Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
84d6434d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
84d6434d
编写于
8月 14, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Compare the gradient consistency between GPU and CPU calculations.
上级
ffbb0be2
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
98 addition
and
101 deletion
+98
-101
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+2
-1
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+77
-96
python/paddle/v2/framework/tests/test_sigmoid_op.py
python/paddle/v2/framework/tests/test_sigmoid_op.py
+18
-4
未找到文件。
paddle/operators/sigmoid_op.cc
浏览文件 @
84d6434d
...
@@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
...
@@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
}
}
};
};
...
...
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
84d6434d
...
@@ -25,3 +25,4 @@ py_test(test_operator SRCS test_operator.py)
...
@@ -25,3 +25,4 @@ py_test(test_operator SRCS test_operator.py)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test
(
test_uniform_random_op SRCS test_uniform_random_op.py
)
py_test
(
test_uniform_random_op SRCS test_uniform_random_op.py
)
py_test
(
test_recurrent_op SRCS test_recurrent_op.py
)
py_test
(
test_recurrent_op SRCS test_recurrent_op.py
)
py_test
(
test_gradient_checker SRCS test_gradient_checker.py
)
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
84d6434d
import
unittest
import
unittest
import
numpy
import
numpy
import
itertools
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
from
paddle.v2.framework.op
import
Operator
...
@@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient']
...
@@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient']
def
create_op
(
op_type
):
def
create_op
(
op_type
):
# TODO need to set attrs
kwargs
=
dict
()
kwargs
=
dict
()
for
in_name
in
Operator
.
get_op_input_names
(
op_type
):
for
in_name
in
Operator
.
get_op_input_names
(
op_type
):
kwargs
[
in_name
]
=
in_name
kwargs
[
in_name
]
=
in_name
...
@@ -66,7 +68,6 @@ def get_numeric_gradient(op,
...
@@ -66,7 +68,6 @@ def get_numeric_gradient(op,
local_scope
.
find_var
(
output
).
get_tensor
().
alloc_float
(
core
.
CPUPlace
(
local_scope
.
find_var
(
output
).
get_tensor
().
alloc_float
(
core
.
CPUPlace
(
))
))
# TODO(yuyang18): Only CPU is support now.
cpu_ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
cpu_ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
def
get_output
():
def
get_output
():
...
@@ -109,12 +110,71 @@ def get_numeric_gradient(op,
...
@@ -109,12 +110,71 @@ def get_numeric_gradient(op,
class
GradientChecker
(
unittest
.
TestCase
):
class
GradientChecker
(
unittest
.
TestCase
):
def
assert_is_close
(
self
,
numeric_grads
,
scope
,
max_relative_error
,
def
get_grad
(
self
,
forward_op
,
backward_op
,
input_vars
,
grad_names
,
place
):
msg_prefix
):
scope
=
core
.
Scope
()
for
name
in
numeric_grads
:
ctx
=
core
.
DeviceContext
.
create
(
place
)
b
=
numpy
.
array
(
scope
.
find_var
(
grad_var_name
(
name
)).
get_tensor
())
a
=
numeric_grads
[
name
]
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
# create input var and set value
for
name
,
value
in
input_vars
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
"does not exist in Op's inputs."
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# run forward op
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
)
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# set output var's shape
# set output grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
numpy
.
ones
(
out_tensor
.
shape
(),
dtype
=
numpy
.
float32
)
grad_tensor
.
set
(
data
,
place
)
# run backward op
for
name
in
backward_op
.
outputs
():
scope
.
new_var
(
name
)
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
outs
=
[
numpy
.
array
(
scope
.
find_var
(
name
).
get_tensor
())
for
name
in
grad_names
]
return
outs
def
compare_grad
(
self
,
forward_op
,
inputs
):
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
set
())
if
not
(
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
()):
return
outputs
=
backward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
cpu_grads
=
self
.
get_grad
(
forward_op
,
backward_op
,
inputs
,
out_names
,
core
.
CPUPlace
())
gpu_grads
=
self
.
get_grad
(
forward_op
,
backward_op
,
inputs
,
out_names
,
core
.
GPUPlace
(
0
))
for
c_grad
,
g_grad
,
name
in
itertools
.
izip
(
cpu_grads
,
gpu_grads
,
out_names
):
self
.
assertTrue
(
numpy
.
allclose
(
c_grad
,
g_grad
),
"output name: "
+
name
+
" has diff"
)
def
assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
for
a
,
b
,
name
in
itertools
.
izip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
numpy
.
abs
(
a
)
abs_a
=
numpy
.
abs
(
a
)
# if abs_a is nearly zero, then use abs error for a, not relative
# if abs_a is nearly zero, then use abs error for a, not relative
# error.
# error.
...
