Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
840d54de
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
840d54de
编写于
10月 12, 2020
作者:
M
mapingshuo
提交者:
GitHub
10月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add XPU support for shape op and reshape op (#27804)
上级
0a1862d1
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
354 addition
and
5 deletion
+354
-5
paddle/fluid/operators/reshape_op.cc
paddle/fluid/operators/reshape_op.cc
+32
-5
paddle/fluid/operators/shape_op_xpu.cc
paddle/fluid/operators/shape_op_xpu.cc
+21
-0
python/paddle/fluid/tests/unittests/xpu/test_reshape2_op_xpu.py
.../paddle/fluid/tests/unittests/xpu/test_reshape2_op_xpu.py
+207
-0
python/paddle/fluid/tests/unittests/xpu/test_shape_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_shape_op_xpu.py
+94
-0
未找到文件。
paddle/fluid/operators/reshape_op.cc
浏览文件 @
840d54de
...
...
@@ -49,7 +49,8 @@ inline std::vector<int> get_new_shape(
"the element's shape must be [1]. But received the element's shape "
"is [%s]"
,
tensor
->
dims
()));
if
(
platform
::
is_gpu_place
(
tensor
->
place
()))
{
if
(
platform
::
is_gpu_place
(
tensor
->
place
())
||
platform
::
is_xpu_place
(
tensor
->
place
()))
{
framework
::
Tensor
temp
;
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
...
...
@@ -362,7 +363,8 @@ class ReshapeKernel {
if
(
shape_tensor
)
{
auto
*
shape_data
=
shape_tensor
->
data
<
int
>
();
framework
::
Tensor
cpu_shape_tensor
;
if
(
platform
::
is_gpu_place
(
shape_tensor
->
place
()))
{
if
(
platform
::
is_gpu_place
(
shape_tensor
->
place
())
||
platform
::
is_xpu_place
(
shape_tensor
->
place
()))
{
TensorCopySync
(
*
shape_tensor
,
platform
::
CPUPlace
(),
&
cpu_shape_tensor
);
shape_data
=
cpu_shape_tensor
.
data
<
int
>
();
...
...
@@ -375,9 +377,22 @@ class ReshapeKernel {
out
->
Resize
(
out_dims
);
out
->
mutable_data
(
ctx
.
GetPlace
(),
in
->
type
());
#ifdef PADDLE_WITH_XPU
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
xpu
::
memcpy_device
(
dev_ctx
.
x_context
(),
out
->
data
<
void
>
(),
in
->
data
<
void
>
(),
in
->
numel
()
*
paddle
::
framework
::
SizeOfType
(
in
->
type
()));
}
else
{
#endif
framework
::
TensorCopy
(
*
in
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
out
);
#ifdef PADDLE_WITH_XPU
}
#endif
out
->
Resize
(
out_dims
);
}
};
...
...
@@ -644,3 +659,15 @@ REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad_grad, float,
ops
::
ReshapeDoubleGradKernel
,
plat
::
float16
,
ops
::
ReshapeDoubleGradKernel
);
#endif
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR
(
reshape2
,
float
,
ops
::
ReshapeKernel
,
double
,
ops
::
ReshapeKernel
,
int
,
ops
::
ReshapeKernel
,
int64_t
,
ops
::
ReshapeKernel
,
plat
::
float16
,
ops
::
ReshapeKernel
);
REGISTER_OP_XPU_KERNEL_FUNCTOR
(
reshape2_grad
,
float
,
ops
::
ReshapeGradKernel
,
double
,
ops
::
ReshapeGradKernel
,
int
,
ops
::
ReshapeGradKernel
,
int64_t
,
ops
::
ReshapeGradKernel
,
plat
::
float16
,
ops
::
ReshapeGradKernel
);
#endif
paddle/fluid/operators/shape_op_xpu.cc
0 → 100644
浏览文件 @
840d54de
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/shape_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
shape
,
ops
::
ShapeKernel
<
bool
>
,
ops
::
ShapeKernel
<
int
>
,
ops
::
ShapeKernel
<
int64_t
>
,
ops
::
ShapeKernel
<
float
>
,
ops
::
ShapeKernel
<
double
>
);
#endif
python/paddle/fluid/tests/unittests/xpu/test_reshape2_op_xpu.py
0 → 100644
浏览文件 @
840d54de
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
class
TestReshapeOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_data
()
self
.
op_type
=
"reshape2"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"shape"
:
self
.
new_shape
,
"use_xpu"
:
True
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
infered_shape
),
'XShape'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
60
)
self
.
new_shape
=
(
12
,
10
)
self
.
infered_shape
=
(
12
,
10
)
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
no_check_set
=
[
'XShape'
])
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
"X"
],
"Out"
)
class
TestReshapeOpDimInfer1
(
TestReshapeOp
):
def
init_data
(
self
):
self
.
ori_shape
=
(
5
,
25
)
self
.
new_shape
=
(
5
,
-
1
,
5
)
self
.
infered_shape
=
(
5
,
-
1
,
5
)
class
TestReshapeOpDimInfer2
(
TestReshapeOp
):
def
init_data
(
self
):
self
.
ori_shape
=
(
10
,
2
,
6
)
self
.
new_shape
=
(
10
,
0
,
3
,
-
1
)
self
.
infered_shape
=
(
10
,
2
,
3
,
-
1
)
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
class
TestReshapeOpWithInputShape
(
OpTest
):
def
setUp
(
self
):
self
.
init_data
()
self
.
op_type
=
"reshape2"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
),
"Shape"
:
np
.
array
(
self
.
actual_shape
,
dtype
=
"int32"
)
}
self
.
attrs
=
{
"shape"
:
self
.
