Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8482f1ae
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8482f1ae
编写于
8月 01, 2022
作者:
X
Xiaoxu Chen
提交者:
GitHub
8月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
migrate reduce_amin,reduce_amax kernel to phi (#44698)
上级
3a301780
变更
24
显示空白变更内容
内联
并排
Showing
24 changed file
with
953 addition
and
228 deletion
+953
-228
paddle/fluid/operators/reduce_ops/reduce_amax_op.cc
paddle/fluid/operators/reduce_ops/reduce_amax_op.cc
+22
-14
paddle/fluid/operators/reduce_ops/reduce_amin_op.cc
paddle/fluid/operators/reduce_ops/reduce_amin_op.cc
+22
-14
paddle/fluid/operators/reduce_ops/reduce_min_max_op.h
paddle/fluid/operators/reduce_ops/reduce_min_max_op.h
+0
-115
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+0
-81
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+18
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+20
-0
paddle/phi/kernels/cpu/reduce_amax_grad_kernel.cc
paddle/phi/kernels/cpu/reduce_amax_grad_kernel.cc
+44
-0
paddle/phi/kernels/cpu/reduce_amax_kernel.cc
paddle/phi/kernels/cpu/reduce_amax_kernel.cc
+45
-0
paddle/phi/kernels/cpu/reduce_amin_grad_kernel.cc
paddle/phi/kernels/cpu/reduce_amin_grad_kernel.cc
+44
-0
paddle/phi/kernels/cpu/reduce_amin_kernel.cc
paddle/phi/kernels/cpu/reduce_amin_kernel.cc
+45
-0
paddle/phi/kernels/funcs/reduce_functor.h
paddle/phi/kernels/funcs/reduce_functor.h
+118
-0
paddle/phi/kernels/gpu/reduce_amax_grad_kernel.cu
paddle/phi/kernels/gpu/reduce_amax_grad_kernel.cu
+43
-0
paddle/phi/kernels/gpu/reduce_amin_amax_common.h
paddle/phi/kernels/gpu/reduce_amin_amax_common.h
+103
-0
paddle/phi/kernels/gpu/reduce_amin_grad_kernel.cu
paddle/phi/kernels/gpu/reduce_amin_grad_kernel.cu
+44
-0
paddle/phi/kernels/kps/reduce_amax_kernel.cu
paddle/phi/kernels/kps/reduce_amax_kernel.cu
+46
-0
paddle/phi/kernels/kps/reduce_amin_kernel.cu
paddle/phi/kernels/kps/reduce_amin_kernel.cu
+46
-0
paddle/phi/kernels/reduce_amax_grad_kernel.h
paddle/phi/kernels/reduce_amax_grad_kernel.h
+32
-0
paddle/phi/kernels/reduce_amax_kernel.cc
paddle/phi/kernels/reduce_amax_kernel.cc
+44
-0
paddle/phi/kernels/reduce_amax_kernel.h
paddle/phi/kernels/reduce_amax_kernel.h
+36
-0
paddle/phi/kernels/reduce_amin_grad_kernel.h
paddle/phi/kernels/reduce_amin_grad_kernel.h
+32
-0
paddle/phi/kernels/reduce_amin_kernel.cc
paddle/phi/kernels/reduce_amin_kernel.cc
+44
-0
paddle/phi/kernels/reduce_amin_kernel.h
paddle/phi/kernels/reduce_amin_kernel.h
+36
-0
paddle/phi/ops/compat/reduce_sig.cc
paddle/phi/ops/compat/reduce_sig.cc
+58
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+11
-4
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_amax_op.cc
浏览文件 @
8482f1ae
...
...
@@ -11,20 +11,28 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace
ops
=
paddle
::
operators
;
class
ReduceAMaxOpMaker
:
public
ops
::
ReduceOpMaker
{
protected:
virtual
std
::
string
GetName
()
const
{
return
"reduce_amax"
;
}
virtual
std
::
string
GetOpType
()
const
{
return
"Reduce reduce_amax"
;
}
};
DECLARE_INFER_SHAPE_FUNCTOR
(
reduce_amax
,
ReduceAMaxInferShapeFunctor
,
PD_INFER_META
(
phi
::
ReduceInferMetaBase
));
REGISTER_REDUCE_OP
(
reduce_amax
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OPERATOR
(
reduce_amax
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
float
,
ops
::
MaxFunctor
>
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
double
,
ops
::
MaxFunctor
>
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
int
,
ops
::
MaxFunctor
>
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
int64_t
,
ops
::
MaxFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_amax_grad
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
float
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
double
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
int
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
int64_t
,
ops
::
AMaxOrAMinGradFunctor
>
);
ops
::
ReduceOp
,
ReduceAMaxOpMaker
,
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
framework
::
OpDesc
,
true
>
,
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
imperative
::
OpBase
,
true
>
,
ReduceAMaxInferShapeFunctor
);
REGISTER_OPERATOR
(
reduce_amax_grad
,
ops
::
ReduceGradOp
)
paddle/fluid/operators/reduce_ops/reduce_amin_op.cc
浏览文件 @
8482f1ae
...
