Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8489d4f7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8489d4f7
编写于
1月 18, 2021
作者:
Q
QingshuChen
提交者:
GitHub
1月 18, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize batch_norm & pool op for kunlun (#30490)
上级
bd971922
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
197 addition
and
91 deletion
+197
-91
paddle/fluid/operators/batch_norm_op_xpu.cc
paddle/fluid/operators/batch_norm_op_xpu.cc
+8
-10
paddle/fluid/operators/pool_op_xpu.cc
paddle/fluid/operators/pool_op_xpu.cc
+38
-56
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+1
-10
python/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py
...on/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py
+150
-15
未找到文件。
paddle/fluid/operators/batch_norm_op_xpu.cc
浏览文件 @
8489d4f7
...
...
@@ -139,16 +139,14 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
auto
*
dscale_data
=
dscale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
dbias_data
=
dbias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
batch_norm_backward
(
dev_ctx
.
x_context
(),
N
,
C
,
H
,
W
,
x_data
,
dy_data
,
scale_data
,
saved_mean_data
,
saved_inv_variance_data
,
dx_data
,
dscale_data
,
dbias_data
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_infer_forward) return "
"wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed."
,
r
));
int
r
=
xpu
::
batch_norm_grad
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
dy_data
,
dx_data
,
N
,
C
,
H
,
W
,
scale_data
,
saved_mean_data
,
saved_inv_variance_data
,
dscale_data
,
dbias_data
,
true
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_grad) return "
"wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
...
...
paddle/fluid/operators/pool_op_xpu.cc
浏览文件 @
8489d4f7
...
...
@@ -30,6 +30,7 @@ xpu::Pooling_t XPUPoolingType(const std::string& pooltype, bool exclusive,
"Pool op only supports 2D and 3D input."
));
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
PoolXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -41,7 +42,6 @@ class PoolXPUKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
exclusive
=
context
.
Attr
<
bool
>
(
"exclusive"
);
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
bool
adaptive
=
context
.
Attr
<
bool
>
(
"adaptive"
);
PADDLE_ENFORCE_EQ
(
ksize
.
size
(),
2
,
...
...
@@ -60,36 +60,32 @@ class PoolXPUKernel : public framework::OpKernel<T> {
ksize
[
i
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
i
+
2
]);
}
}
const
int
c
=
in_x
->
dims
()[
0
]
*
in_x
->
dims
()[
1
];
const
int
n
=
in_x
->
dims
()[
0
];
const
int
c
=
in_x
->
dims
()[
1
];
const
int
in_h
=
in_x
->
dims
()[
2
];
const
int
in_w
=
in_x
->
dims
()[
3
];
const
int
out_h
=
out
->
dims
()[
2
];
const
int
out_w
=
out
->
dims
()[
3
];
const
int
win_h
=
ksize
[
0
];
const
int
win_w
=
ksize
[
1
];
const
int
stride_h
=
strides
[
0
];
const
int
stride_w
=
strides
[
1
];
const
int
pad_up
=
paddings
[
0
];
const
int
pad_down
=
paddings
[
0
];
const
int
pad_left
=
paddings
[
1
];
const
int
pad_right
=
paddings
[
1
];
const
float
*
input
=
in_x
->
data
<
float
>
();
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
*
output
=
out
->
data
<
float
>
();
xpu
::
Pooling_t
pool_type
=
XPUPoolingType
(
pooling_type
,
exclusive
,
is_test
);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
pooling_forward
<
float
,
float
>
(
dev_ctx
.
x_context
(),
input
,
output
,
index_data
,
pool_type
,
c
,
in_h
,
in_w
,
pad_left
,
pad_right
,
pad_up
,
pad_down
,
win_h
,
win_w
,
stride_h
,
stride_w
,
out_h
,
out_w
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
int
r
=
xpu
::
Error_t
::
SUCCESS
;
if
(
pooling_type
==
"max"
)
{
r
=
xpu
::
max_pool2d
(
dev_ctx
.
x_context
(),
input
,
output
,
index_data
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
true
);
}
else
if
(
pooling_type
==
"avg"
)
{
r
=
xpu
::
avg_pool2d
(
dev_ctx
.
x_context
(),
input
,
output
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
!
exclusive
,
true
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported pooling type for kunlun "
,
pooling_type
));
}
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The pool2d XPU API return wrong value[%d], please check "
"where Baidu Kunlun Card is properly installed."
,
r
));
"The pool2d XPU API return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
PoolGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -126,47 +122,33 @@ class PoolGradXPUKernel : public framework::OpKernel<T> {
if
(
!
in_x_grad
)
{
return
;
}
const
int
c
=
in_x
->
dims
()[
0
]
*
in_x
->
dims
()[
1
];
const
int
n
=
in_x
->
dims
()[
0
];
const
int
c
=
in_x
->
dims
()[
1
];
const
int
in_h
=
in_x
->
dims
()[
2
];
const
int
in_w
=
in_x
->
dims
()[
3
];
const
int
out_h
=
out
->
dims
()[
2
];
const
int
out_w
=
out
->
dims
()[
3
];
const
int
win_h
=
ksize
[
0
];
const
int
win_w
=
ksize
[
1
];
const
int
stride_h
=
strides
[
0
];
const
int
stride_w
=
strides
[
1
];
const
int
pad_up
=
paddings
[
0
];
const
int
pad_down
=
paddings
[
0
];
const
int
pad_left
=
paddings
[
1
];
const
int
pad_right
=
paddings
[
1
];
const
float
*
input
=
in_x
->
data
<
float
>
();
const
float
*
output
=
out
->
data
<
float
>
();
const
float
*
output_grad
=
out_grad
->
data
<
float
>
();
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
*
input_grad
=
in_x_grad
->
data
<
float
>
();
xpu
::
Pooling_t
pool_type
=
XPUPoolingType
(
pooling_type
,
exclusive
,
false
);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
// Need to init memory in the first place
const
int
zero
=
0
;
int
r
=
xpu
::
memset
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
void
**>
(
input_grad
),
zero
,
in_x_grad
->
numel
()
*
sizeof
(
float
));
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The Pool2d XPU OP return wrong value[%d], please check "
"where Baidu Kunlun Card is properly installed."
