Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
838e36e9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
838e36e9
编写于
8月 13, 2020
作者:
C
Chen Weihang
提交者:
GitHub
8月 13, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix loaded variable suffix repeat error (#26169)
* fix loaded var suffix repeat error * use new dygraph name for loaded param
上级
e656ca47
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
114 addition
and
55 deletion
+114
-55
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+0
-3
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+0
-2
python/paddle/fluid/dygraph/io.py
python/paddle/fluid/dygraph/io.py
+50
-29
python/paddle/fluid/tests/unittests/test_imperative_static_runner_mnist.py
...id/tests/unittests/test_imperative_static_runner_mnist.py
+6
-4
python/paddle/fluid/tests/unittests/test_imperative_static_runner_while.py
...id/tests/unittests/test_imperative_static_runner_while.py
+4
-2
python/paddle/fluid/tests/unittests/test_jit_save_load.py
python/paddle/fluid/tests/unittests/test_jit_save_load.py
+54
-15
未找到文件。
paddle/fluid/framework/operator.h
浏览文件 @
838e36e9
...
...
@@ -64,9 +64,6 @@ constexpr char kZeroVarSuffix[] = "@ZERO";
/// Variables with this suffix are the new Gradient.
constexpr
char
kNewGradSuffix
[]
=
"@NEWGRAD@"
;
/// Variables with this suffix are the loaded from pre-train model.
constexpr
char
kLoadedVarSuffix
[]
=
"@LOADED"
;
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
838e36e9
...
...
@@ -1213,8 +1213,6 @@ All parameter, weight, gradient are variables in Paddle.
[]()
{
return
std
::
string
(
framework
::
kEmptyVarName
);
});
m
.
def
(
"grad_var_suffix"
,
[]()
{
return
std
::
string
(
framework
::
kGradVarSuffix
);
});
m
.
def
(
"loaded_var_suffix"
,
[]()
{
return
std
::
string
(
framework
::
kLoadedVarSuffix
);
});
m
.
def_submodule
(
"var_names"
,
"The module will return special predefined variable name in Paddle"
)
...
...
python/paddle/fluid/dygraph/io.py
浏览文件 @
838e36e9
...
...
@@ -23,6 +23,7 @@ from paddle import compat as cpt
from
paddle.fluid
import
core
from
paddle.fluid
import
framework
from
paddle.fluid
import
backward
from
paddle.fluid
import
unique_name
from
paddle.fluid.dygraph
import
layers
from
paddle.fluid.layers
import
nn
from
paddle.fluid.dygraph.base
import
switch_to_static_graph
...
...
@@ -31,6 +32,9 @@ __all__ = ['TranslatedLayer']
VARIABLE_FILENAME
=
"__variables__"
EXTRA_VAR_INFO_FILENAME
=
"__variables.info__"
LOADED_VAR_SUFFIX
=
"load"
PARAMETER_NAME_PREFIX
=
"param"
BUFFER_NAME_PREFIX
=
"buffer"
def
_load_program_desc
(
model_file_path
):
...
...
@@ -107,33 +111,30 @@ def _get_all_var_names(program_desc):
return
all_var_names
@
switch_to_static_graph
def
_append_loaded_suffix
(
name
):
"""
Append loaded suffix to the given variable name
e.g. x ==> x
@LOADED
e.g. x ==> x
.load_0, x.load_0 ==> x.load_0.load_0
"""
suffix
=
core
.
loaded_var_suffix
()
suffix
=
LOADED_VAR_SUFFIX
name
=
cpt
.
to_text
(
name
)
if
suffix
not
in
name
:
name
=
name
+
suffix
return
name
new_name
=
unique_name
.
generate_with_ignorable_key
(
'.'
.
join
((
name
,
suffix
)))
return
new_name
def
_remove_loaded_suffix
(
name
):
"""
Remove loaded suffix to the given variable name
e.g. x@LOADED ==> x
"""
suffix
=
core
.
loaded_var_suffix
()
name
=
cpt
.
to_text
(
name
)
return
name
.
replace
(
suffix
,
''
)
@
switch_to_static_graph
def
_generate_unique_var_name
(
prefix
):
return
unique_name
.
generate_with_ignorable_key
(
prefix
)
def
_append_loaded_suffix_to_var
(
program_desc
):
suffix_varname_dict
=
dict
()
persistable_vars
=
_get_persistable_vars
(
program_desc
)
for
var_desc
in
persistable_vars
:
old_name
=
var_desc
.
name
()
new_name
=
_append_loaded_suffix
(
var_desc
.
name
())
suffix_varname_dict
[
new_name
]
=
old_name
var_desc
.
set_name
(
new_name
)
for
block_idx
in
six
.
moves
.
range
(
program_desc
.
num_blocks
()):
block
=
program_desc
.
block
(
block_idx
)
...