...
@@ -11,20 +11,28 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace
ops
=
paddle
::
operators
;
class
ReduceAMinOpMaker
:
public
ops
::
ReduceOpMaker
{
protected:
virtual
std
::
string
GetName
()
const
{
return
"reduce_amin"
;
}
virtual
std
::
string
GetOpType
()
const
{
return
"Reduce reduce_amin"
;
}
};
DECLARE_INFER_SHAPE_FUNCTOR
(
reduce_amin
,
ReduceAMinInferShapeFunctor
,
PD_INFER_META
(
phi
::
ReduceInferMetaBase
));
REGISTER_REDUCE_OP
(
reduce_amin
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OPERATOR
(
reduce_amin
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
float
,
ops
::
MinFunctor
>
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
double
,
ops
::
MinFunctor
>
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
int
,
ops
::
MinFunctor
>
,
ops
::
ReduceKernel
<
phi
::
CPUContext
,
int64_t
,
ops
::
MinFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_amin_grad
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
float
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
double
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
int
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
phi
::
CPUContext
,
int64_t
,
ops
::
AMaxOrAMinGradFunctor
>
);
ops
::
ReduceOp
,
ReduceAMinOpMaker
,
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
framework
::
OpDesc
,
true
>
,
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
imperative
::
OpBase
,
true
>
,
ReduceAMinInferShapeFunctor
);
REGISTER_OPERATOR
(
reduce_amin_grad
,
ops
::
ReduceGradOp
)
paddle/fluid/operators/reduce_ops/reduce_min_max_op.h
浏览文件 @
8482f1ae
...
...
@@ -55,120 +55,5 @@ struct MaxOrMinGradFunctor {
}
};
#define HANDLE_AXIS_DIM(BROADCAST_DIM, AXIS_DIM) \
if (broadcast_dim_size == BROADCAST_DIM && rank == AXIS_DIM) { \
AMaxOrAMinAxisIsListGradFunctor<DeviceContext, \
X, \
Y, \
DX, \
DY, \
Dim, \
BROADCAST_DIM, \
AXIS_DIM>( \
place, x, y, dx, dy, dim, axis_dim); \
}
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
,
int
R
,
int
D
>
void
AMaxOrAMinAxisIsListGradFunctor
(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
const
std
::
vector
<
int
>&
axis_dim
)
{
// R is x->dimensions().size();
// D is axis_dim->dimensions().size();
auto
axis
=
Eigen
::
array
<
int
,
D
>
();
auto
reshape_x
=
Eigen
::
array
<
int
,
R
>
();
auto
reshape_y
=
Eigen
::
array
<
int
,
R
>
();
for
(
int
i
=
0
;
i
<
D
;
i
++
)
axis
[
i
]
=
axis_dim
[
i
];
for
(
int
i
=
0
;
i
<
R
;
i
++
)
{
reshape_x
[
i
]
=
x
->
dimensions
()[
i
];
reshape_y
[
i
]
=
y
->
dimensions
()[
i
];
}
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
reshape
(
reshape_x
).
sum
(
axis
).
reshape
(
reshape_y
).
broadcast
(
dim
);
}
struct
AMaxOrAMinGradFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
// If there are multiple minimum or maximum elements,
// we evenly distribute gradient between these equal values
size_t
x_numel
=
1
;
for
(
size_t
i
=
0
;
i
<
x
->
dimensions
().
size
();
i
++
)
x_numel
*=
x
->
dimensions
()[
i
];
// reduce_all
if
(
size
==
static_cast
<
int
>
(
x_numel
))
{
auto
equal_number
=
mask
.
sum
()
.
reshape
(
Eigen
::
array
<
int
,
1
>
({
1
}))
.
broadcast
(
Eigen
::
array
<
int
,
1
>
({
size
}));
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
equal_number
;
return
;
}
// compute forward reduce axis_dim by dim (which is broadcast_dim)
std
::
vector
<
int
>
axis_dim
;
int
broadcast_dim_size
=
static_cast
<
int
>
(
dim
.
size
());
for
(
int
i
=
0
;
i
<
broadcast_dim_size
;
i
++
)
{
if
(
dim
[
i
]
>
1
)
{
axis_dim
.
