytes
=
output_dims_size
*
sizeof
(
int
);
auto
output_dims_ptr
=
allocator
.
Allocate
(
bytes
);
int
*
g_output_dims
=
reinterpret_cast
<
int
*>
(
output_dims_ptr
->
ptr
());
memory
::
Copy
(
gplace
,
g_output_dims
,
cplace
,
v_output_dims
.
data
(),
bytes
,
ctx
.
stream
());
int
block
=
512
;
int
n
=
slice_size
*
remain_numel
;
int
grid
=
(
n
+
block
-
1
)
/
block
;
ScatterNdCUDAKernel
<
T
,
IndexT
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
).
stream
()
>>>
(
p_update
,
p_index
,
p_output
,
g_output_dims
,
remain_numel
,
slice_size
,
end_size
);
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/scatter.h
浏览文件 @
85914f7a
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
9
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -144,5 +144,49 @@ void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
}
}
template
<
typename
T
,
typename
IndexT
=
int
>
void
ScatterNdAdd
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
update
,
const
Tensor
&
index
,
Tensor
*
output
)
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
device_context
().
GetPlace
()),
true
,
"It should be running on the CPU"
);
// update.shape = index.shape[:-1] + output.shape[index.shape[-1]:]
auto
index_dims
=
index
.
dims
();
auto
index_dims_size
=
index_dims
.
size
();
auto
output_dims
=
output
->
dims
();
auto
output_dims_size
=
output_dims
.
size
();
const
T
*
p_update
=
update
.
data
<
T
>
();
const
IndexT
*
p_index
=
index
.
data
<
IndexT
>
();
T
*
result_p_output
=
output
->
data
<
T
>
();
const
T
*
p_output
=
output
->
data
<
T
>
();
// final dim
int64_t
end_size
=
index_dims
[
index_dims_size
-
1
];
// remain dim
auto
remain_ddim
=
framework
::
slice_ddim
(
index_dims
,
0
,
index_dims_size
-
1
);
int64_t
remain_numel
=
framework
::
product
(
remain_ddim
);
// slice size
int64_t
slice_size
=
1
;
for
(
int64_t
i
=
end_size
;
i
<
output_dims_size
;
++
i
)
{
slice_size
*=
output_dims
[
i
];
}
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
for
(
int64_t
i
=
0
;
i
<
remain_numel
;
++
i
)
{
IndexT
index_
=
0
;
IndexT
temp
=
1
;
for
(
int64_t
j
=
end_size
-
1
;
j
>=
0
;
--
j
)
{
IndexT
index_value
=
p_index
[
i
*
end_size
+
j
];
index_
+=
(
index_value
*
temp
);
temp
*=
output_dims
[
j
];
}
elementwise_inner_add
<
T
,
IndexT
>
(
ctx
,
p_update
,
p_output
,
result_p_output
,
update
,
output
,
i
,
index_
,
slice_size
,
slice_bytes
);
}
}
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
85914f7a
...
...
@@ -122,6 +122,7 @@ __all__ = [
'resize_trilinear'
,
'resize_nearest'
,
'gather'
,
'gather_nd'
,
'scatter'
,
'sequence_scatter'
,
'random_crop'
,
...
...
@@ -8449,6 +8450,91 @@ def gather(input, index, overwrite=True):
return
out
def
gather_nd
(
input
,
index
,
name
=
None
):
"""
**Gather Nd Layer**
This function is actually a high-dimensional extension of :code:`gather`
and supports for simultaneous indexing by multiple axes. :attr:`index` is a
K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
tensor of :attr:`index` into :attr:`input`, where each element defines
a slice of params:
.. math::
output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]
Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .
.. code-block:: text
Given:
input = [[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]
input.shape = (2, 3, 4)
* Case 1:
index = [[1]]
gather_nd(input, index)
= [input[1, :, :]]
= [[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]
* Case 2:
index = [[0,2]]
gather_nd(input, index)
= [input[0, 2, :]]
= [8, 9, 10, 11]
* Case 3:
index = [[1, 2, 3]]
gather_nd(input, index)
= [input[1, 2, 3]]
= [23]
Args:
input (Variable): The source input
index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically
Returns:
output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[3, 4, 5], dtype='float32')
index = fluid.layers.data(name='index', shape=[2, 2], dtype='int32')
output = fluid.layers.gather_nd(x, index)
"""
helper
=
LayerHelper
(
'gather_nd'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
if
name
is
None
:
output
=
helper
.
create_variable_for_type_inference
(
dtype
)
else
:
output
=
helper
.
create_variable
(
name
=
name
,
dtype
=
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"gather_nd"
,
inputs
=
{
"X"
:
input
,
"Index"
:
index
},
outputs
=
{
"Out"
:
output
})
return
output
def
scatter
(
input
,
index
,
updates
,
name
=
None
,
overwrite
=
True
):
"""
**Scatter Layer**
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
85914f7a
...
...