...
@@ -141,6 +142,7 @@ def _append_loaded_suffix_to_var(program_desc):
op
=
block
.
op
(
op_idx
)
op
.
_rename_input
(
old_name
,
new_name
)
op
.
_rename_output
(
old_name
,
new_name
)
return
suffix_varname_dict
@
switch_to_static_graph
...
...
@@ -187,6 +189,9 @@ class _ProgramHolder(object):
# execution scope
self
.
_inner_scope
=
core
.
Scope
()
# append suffix var name dict
self
.
_suffix_varname_dict
=
None
# forward program
self
.
_infer_program_desc
=
self
.
_preprocess
(
program_desc
)
# forward + backward program
...
...
@@ -272,7 +277,7 @@ class _ProgramHolder(object):
self
.
_append_scale_to_output
(
tmp_program
)
# 4. Persistable vars processing
# - append
@LOADED
suffix to persistable vars
# - append
loaded
suffix to persistable vars
# NOTE: [why need to append suffix to persistable vars]
# Dygraph and static graph mode use the same naming mechanism.
# If users want to load the model fine-tune, it is possible
...
...
@@ -281,10 +286,7 @@ class _ProgramHolder(object):
# and later after loading, a new linear is added. At this time,
# there will be a problem of duplicate names, so here is unified
# to add the LOADED suffix to the parameters of the model loaded
# during training. And in order to avoid multiple @LOADED suffix
# are appended to variable name, we only append @LOADED suffix to
# the variable that not contains @LOADED suffix.
_append_loaded_suffix_to_var
(
program_desc
)
self
.
_suffix_varname_dict
=
_append_loaded_suffix_to_var
(
program_desc
)
# - get persistable var
self
.
_persistable_names
=
_get_persistable_var_names
(
program_desc
)
...
...
@@ -298,7 +300,7 @@ class _ProgramHolder(object):
for
i
,
out
in
enumerate
(
self
.
_output_descs
):
var
=
program
.
global_block
().
var
(
out
.
name
())
var
=
nn
.
scale
(
var
,
1.
,
name
=
"
static_model_runn
er/scale_{}"
.
format
(
i
))
var
,
1.
,
name
=
"
translated_lay
er/scale_{}"
.
format
(
i
))
scale_output_vars
.
append
(
var
)
# 2. update output names & descs
for
i
,
var
in
enumerate
(
scale_output_vars
):
...
...
@@ -363,7 +365,7 @@ def _load_persistable_vars_by_program(model_path,
persistable_vars
=
_get_persistable_vars
(
program_holder
.
infer_program
)
load_var_dict
=
{}
for
each_var
in
persistable_vars
:
orig_each_name
=
_remove_loaded_suffix
(
each_var
.
name
())
orig_each_name
=
program_holder
.
_suffix_varname_dict
[
each_var
.
name
()]
if
_is_parameter
(
each_var
,
program_holder
.
infer_program
):
# create output varbase
new_var
=
framework
.
ParamBase
(
...
...
@@ -421,6 +423,7 @@ def _load_persistable_vars_by_program(model_path,
def
_load_persistable_vars
(
model_path
,
var_info_path
,
program_holder
,
separate_params
=
False
,
params_filename
=
None
):
# 1. load extra var info
...
...
@@ -430,10 +433,14 @@ def _load_persistable_vars(model_path,
# 2. construct var dict
load_var_dict
=
dict
()
load_var_list
=
[]
inv_suffix_varname_dict
=
{
value
:
key
for
key
,
value
in
program_holder
.
_suffix_varname_dict
.
items
()
}
# NOTE: some var may not be Parameter
for
name
in
sorted
(
extra_var_info
):
#
append suffix
, see [why need to append suffix to persistable vars]
new_name
=
_append_loaded_suffix
(
name
)
#
get suffix var name
, see [why need to append suffix to persistable vars]
new_name
=
inv_suffix_varname_dict
[
name
]
# create output varbase
if
extra_var_info
[
name
].
get
(
'trainable'
,
None
)
is
not
None
:
# use default shape and dtype
...
...
@@ -506,7 +513,8 @@ def _construct_params_and_buffers(model_path,
var_info_path
=
os
.
path
.
join
(
model_path
,
EXTRA_VAR_INFO_FILENAME
)
if
os
.
path
.
exists
(
var_info_path
):
var_dict
=
_load_persistable_vars
(
model_path
,
var_info_path
,
separate_params
,
params_filename
)
programs
[
'forward'
],
separate_params
,
params_filename
)
else
:
var_dict
=
_load_persistable_vars_by_program
(
model_path
,
programs
[
'forward'
],
params_filename
)
...
...