push_back
(
i
);
}
}
int
rank
=
static_cast
<
int
>
(
axis_dim
.
size
());
// axis is a int element
if
(
rank
==
1
)
{
auto
axis
=
Eigen
::
array
<
int
,
1
>
({
axis_dim
[
0
]});
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
sum
(
axis
).
reshape
(
dy
->
dimensions
()).
broadcast
(
dim
);
return
;
}
// axis is list, HANDLE_AXIS_DIM(broadcast_dim_size, rank)
HANDLE_AXIS_DIM
(
3
,
2
);
HANDLE_AXIS_DIM
(
4
,
2
);
HANDLE_AXIS_DIM
(
4
,
3
);
// comments for accelerating compiling temporarily.
// HANDLE_AXIS_DIM(5, 2);
// HANDLE_AXIS_DIM(5, 3);
// HANDLE_AXIS_DIM(5, 4);
// HANDLE_AXIS_DIM(6, 2);
// HANDLE_AXIS_DIM(6, 3);
// HANDLE_AXIS_DIM(6, 4);
// HANDLE_AXIS_DIM(6, 5);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
8482f1ae
...
...
@@ -838,87 +838,6 @@ struct DivideFunctor {
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
/
b
;
}
};
template
<
typename
T
,
template
<
typename
,
typename
>
class
TransformOp
>
class
ReduceCudaAMaxAMinGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
std
::
vector
<
int
>
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out_y
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
d_out
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
out_dtype
=
context
.
Attr
<
int
>
(
"in_dtype"
);
auto
pt_out_dtype
=
framework
::
TransToPhiDataType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
out_dtype
));
// get reduce_dim and reduce_num for reduce_mean_grad
int
dim_size
=
in_x
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
=
GetReduceDim
(
dims
,
dim_size
,
reduce_all
);
auto
update_dims
=
vectorize
(
d_x
->
dims
());
int
reduce_num
=
1
;
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
in_x
->
dims
())[
i
];
update_dims
[
i
]
=
1
;
}
auto
&
dev_ctx
=
context
.
cuda_device_context
();
// make new tensor reduce_out
phi
::
DenseTensor
new_y
(
out_y
->
type
());
new_y
.
ShareDataWith
(
*
out_y
);
new_y
.
Resize
(
phi
::
make_ddim
(
update_dims
));
// make new tensor d_out
phi
::
DenseTensor
new_dout
(
d_out
->
type
());
new_dout
.
ShareDataWith
(
*
d_out
);
new_dout
.
Resize
(
phi
::
make_ddim
(
update_dims
));
d_x
->
mutable_data
(
dev_ctx
.
GetPlace
(),
d_out
->
dtype
());
auto
new_in
=
paddle
::
experimental
::
MakePhiDenseTensor
(
*
in_x
);
auto
new_in_tensor
=
new_in
.
get
();
auto
new_dx
=
paddle
::
experimental
::
MakePhiDenseTensor
(
*
d_x
);
auto
new_dx_tensor
=
new_dx
.
get
();
// make equal_out
phi
::
DenseTensor
*
equal_out
=
new
phi
::
DenseTensor
();
equal_out
->
Resize
(
in_x
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
equal_out
);
auto
equal_out_tensor
=
*
equal_out
;
// make new tensor equal_count
phi
::
DenseTensor
*
equal_count
=
new
phi
::
DenseTensor
();
equal_count
->
Resize
(
phi
::
make_ddim
(
update_dims
));
dev_ctx
.
template
Alloc
<
T
>(
equal_count
);
// compute
// 1. equal_out = Equal(x, y)
std
::
vector
<
const
phi
::
DenseTensor
*>
equal_inputs
=
{
&
new_y
,
new_in_tensor
};
std
::
vector
<
phi
::
DenseTensor
*>
equal_outputs
=
{
&
equal_out_tensor
};
phi
::
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
equal_inputs
,
&
equal_outputs
,
0
,
EqualFunctor
<
T
>
());
// 2. equal_count = reduceSum(equal_out)
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
,
MPType
>>
(
dev_ctx
,
equal_out_tensor
,
equal_count
,
kps
::
IdentityFunctor
<
T
,
MPType
>
(),
reduce_dims
,
false
);
// 3. dx = Div(dout, equal_out)
std
::
vector
<
const
phi
::
DenseTensor
*>
grad_inputs
=
{
&
equal_out_tensor
,
equal_count
};
std
::
vector
<
phi
::
DenseTensor
*>
grad_outputs
=
{
new_dx_tensor
};
phi
::
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
grad_inputs
,
&
grad_outputs
,
0
,
DivideFunctor
<
T
>
());
delete
equal_out
;
delete
equal_count
;
}
};
#endif
#endif
...