@@ -159,106 +219,27 @@ class GradientChecker(unittest.TestCase):
...
@@ -159,106 +219,27 @@ class GradientChecker(unittest.TestCase):
inputs
=
forward_op
.
inputs
()
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
for
no_grad
in
no_grad_set
:
for
no_grad
in
no_grad_set
:
if
no_grad
not
in
in_names
:
if
no_grad
not
in
in_names
:
raise
ValueError
(
"no_grad should be in in_names"
)
raise
ValueError
(
"no_grad should be in in_names"
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
bwd_outputs
=
backward_op
.
outputs
()
bwd_out_names
=
[
item
for
k
in
bwd_outputs
for
item
in
bwd_outputs
[
k
]]
places
=
[
core
.
CPUPlace
()]
places
=
[
core
.
CPUPlace
()]
if
not
only_cpu
and
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
():
if
not
only_cpu
and
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
places
.
append
(
core
.
GPUPlace
(
0
))
numeric_grad
=
dict
()
# get numerical gradients
# get numeric gradient
numeric_grads
=
[
for
check_name
in
inputs_to_check
:
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
name
)
numeric_grad
[
check_name
]
=
\
for
name
in
inputs_to_check
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
]
check_name
)
# get operator gradient according to different device
check_names
=
[
grad_var_name
(
name
)
for
name
in
inputs_to_check
]
for
place
in
places
:
for
place
in
places
:
scope
=
core
.
Scope
()
# get analytical gradients according to different device
ctx
=
core
.
DeviceContext
.
create
(
place
)
analytic_grads
=
self
.
get_grad
(
forward_op
,
backward_op
,
input_vars
,
check_grad_names
,
place
)
# create input var and set value
self
.
assert_is_close
(
numeric_grads
,
analytic_grads
,
check_names
,
for
name
,
value
in
input_vars
.
iteritems
():
max_relative_error
,
if
name
not
in
in_names
:
raise
ValueError
(
name
+
" not in op.inputs_"
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# create output var
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
).
get_tensor
()
# infer the shape of output var and compute/set value of output var
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# create output grad var
# set shape as the output var
# set value of this grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
1.0
*
numpy
.
ones
(
out_tensor
.
shape
())
grad_tensor
.
set
(
data
,
place
)
# create input grad var
for
name
in
bwd_out_names
:
scope
.
new_var
(
name
).
get_tensor
()
# infer the shape of input gradient var and compute/set it's value
# with backward op
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
self
.
assert_is_close
(
numeric_grad
,
scope
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
"Gradient Check On %s"
%
str
(
place
))
if
__name__
==
'__main__'
:
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
'add_two'
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-2
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
unittest
.
main
()
python/paddle/v2/framework/tests/test_sigmoid_op.py
浏览文件 @
84d6434d
import
unittest
import
unittest
from
op_test_util
import
OpTestMeta
import
numpy
as
np
import
numpy
as
np
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
class
TestSigmoidOp
(
unittest
.
TestCase
):
class
TestSigmoidOp
(
unittest
.
TestCase
):
...
@@ -8,12 +9,25 @@ class TestSigmoidOp(unittest.TestCase):
...
@@ -8,12 +9,25 @@ class TestSigmoidOp(unittest.TestCase):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
type
=
"sigmoid"
self
.
type
=
"sigmoid"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
100
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
15
,
31
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Y'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
self
.
outputs
=
{
'Y'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
#class TestSigmoidGradOp(unittest.TestCase):
class
TestSigmoidGradOp
(
GradientChecker
):
#TODO(qingqing) add unit test
def
test_compare_grad
(
self
):
op
=
create_op
(
"sigmoid"
)
inputs
=
{
"X"
:
np
.
random
.
random
((
11
,
17
)).
astype
(
"float32"
)}
# compare gpu and cpu results for backward op
self
.
compare_grad
(
op
,
inputs
)
def
test_check_grad
(
self
):
op
=
create_op
(
"sigmoid"
)
inputs
=
{
"X"
:
np
.
random
.
random
((
11
,
17
)).
astype
(
"float32"
)}
# check gradients
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Y"
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录