@@ -625,11 +633,23 @@ class TranslatedLayer(layers.Layer):
self
.
_program_holder_dict
=
programs
# NOTE(chenweihang): [ why not use var name directly? ]
# When add parameter or buffer to Layer by follow apis,
# the variable name can't contain `.`, beccause which may cause
# AttributeError when access the newly added parameter or buffer
# in the form of `self.**.**``, but the ParamBase or BarBase
# name contains `.` originally, such as `linear_0.w_0`, so here
# need to generate new var name for each var
self
.
_persistable_var_name_dict
=
dict
()
for
name
,
var
in
persistable_vars
.
items
():
if
isinstance
(
var
,
framework
.
ParamBase
):
self
.
add_parameter
(
name
,
var
)
dy_name
=
_generate_unique_var_name
(
PARAMETER_NAME_PREFIX
)
self
.
_persistable_var_name_dict
[
name
]
=
dy_name
self
.
add_parameter
(
dy_name
,
var
)
elif
isinstance
(
var
,
core
.
VarBase
):
self
.
register_buffer
(
name
,
var
)
dy_name
=
_generate_unique_var_name
(
BUFFER_NAME_PREFIX
)
self
.
_persistable_var_name_dict
[
name
]
=
dy_name
self
.
register_buffer
(
dy_name
,
var
)
else
:
raise
TypeError
(
"Adding persistent variable which to layer is not supported now"
...
...
@@ -700,10 +720,11 @@ class TranslatedLayer(layers.Layer):
persistable_vars
=
[]
for
var_name
in
program_holder
.
persistable_names
:
if
var_name
in
self
.
_parameters
:
persistable_vars
.
append
(
self
.
_parameters
[
var_name
])
elif
var_name
in
self
.
_buffers
:
persistable_vars
.
append
(
self
.
_buffers
[
var_name
])
dy_var_name
=
self
.
_persistable_var_name_dict
[
var_name
]
if
dy_var_name
in
self
.
_parameters
:
persistable_vars
.
append
(
self
.
_parameters
[
dy_var_name
])
elif
dy_var_name
in
self
.
_buffers
:
persistable_vars
.
append
(
self
.
_buffers
[
dy_var_name
])
else
:
raise
ValueError
(
"The persistable variable %s is not exists in current TranslatedLayer."
...
...
python/paddle/fluid/tests/unittests/test_imperative_static_runner_mnist.py
浏览文件 @
838e36e9
...
...
@@ -25,6 +25,8 @@ import paddle.fluid as fluid
from
paddle.fluid
import
core
from
test_imperative_base
import
new_program_scope
LOADED_VAR_SUFFIX
=
".load_0"
def
convolutional_neural_network
(
img
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
...
...
@@ -307,14 +309,14 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase):
self
.
assertTrue
(
np
.
array_equal
(
static_x_data
,
dy_x_data
))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
key
+=
core
.
loaded_var_suffix
()
key
+=
LOADED_VAR_SUFFIX
self
.
assertTrue
(
np
.
array_equal
(
value
,
dy_param_init_value
[
key
]))
# np.testing.assert_array_almost_equal(static_out, dy_out)
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
,
atol
=
1e-04
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
key
+=
core
.
loaded_var_suffix
()
key
+=
LOADED_VAR_SUFFIX
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-4
))
def
test_mnist_train_with_params_filename
(
self
):
...
...
@@ -335,14 +337,14 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase):
self
.
assertTrue
(
np
.
array_equal
(
static_x_data
,
dy_x_data
))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
key
+=
core
.
loaded_var_suffix
()
key
+=
LOADED_VAR_SUFFIX
self
.
assertTrue
(
np
.
array_equal
(
value
,
dy_param_init_value
[
key
]))
# np.testing.assert_array_almost_equal(static_out, dy_out)
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
,
atol
=
1e-04
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
key
+=
core
.
loaded_var_suffix
()
key
+=
LOADED_VAR_SUFFIX
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-4
))
def
test_mnist_infer_no_params_filename
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_imperative_static_runner_while.py
浏览文件 @
838e36e9
...
...
@@ -27,6 +27,8 @@ from test_imperative_base import new_program_scope
import
paddle.fluid.transpiler.details.program_utils
as
pu
LOADED_VAR_SUFFIX
=
".load_0"
def
while_softmax_regression
(
img
):
def
cond
(
i
,
times
,
pred
):
...
...
@@ -219,13 +221,13 @@ class TestImperativeStaticModelRunnerWhile(unittest.TestCase):
# Phase 3. compare
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
key
+=
core
.
loaded_var_suffix
()
key
+=
LOADED_VAR_SUFFIX
self
.
assertTrue
(
np
.
array_equal
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
key
+=
core
.
loaded_var_suffix
()
key
+=
LOADED_VAR_SUFFIX
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-5
))
...