@@ -185,6 +185,7 @@ set(TEST_OPS_WITH_GC
test_fill_constant_batch_size_like_op
test_fill_zeros_like2_op
test_gather_op
test_gather_nd_op
test_gaussian_random_batch_size_like_op
test_linear_chain_crf_op
test_lod_reset_op
...
...
python/paddle/fluid/tests/unittests/test_gather_nd_op.py
0 → 100644
浏览文件 @
85914f7a
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
class
TestGatherNdOpWithEmptyIndex
(
OpTest
):
"""
Index has empty element, which means copy entire tensor
"""
def
setUp
(
self
):
self
.
op_type
=
"gather_nd"
xnp
=
np
.
array
(
[[
65
,
17
,
2
],
[
-
14
,
-
25
,
-
1
],
[
76
,
22
,
3
]]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
np
.
array
([[],
[]]).
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
np
.
vstack
((
xnp
[
np
.
newaxis
,
:],
xnp
[
np
.
newaxis
,
:]))
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestGatherNdOpWithLowIndex
(
OpTest
):
"""
Index has low rank, X has high rank
"""
def
setUp
(
self
):
self
.
op_type
=
"gather_nd"
xnp
=
np
.
array
(
[[
65
,
17
,
2
],
[
14
,
25
,
1
],
[
76
,
22
,
3
]]).
astype
(
"float32"
)
index
=
np
.
array
([[
1
],
[
2
]]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
#[[14, 25, 1], [76, 22, 3]]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestGatherNdOpWithSameIndexAsX
(
OpTest
):
"""
Index has same rank as X's rank
"""
def
setUp
(
self
):
self
.
op_type
=
"gather_nd"
xnp
=
np
.
array
(
[[
65
,
17
,
2
],
[
14
,
25
,
1
],
[
76
,
22
,
3
]]).
astype
(
"float64"
)
index
=
np
.
array
([[
1
,
1
],
[
2
,
1
]]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
#[25, 22]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestGatherNdOpWithHighRankSame
(
OpTest
):
"""
Both Index and X have high rank, and Rank(Index) = Rank(X)
"""
def
setUp
(
self
):
self
.
op_type
=
"gather_nd"
shape
=
(
20
,
9
,
8
,
1
,
31
)
xnp
=
np
.
random
.
rand
(
*
shape
)
index
=
np
.
vstack
([
np
.
random
.
randint
(
0
,
s
,
size
=
150
)
for
s
in
shape
]).
T
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
.
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestGatherNdOpWithHighRankDiff
(
OpTest
):
"""
Both Index and X have high rank, and Rank(Index) < Rank(X)
"""
def
setUp
(
self
):
self
.
op_type
=
"gather_nd"
shape
=
(
20
,
9
,
8
,
1
,
31
)
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
"double"
)
index
=
np
.
vstack
([
np
.
random
.
randint
(
0
,
s
,
size
=
1000
)
for
s
in
shape
]).
T
index_re
=
index
.
reshape
([
10
,
5
,
20
,
5
])
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index_re
.
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)].
reshape
([
10
,
5
,
20
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
#Test Python API
class
TestGatherNdOpAPI
(
OpTest
):
def
test_case1
(
self
):
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
30
,
40
,
50
,
60
],
dtype
=
'float32'
)
index1
=
fluid
.
layers
.
data
(
name
=
'index1'
,
shape
=
[
2
,
4
],
dtype
=
'int32'
)
output1
=
fluid
.
layers
.
gather_nd
(
x1
,
index1
)
def
test_case2
(
self
):
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
30
,
40
,
50
],
dtype
=
'float32'
)
index2
=
fluid
.
layers
.
data
(
name
=
'index2'
,
shape
=
[
2
,
2
],
dtype
=
'int64'
)
output2
=
fluid
.
layers
.
gather_nd
(
x2
,
index2
)
def
test_case3
(
self
):
x3
=
fluid
.
layers
.
data
(
name
=
'x3'
,
shape
=
[
3
,
4
,
5
],
dtype
=
'float32'
)
index3
=
fluid
.
layers
.
data
(
name
=
'index3'
,
shape
=
[
2
,
1
],
dtype
=
'int32'
)
output3
=
fluid
.
layers
.
gather_nd
(
x3
,
index3
,
name
=
"gather_nd_layer"
)
#Test Raise Index Error
class
TestGatherNdOpRaise
(
OpTest
):
def
test_check_raise
(
self
):
def
check_raise_is_test
():
try
:
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
3
,
4
,
5
],
dtype
=
'float32'
)
index
=
fluid
.
layers
.
data
(
name
=
'index'
,
shape
=
[
2
,
10
],
dtype
=
'int32'
)
output
=
fluid
.
layers
.
gather_nd
(
x
,
index
)
except
Exception
as
e
:
t
=
\
"Input(Index).shape[-1] <= Input(X).rank"
if
t
in
str
(
e
):
raise
IndexError
self
.
assertRaises
(
IndexError
,
check_raise_is_test
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录