,
r
));
r
=
xpu
::
pooling_backward
(
dev_ctx
.
x_context
(),
input
,
output
,
index_data
,
output_grad
,
input_grad
,
pool_type
,
c
,
in_h
,
in_w
,
pad_left
,
pad_right
,
pad_up
,
pad_down
,
win_h
,
win_w
,
stride_h
,
stride_w
,
out_h
,
out_w
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
int
r
=
xpu
::
Error_t
::
SUCCESS
;
if
(
pooling_type
==
"max"
)
{
r
=
xpu
::
max_pool2d_grad
(
dev_ctx
.
x_context
(),
input
,
output
,
index_data
,
output_grad
,
input_grad
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
true
);
}
else
if
(
pooling_type
==
"avg"
)
{
r
=
xpu
::
avg_pool2d_grad
(
dev_ctx
.
x_context
(),
input
,
output
,
output_grad
,
input_grad
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
!
exclusive
,
true
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported pooling type for kunlun "
,
pooling_type
));
}
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The Pool2d XPU OP return wrong value[%d], please check "
"where Baidu Kunlun Card is properly installed."
,
r
));
"The Pool2dGrad XPU OP return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
8489d4f7
...
...
@@ -172,16 +172,7 @@ Place CPUDeviceContext::GetPlace() const { return place_; }
#ifdef PADDLE_WITH_XPU
XPUDeviceContext
::
XPUDeviceContext
()
{
context_
=
xpu
::
create_context
();
}
XPUDeviceContext
::~
XPUDeviceContext
()
{
xpu
::
destroy_context
(
context_
);
void
*
l3ptr
=
nullptr
;
int
l3_size
=
13.5
*
1024
*
1024
;
xpu_malloc
(
static_cast
<
void
**>
(
&
l3ptr
),
l3_size
,
XPU_MEM_L3
);
if
(
l3ptr
!=
nullptr
)
{
context_
->
_l3_mgr
.
set
(
l3ptr
,
l3_size
);
std
::
cout
<<
"set l3 size "
<<
l3_size
<<
std
::
endl
;
}
}
XPUDeviceContext
::~
XPUDeviceContext
()
{}
XPUDeviceContext
::
XPUDeviceContext
(
XPUPlace
place
)
:
place_
(
place
)
{
int
dev_id
=
-
1
;
...
...
python/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py
浏览文件 @
8489d4f7
# Copyright (c) 20
20
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -13,16 +13,20 @@
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
division
import
sys
sys
.
path
.
append
(
".."
)
import
paddle.fluid.core
as
core
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid.core
as
core
from
op_test_xpu
import
XPUOpTest
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle
paddle
.
enable_static
()
def
max_pool2D_forward_naive
(
x
,
...
...
@@ -241,7 +245,7 @@ def pool2D_forward_naive(x,
return
out
class
TestPool2D_Op
(
OpTest
):
class
TestPool2D_Op
(
XPU
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"pool2d"
self
.
use_cudnn
=
False
...
...
@@ -265,7 +269,7 @@ class TestPool2D_Op(OpTest):
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
,
self
.
exclusive
,
self
.
adaptive
,
self
.
data_format
,
self
.
pool_type
,
self
.
padding_algorithm
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
inputs
=
{
'X'
:
XPU
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
...
...
@@ -284,18 +288,20 @@ class TestPool2D_Op(OpTest):
self
.
outputs
=
{
'Out'
:
output
}
def
has_xpu
(
self
):
return
core
.
is_compiled_with_xpu
()
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
if
self
.
has_xpu
():
place
=
core
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
return
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
0.07
)
if
self
.
has_xpu
():
place
=
core
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'X'
]),
'Out'
)
return
def
init_data_format
(
self
):
self
.
data_format
=
"NCHW"
...
...
@@ -315,7 +321,7 @@ class TestPool2D_Op(OpTest):
self
.
use_cudnn
=
False
def
init_data_type
(
self
):
self
.
dtype
=
np
.
float
64
self
.
dtype
=
np
.
float
32
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
...
...
@@ -334,5 +340,134 @@ class TestPool2D_Op(OpTest):
self
.
adaptive
=
False
class
TestCase1
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase2
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
1
,
1
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase3
(
TestPool2D_Op
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase4
(
TestCase1
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase5
(
TestCase2
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestPool2D_AsyPadding
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
class
TestCase1_AsyPadding
(
TestCase1
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase2_AsyPadding
(
TestCase2
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase3_AsyPadding
(
TestCase3
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
class
TestCase4_AsyPadding
(
TestCase4
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase5_AsyPadding
((
TestCase5
)):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
2
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestAvgInclude_AsyPadding
(
TestCase2
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录