...
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
8482f1ae
...
...
@@ -129,6 +129,24 @@
kernel
:
func
:
allclose
-
api
:
amax
args
:
(Tensor x, int64_t[] dims={}, bool keep_dim=false)
output
:
Tensor(out)
infer_meta
:
func
:
ReduceInferMeta
kernel
:
func
:
amax
backward
:
amax_grad
-
api
:
amin
args
:
(Tensor x, int64_t[] dims={}, bool keep_dim=false)
output
:
Tensor(out)
infer_meta
:
func
:
ReduceInferMeta
kernel
:
func
:
amin
backward
:
amin_grad
-
api
:
angle
args
:
(Tensor x)
output
:
Tensor
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
8482f1ae
...
...
@@ -92,6 +92,26 @@
kernel
:
func
:
addmm_grad
-
backward_api
:
amax_grad
forward
:
amax (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out)
args
:
(Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
amax_grad
-
backward_api
:
amin_grad
forward
:
amin (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out)
args
:
(Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
amin_grad
-
backward_api
:
angle_grad
forward
:
angle (Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
...
...
paddle/phi/kernels/cpu/reduce_amax_grad_kernel.cc
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amax_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMaxGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceGradKernel
<
Context
,
T
,
funcs
::
AMaxOrAMinGradFunctor
>
(
dev_ctx
,
x
,
out
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amax_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
ReduceAMaxGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/cpu/reduce_amax_kernel.cc
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amax_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMaxRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
)
{
auto
out_dtype
=
x
.
dtype
();
phi
::
Reduce
<
CPUContext
,
T
,
phi
::
funcs
::
MaxFunctor
>
(
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amax_raw
,
CPU
,
ALL_LAYOUT
,
phi
::
AMaxRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/cpu/reduce_amin_grad_kernel.cc
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amin_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMinGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceGradKernel
<
Context
,
T
,
funcs
::
AMaxOrAMinGradFunctor
>
(
dev_ctx
,
x
,
out
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amin_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
ReduceAMinGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/cpu/reduce_amin_kernel.cc
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amin_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMinRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
)
{
auto
out_dtype
=
x
.
dtype
();
phi
::
Reduce
<
CPUContext
,
T
,
phi
::
funcs
::
MinFunctor
>
(
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amin_raw
,
CPU
,
ALL_LAYOUT
,
phi
::
AMinRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/funcs/reduce_functor.h
浏览文件 @
8482f1ae
...
...
@@ -14,6 +14,9 @@
#pragma once
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
namespace
phi
{
namespace
funcs
{
...
...
@@ -178,5 +181,120 @@ struct MaxOrMinGradFunctor {
}
};
#define HANDLE_AXIS_DIM(BROADCAST_DIM, AXIS_DIM) \
if (broadcast_dim_size == BROADCAST_DIM && rank == AXIS_DIM) { \
AMaxOrAMinAxisIsListGradFunctor<DeviceContext, \
X, \
Y, \
DX, \
DY, \
Dim, \
BROADCAST_DIM, \
AXIS_DIM>( \
place, x, y, dx, dy, dim, axis_dim); \
}
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
,
int
R
,
int
D
>
void
AMaxOrAMinAxisIsListGradFunctor
(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
const
std
::
vector
<
int
>&
axis_dim
)
{
// R is x->dimensions().size();
// D is axis_dim->dimensions().size();
auto
axis
=
Eigen
::
array
<
int
,
D
>
();
auto
reshape_x
=
Eigen
::
array
<
int
,
R
>
();
auto
reshape_y
=
Eigen
::
array
<
int
,
R
>
();
for
(
int
i
=
0
;
i
<
D
;
i
++
)
axis
[
i
]
=
axis_dim
[
i
];
for
(
int
i
=
0
;
i
<
R
;
i
++
)
{
reshape_x
[
i
]
=
x
->
dimensions
()[
i
];
reshape_y
[
i
]
=
y
->
dimensions
()[
i
];
}
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
reshape
(
reshape_x
).
sum
(
axis
).
reshape
(
reshape_y
).
broadcast
(
dim
);
}
struct
AMaxOrAMinGradFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
// If there are multiple minimum or maximum elements,
// we evenly distribute gradient between these equal values
size_t
x_numel
=
1
;
for
(
size_t
i
=
0
;
i
<
x
->
dimensions
().
size
();
i
++
)
x_numel
*=
x
->
dimensions
()[
i
];
// reduce_all
if
(
size
==
static_cast
<
int
>
(
x_numel
))
{
auto
equal_number
=
mask
.
sum
()
.