new_shape
,
"use_xpu"
:
True
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
actual_shape
),
'XShape'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
def
init_data
(
self
):
self
.
ori_shape
=
(
6
,
20
)
self
.
new_shape
=
(
0
,
-
1
,
20
)
self
.
actual_shape
=
(
2
,
3
,
20
)
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
no_check_set
=
[
'XShape'
])
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
"X"
],
"Out"
)
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class
TestReshapeOp_attr_ShapeTensor
(
OpTest
):
def
setUp
(
self
):
self
.
init_data
()
self
.
op_type
=
"reshape2"
shape_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
new_shape
):
shape_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
),
'ShapeTensor'
:
shape_tensor
}
self
.
attrs
=
{
'shape'
:
self
.
shape
,
"use_xpu"
:
True
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
infered_shape
),
'XShape'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
def
init_data
(
self
):
self
.
ori_shape
=
(
4
,
25
)
self
.
new_shape
=
(
10
,
10
)
self
.
infered_shape
=
(
10
,
10
)
self
.
shape
=
(
-
1
,
-
1
)
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
no_check_set
=
[
'XShape'
])
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
"X"
],
"Out"
)
class
TestReshapeOpDimInfer1_attr_ShapeTensor
(
TestReshapeOp_attr_ShapeTensor
):
def
init_data
(
self
):
self
.
ori_shape
=
(
5
,
20
)
self
.
new_shape
=
(
5
,
-
1
,
20
)
self
.
infered_shape
=
(
5
,
-
1
,
20
)
self
.
shape
=
(
5
,
-
1
,
-
1
)
class
TestReshapeOpDimInfer2_attr_ShapeTensor
(
TestReshapeOp_attr_ShapeTensor
):
def
init_data
(
self
):
self
.
ori_shape
=
(
10
,
2
,
6
)
self
.
new_shape
=
(
10
,
0
,
3
,
-
1
)
self
.
infered_shape
=
(
10
,
2
,
3
,
-
1
)
self
.
shape
=
(
10
,
0
,
3
,
-
1
)
# Situation 4: have shape(Tensor), no actual shape(Tensor)
class
TestReshapeOp_attr_OnlyShape
(
OpTest
):
def
setUp
(
self
):
self
.
init_data
()
self
.
op_type
=
"reshape2"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
),
"Shape"
:
np
.
array
(
self
.
new_shape
,
dtype
=
"int32"
)
}
self
.
attrs
=
{
"use_xpu"
:
True
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
infered_shape
),
'XShape'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
def
init_data
(
self
):
self
.
ori_shape
=
(
4
,
25
)
self
.
new_shape
=
(
10
,
10
)
self
.
infered_shape
=
(
10
,
10
)
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
no_check_set
=
[
'XShape'
])
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
"X"
],
"Out"
)
class
TestReshapeOpDimInfer1_attr_OnlyShape
(
TestReshapeOp_attr_OnlyShape
):
def
init_data
(
self
):
self
.
ori_shape
=
(
5
,
20
)
self
.
new_shape
=
(
5
,
-
1
,
10
)
self
.
infered_shape
=
(
5
,
-
1
,
10
)
self
.
shape
=
(
5
,
-
1
,
-
1
)
class
TestReshapeOpDimInfer2_attr_OnlyShape
(
TestReshapeOp_attr_OnlyShape
):
def
init_data
(
self
):
self
.
ori_shape
=
(
10
,
2
,
6
)
self
.
new_shape
=
(
10
,
0
,
3
,
-
1
)
self
.
infered_shape
=
(
10
,
2
,
3
,
-
1
)
self
.
shape
=
(
10
,
0
,
3
,
-
1
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_shape_op_xpu.py
0 → 100644
浏览文件 @
840d54de
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
from
paddle.fluid
import
core
from
paddle.fluid.op
import
Operator
class
TestShapeOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"shape"
self
.
config
()
self
.
shape
=
[
2
,
3
]
input
=
np
.
zeros
(
self
.
shape
)
self
.
inputs
=
{
'Input'
:
input
}
self
.
outputs
=
{
'Out'
:
np
.
array
(
self
.
shape
)}
def
config
(
self
):
self
.
shape
=
[
2
,
3
]
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
class
case1
(
TestShapeOp
):
def
config
(
self
):
self
.
shape
=
[
2
]
class
case2
(
TestShapeOp
):
def
config
(
self
):
self
.
shape
=
[
1
,
2
,
3
]
class
TestShapeWithSelectedRows
(
unittest
.
TestCase
):
def
get_places
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
if
core
.
is_compiled_with_xpu
():
places
.
append
(
core
.
XPUPlace
(
0
))
return
places
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
x_rows
=
[
0
,
1
,
5
,
4
,
19
]
height
=
20
row_numel
=
2
np_array
=
np
.
ones
((
len
(
x_rows
),
row_numel
)).
astype
(
"float32"
)
# initialize input variable X
x
=
scope
.
var
(
'X'
).
get_selected_rows
()
x
.
set_rows
(
x_rows
)
x
.
set_height
(
height
)
x_tensor
=
x
.
get_tensor
()
x_tensor
.
set
(
np_array
,
place
)
# initialize input variable Out
out_shape
=
scope
.
var
(
"Out"
).
get_tensor
()
op
=
Operator
(
"shape"
,
Input
=
"X"
,
Out
=
"Out"
)
op
.
run
(
scope
,
place
)
out_shape
=
np
.
array
(
out_shape
).
tolist
()
self
.
assertListEqual
([
5
,
2
],
out_shape
)
def
test_check_output
(
self
):
for
place
in
self
.
get_places
():
self
.
check_with_place
(
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录