...
python/paddle/fluid/tests/unittests/test_jit_save_load.py
浏览文件 @
838e36e9
...
...
@@ -29,18 +29,18 @@ BATCH_NUM = 20
SEED
=
10
def
random_batch_reader
():
def
_get_random_i
mages_and_labels
(
image_shape
,
label_shap
e
):
def
random_batch_reader
(
input_size
,
label_size
):
def
_get_random_i
nputs_and_labels
(
input_size
,
label_siz
e
):
np
.
random
.
seed
(
SEED
)
i
mage
=
np
.
random
.
random
(
size
=
image_shap
e
).
astype
(
'float32'
)
label
=
np
.
random
.
random
(
size
=
label_s
hap
e
).
astype
(
'int64'
)
return
i
mage
,
label
i
nput
=
np
.
random
.
random
(
size
=
input_siz
e
).
astype
(
'float32'
)
label
=
np
.
random
.
random
(
size
=
label_s
iz
e
).
astype
(
'int64'
)
return
i
nput
,
label
def
__reader__
():
for
_
in
range
(
BATCH_NUM
):
batch_i
mage
,
batch_label
=
_get_random_image
s_and_labels
(
[
BATCH_SIZE
,
784
],
[
BATCH_SIZE
,
1
])
yield
batch_i
mage
,
batch_label
batch_i
nput
,
batch_label
=
_get_random_input
s_and_labels
(
[
BATCH_SIZE
,
input_size
],
[
BATCH_SIZE
,
label_size
])
yield
batch_i
nput
,
batch_label
return
__reader__
...
...
@@ -77,13 +77,14 @@ class LinearNetReturnLoss(fluid.dygraph.Layer):
return
z
,
loss
def
train
(
layer
):
def
train
(
layer
,
input_size
=
784
,
label_size
=
1
):
# create optimizer
adam
=
fluid
.
optimizer
.
SGDOptimizer
(
learning_rate
=
0.01
,
parameter_list
=
layer
.
parameters
())
# create data loader
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
5
)
train_loader
.
set_batch_generator
(
random_batch_reader
())
train_loader
.
set_batch_generator
(
random_batch_reader
(
input_size
,
label_size
))
# train
for
data
in
train_loader
():
img
,
label
=
data
...
...
@@ -100,11 +101,6 @@ def train(layer):
return
[
img
],
layer
,
avg_loss
def
infer
(
layer
):
x
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
1
,
784
)).
astype
(
'float32'
))
return
layer
(
x
)
class
TestJitSaveLoad
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
model_path
=
"model.test_jit_save_load"
...
...
@@ -279,5 +275,48 @@ class TestJitSaveLoadConfig(unittest.TestCase):
np
.
array_equal
(
train_layer
(
x
)[
0
].
numpy
(),
infer_layer
(
x
).
numpy
()))
class
MultiLoadingLinearNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
size
,
model_path
):
super
(
MultiLoadingLinearNet
,
self
).
__init__
()
self
.
_linear
=
Linear
(
size
,
size
)
self
.
_load_linear1
=
fluid
.
dygraph
.
jit
.
load
(
model_path
)
self
.
_load_linear2
=
fluid
.
dygraph
.
jit
.
load
(
model_path
)
@
declarative
def
forward
(
self
,
x
):
tmp1
=
self
.
_linear
(
x
)
tmp2
=
self
.
_load_linear1
(
tmp1
)
tmp3
=
self
.
_load_linear2
(
tmp2
)
y
=
self
.
_linear
(
tmp3
)
return
y
class
TestJitMultipleLoading
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
linear_size
=
4
self
.
model_path
=
"model.jit_multi_load"
# enable dygraph mode
fluid
.
enable_dygraph
()
# config seed
fluid
.
default_main_program
().
random_seed
=
SEED
# train and save base model
self
.
train_and_save_orig_model
()
def
train_and_save_orig_model
(
self
):
layer
=
LinearNet
(
self
.
linear_size
,
self
.
linear_size
)
example_inputs
,
layer
,
_
=
train
(
layer
,
self
.
linear_size
,
1
)
fluid
.
dygraph
.
jit
.
save
(
layer
=
layer
,
model_path
=
self
.
model_path
,
input_spec
=
example_inputs
)
def
test_load_model_retransform_inference
(
self
):
multi_loaded_layer
=
MultiLoadingLinearNet
(
self
.
linear_size
,
self
.
model_path
)
state_dict
=
multi_loaded_layer
.
state_dict
()
name_set
=
set
()
for
_
,
var
in
state_dict
.
items
():
self
.
assertTrue
(
var
.
name
not
in
name_set
)
name_set
.
add
(
var
.
name
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录