reshape
(
Eigen
::
array
<
int
,
1
>
({
1
}))
.
broadcast
(
Eigen
::
array
<
int
,
1
>
({
size
}));
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
equal_number
;
return
;
}
// compute forward reduce axis_dim by dim (which is broadcast_dim)
std
::
vector
<
int
>
axis_dim
;
int
broadcast_dim_size
=
static_cast
<
int
>
(
dim
.
size
());
for
(
int
i
=
0
;
i
<
broadcast_dim_size
;
i
++
)
{
if
(
dim
[
i
]
>
1
)
{
axis_dim
.
push_back
(
i
);
}
}
int
rank
=
static_cast
<
int
>
(
axis_dim
.
size
());
// axis is a int element
if
(
rank
==
1
)
{
auto
axis
=
Eigen
::
array
<
int
,
1
>
({
axis_dim
[
0
]});
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
sum
(
axis
).
reshape
(
dy
->
dimensions
()).
broadcast
(
dim
);
return
;
}
// axis is list, HANDLE_AXIS_DIM(broadcast_dim_size, rank)
HANDLE_AXIS_DIM
(
3
,
2
);
HANDLE_AXIS_DIM
(
4
,
2
);
HANDLE_AXIS_DIM
(
4
,
3
);
// comments for accelerating compiling temporarily.
// HANDLE_AXIS_DIM(5, 2);
// HANDLE_AXIS_DIM(5, 3);
// HANDLE_AXIS_DIM(5, 4);
// HANDLE_AXIS_DIM(6, 2);
// HANDLE_AXIS_DIM(6, 3);
// HANDLE_AXIS_DIM(6, 4);
// HANDLE_AXIS_DIM(6, 5);
}
};
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/gpu/reduce_amax_grad_kernel.cu
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce_amin_amax_common.h"
#include "paddle/phi/kernels/reduce_max_grad_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMaxGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceCudaAMaxAMinGrad
<
T
,
Context
>
(
dev_ctx
,
x
,
out
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amax_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
ReduceAMaxGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/gpu/reduce_amin_amax_common.h
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/compare_functors.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceCudaAMaxAMinGrad
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
auto
*
in_x
=
&
x
;
auto
*
out_y
=
&
out
;
auto
*
d_out
=
&
out_grad
;
auto
*
d_x
=
x_grad
;
// get reduce_dim and reduce_num for reduce_mean_grad
int
dim_size
=
in_x
->
dims
().
size
();
auto
reduce_dims
=
funcs
::
details
::
GetReduceDim
(
dims
,
dim_size
,
reduce_all
);
auto
update_dims
=
vectorize
(
d_x
->
dims
());
int
reduce_num
=
1
;
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
in_x
->
dims
())[
i
];
update_dims
[
i
]
=
1
;
}
// make new tensor reduce_out
phi
::
DenseTensor
new_y
(
out_y
->
type
());
new_y
.
ShareDataWith
(
*
out_y
);
new_y
.
Resize
(
phi
::
make_ddim
(
update_dims
));
// make new tensor d_out
phi
::
DenseTensor
new_dout
(
d_out
->
type
());
new_dout
.
ShareDataWith
(
*
d_out
);
new_dout
.
Resize
(
phi
::
make_ddim
(
update_dims
));
dev_ctx
.
Alloc
(
d_x
,
d_out
->
dtype
());
auto
new_in
=
paddle
::
experimental
::
MakePhiDenseTensor
(
*
in_x
);
auto
new_in_tensor
=
new_in
.
get
();
auto
new_dx
=
paddle
::
experimental
::
MakePhiDenseTensor
(
*
d_x
);
auto
new_dx_tensor
=
new_dx
.
get
();
// make equal_out
phi
::
DenseTensor
*
equal_out
=
new
phi
::
DenseTensor
();
equal_out
->
Resize
(
in_x
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
equal_out
);
auto
equal_out_tensor
=
*
equal_out
;
// make new tensor equal_count
phi
::
DenseTensor
*
equal_count
=
new
phi
::
DenseTensor
();
equal_count
->
Resize
(
phi
::
make_ddim
(
update_dims
));
dev_ctx
.
template
Alloc
<
T
>(
equal_count
);
// compute
// 1. equal_out = Equal(x, y)
std
::
vector
<
const
phi
::
DenseTensor
*>
equal_inputs
=
{
&
new_y
,
new_in_tensor
};
std
::
vector
<
phi
::
DenseTensor
*>
equal_outputs
=
{
&
equal_out_tensor
};
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
equal_inputs
,
&
equal_outputs
,
0
,
funcs
::
EqualFunctor
<
T
>
());
// 2. equal_count = reduceSum(equal_out)
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
,
MPType
>>
(
dev_ctx
,
equal_out_tensor
,
equal_count
,
kps
::
IdentityFunctor
<
T
,
MPType
>
(),
reduce_dims
,
false
);
// 3. dx = Div(dout, equal_out)
std
::
vector
<
const
phi
::
DenseTensor
*>
grad_inputs
=
{
&
equal_out_tensor
,
equal_count
};
std
::
vector
<
phi
::
DenseTensor
*>
grad_outputs
=
{
new_dx_tensor
};
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
grad_inputs
,
&
grad_outputs
,
0
,
funcs
::
DivideFunctor
<
T
>
());
delete
equal_out
;
delete
equal_count
;
}
}
// namespace phi
paddle/phi/kernels/gpu/reduce_amin_grad_kernel.cu
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amin_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce_amin_amax_common.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMinGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
ReduceCudaAMaxAMinGrad
<
T
,
Context
>
(
dev_ctx
,
x
,
out
,
out_grad
,
dims
,
keep_dim
,
reduce_all
,
x_grad
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amin_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
ReduceAMinGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/kps/reduce_amax_kernel.cu
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/reduce_amin_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMaxRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
)
{
auto
out_dtype
=
x
.
dtype
();
phi
::
Reduce
<
T
,
kps
::
MaxFunctor
,
kps
::
IdentityFunctor
>
(
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
);
}
}
// namespace phi
#ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL
(
amax_raw
,
KPS
,
ALL_LAYOUT
,
phi
::
AMaxRawKernel
,
float
)
{}
#else
PD_REGISTER_KERNEL
(
amax_raw
,
KPS
,
ALL_LAYOUT
,
phi
::
AMaxRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
#endif
paddle/phi/kernels/kps/reduce_amin_kernel.cu
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_amin_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMinRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
)
{
auto
out_dtype
=
x
.
dtype
();
phi
::
Reduce
<
T
,
kps
::
MinFunctor
,
kps
::
IdentityFunctor
>
(
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
);
}
}
// namespace phi
#ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL
(
amin_raw
,
KPS
,
ALL_LAYOUT
,
phi
::
AMinRawKernel
,
float
)
{}
#else
PD_REGISTER_KERNEL
(
amin_raw
,
KPS
,
ALL_LAYOUT
,
phi
::
AMinRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
#endif
paddle/
fluid/operators/reduce_ops/reduce_amax_op.part.cu
→
paddle/
phi/kernels/reduce_amax_grad_kernel.h
浏览文件 @
8482f1ae
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -12,13 +12,21 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#
include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#
pragma once
template
<
typename
T
>
using
CUDAReduceMaxGradKernel
=
ops
::
ReduceCudaAMaxAMinGradKernel
<
T
,
kps
::
IdentityFunctor
>
;
REGISTER_OP_CUDA_KERNEL
(
reduce_amax_grad
,
CUDAReduceMaxGradKernel
<
int
>
,
CUDAReduceMaxGradKernel
<
int64_t
>
,
CUDAReduceMaxGradKernel
<
float
>
,
CUDAReduceMaxGradKernel
<
double
>
);
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMaxGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/
fluid/operators/reduce_ops/reduce_amax_op.kps
→
paddle/
phi/kernels/reduce_amax_kernel.cc
浏览文件 @
8482f1ae
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -12,25 +12,33 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PADDLE_WITH_XPU_KP
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#endif
#include "paddle/phi/kernels/reduce_amax_kernel.h"
#include "paddle/
fluid/operators/reduce_ops/reduce_op
.h"
#include "paddle/
phi/backends/all_context
.h"
#include "paddle/phi/core/kernel_registry.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
#ifdef PADDLE_WITH_XPU_KP
REGISTER_OP_KERNEL(
reduce_amax, KP, plat::XPUPlace,
ops::ReduceCudaKernel<float, kps::MaxFunctor, kps::IdentityFunctor>);
#else
REGISTER_OP_CUDA_KERNEL(
reduce_amax,
ops::ReduceCudaKernel<float, kps::MaxFunctor, kps::IdentityFunctor>,
ops::ReduceCudaKernel<double, kps::MaxFunctor, kps::IdentityFunctor>,
ops::ReduceCudaKernel<int, kps::MaxFunctor, kps::IdentityFunctor>,
ops::ReduceCudaKernel<int64_t, kps::MaxFunctor, kps::IdentityFunctor>);
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMaxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DenseTensor
*
out
)
{
bool
reduce_all
=
false
;
AMaxRawKernel
<
T
>
(
dev_ctx
,
x
,
dims
,
keep_dim
,
reduce_all
,
out
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amax
,
CPU
,
ALL_LAYOUT
,
phi
::
AMaxKernel
,
float
,
double
,
int
,
int64_t
)
{}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL
(
amax
,
GPU
,
ALL_LAYOUT
,
phi
::
AMaxKernel
,
float
,
double
,
int
,
int64_t
)
{}
#endif
#if defined(PADDLE_WITH_XPU_KP)
PD_REGISTER_KERNEL
(
amax
,
KPS
,
ALL_LAYOUT
,
phi
::
AMaxKernel
,
float
)
{}
#endif
paddle/phi/kernels/reduce_amax_kernel.h
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMaxRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
AMaxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DenseTensor
*
out
);
}
// namespace phi
paddle/
fluid/operators/reduce_ops/reduce_amin_op.part.cu
→
paddle/
phi/kernels/reduce_amin_grad_kernel.h
浏览文件 @
8482f1ae
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -12,13 +12,21 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#
include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#
pragma once
template
<
typename
T
>
using
CUDAReduceMinGradKernel
=
ops
::
ReduceCudaAMaxAMinGradKernel
<
T
,
kps
::
IdentityFunctor
>
;
REGISTER_OP_CUDA_KERNEL
(
reduce_amin_grad
,
CUDAReduceMinGradKernel
<
int
>
,
CUDAReduceMinGradKernel
<
int64_t
>
,
CUDAReduceMinGradKernel
<
float
>
,
CUDAReduceMinGradKernel
<
double
>
);
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ReduceAMinGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/
fluid/operators/reduce_ops/reduce_amin_op.kps
→
paddle/
phi/kernels/reduce_amin_kernel.cc
浏览文件 @
8482f1ae
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -12,25 +12,33 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PADDLE_WITH_XPU_KP
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#endif
#include "paddle/phi/kernels/reduce_amin_kernel.h"
#include "paddle/
fluid/operators/reduce_ops/reduce_op
.h"
#include "paddle/
phi/backends/all_context
.h"
#include "paddle/phi/core/kernel_registry.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
#ifdef PADDLE_WITH_XPU_KP
REGISTER_OP_KERNEL(
reduce_amin, KP, plat::XPUPlace,
ops::ReduceCudaKernel<float, kps::MinFunctor, kps::IdentityFunctor>);
#else
REGISTER_OP_CUDA_KERNEL(
reduce_amin,
ops::ReduceCudaKernel<float, kps::MinFunctor, kps::IdentityFunctor>,
ops::ReduceCudaKernel<double, kps::MinFunctor, kps::IdentityFunctor>,
ops::ReduceCudaKernel<int, kps::MinFunctor, kps::IdentityFunctor>,
ops::ReduceCudaKernel<int64_t, kps::MinFunctor, kps::IdentityFunctor>);
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMinKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DenseTensor
*
out
)
{
bool
reduce_all
=
false
;
AMinRawKernel
<
T
>
(
dev_ctx
,
x
,
dims
,
keep_dim
,
reduce_all
,
out
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
amin
,
CPU
,
ALL_LAYOUT
,
phi
::
AMinKernel
,
float
,
double
,
int
,
int64_t
)
{}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL
(
amin
,
GPU
,
ALL_LAYOUT
,
phi
::
AMinKernel
,
float
,
double
,
int
,
int64_t
)
{}
#endif
#if defined(PADDLE_WITH_XPU_KP)
PD_REGISTER_KERNEL
(
amin
,
KPS
,
ALL_LAYOUT
,
phi
::
AMinKernel
,
float
)
{}
#endif
paddle/phi/kernels/reduce_amin_kernel.h
0 → 100644
浏览文件 @
8482f1ae
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AMinRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
AMinKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/reduce_sig.cc
浏览文件 @
8482f1ae
...
...
@@ -83,6 +83,22 @@ KernelSignature ReduceMaxOpArgumentMapping(const ArgumentMappingContext& ctx) {
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
}
KernelSignature
ReduceAMaxOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
// When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
// InferShape, so we must return the "max_raw" KernelSignature.
// And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
// the "max_raw" KernelSignature
if
(
ctx
.
IsForInferShape
()
||
reduce_all
)
{
return
KernelSignature
(
"amax_raw"
,
{
"X"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
},
{
"Out"
});
}
return
KernelSignature
(
"amax"
,
{
"X"
},
{
"dim"
,
"keep_dim"
},
{
"Out"
});
}
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
}
KernelSignature
ReduceMinOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
...
...
@@ -99,6 +115,22 @@ KernelSignature ReduceMinOpArgumentMapping(const ArgumentMappingContext& ctx) {
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
}
KernelSignature
ReduceAMinOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
// When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
// InferShape, so we must return the "min_raw" KernelSignature.
// And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
// the "min_raw" KernelSignature
if
(
ctx
.
IsForInferShape
()
||
reduce_all
)
{
return
KernelSignature
(
"amin_raw"
,
{
"X"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
},
{
"Out"
});
}
return
KernelSignature
(
"amin"
,
{
"X"
},
{
"dim"
,
"keep_dim"
},
{
"Out"
});
}
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
}
KernelSignature
ReduceAnyOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
bool
reduce_all
=
paddle
::
any_cast
<
bool
>
(
ctx
.
Attr
(
"reduce_all"
));
...
...
@@ -151,6 +183,14 @@ KernelSignature ReduceMaxGradOpArgumentMapping(
{
"X@GRAD"
});
}
KernelSignature
ReduceAMaxGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"amax_grad"
,
{
"X"
,
"Out"
,
"Out@GRAD"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
},
{
"X@GRAD"
});
}
KernelSignature
ReduceMinGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"min_grad"
,
...
...
@@ -159,6 +199,14 @@ KernelSignature ReduceMinGradOpArgumentMapping(
{
"X@GRAD"
});
}
KernelSignature
ReduceAMinGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"amin_grad"
,
{
"X"
,
"Out"
,
"Out@GRAD"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
},
{
"X@GRAD"
});
}
KernelSignature
ReduceProdGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"prod_grad"
,
...
...
@@ -173,6 +221,8 @@ PD_REGISTER_BASE_KERNEL_NAME(reduce_sum, sum);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_mean
,
mean
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_max
,
max
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_min
,
min
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_amax
,
amax
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_amin
,
amin
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_prod
,
prod
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_all
,
all
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_any
,
any
);
...
...
@@ -182,12 +232,16 @@ PD_REGISTER_BASE_KERNEL_NAME(reduce_mean_grad, mean_grad);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_prod_grad
,
prod_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_max_grad
,
max_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_min_grad
,
min_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_amax_grad
,
amax_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
reduce_amin_grad
,
amin_grad
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_sum
,
phi
::
ReduceSumOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_mean
,
phi
::
ReduceMeanOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_prod
,
phi
::
ReduceProdOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_max
,
phi
::
ReduceMaxOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_amax
,
phi
::
ReduceAMaxOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_min
,
phi
::
ReduceMinOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_amin
,
phi
::
ReduceAMinOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_all
,
phi
::
ReduceAllOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_any
,
phi
::
ReduceAnyOpArgumentMapping
);
...
...
@@ -199,5 +253,9 @@ PD_REGISTER_ARG_MAPPING_FN(reduce_prod_grad,
phi
::
ReduceProdGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_max_grad
,
phi
::
ReduceMaxGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_amax_grad
,
phi
::
ReduceAMaxGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_min_grad
,
phi
::
ReduceMinGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
reduce_amin_grad
,
phi
::
ReduceAMinGradOpArgumentMapping
);
python/paddle/tensor/math.py
浏览文件 @
8482f1ae
...
...
@@ -29,7 +29,7 @@ from .layer_function_generator import _generate_doc_string_, generate_activation
import
paddle
from
..static
import
Variable
from
..framework
import
core
,
in_dygraph_mode
,
_non_static_mode
,
LayerHelper
from
..framework
import
core
,
in_dygraph_mode
,
_non_static_mode
,
LayerHelper
,
_in_legacy_dygraph
from
..fluid.framework
import
_in_legacy_dygraph
from
..framework
import
_varbase_creator
,
convert_np_dtype_to_dtype_
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
...
...
@@ -2334,7 +2334,11 @@ def amax(x, axis=None, keepdim=False, name=None):
"""
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
if
paddle
.
in_dynamic_mode
():
if
in_dygraph_mode
():
if
reduce_all
:
axis
=
range
(
len
(
x
.
shape
))
return
_C_ops
.
final_state_amax
(
x
,
axis
,
keepdim
)
if
_in_legacy_dygraph
():
return
_C_ops
.
reduce_amax
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
helper
=
LayerHelper
(
'amax'
,
**
locals
())
...
...
@@ -2446,9 +2450,12 @@ def amin(x, axis=None, keepdim=False, name=None):
"""
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
if
paddle
.
in_dynamic_mode
():
if
in_dygraph_mode
():
if
reduce_all
:
axis
=
range
(
len
(
x
.
shape
))
return
_C_ops
.
final_state_amin
(
x
,
axis
,
keepdim
)
elif
_in_legacy_dygraph
():
return
_C_ops
.
reduce_amin
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
helper
=
LayerHelper
(
'amin'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'amin'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录