diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index edae54294b91e9a8999eaf6d74270df951a764ba..a997afbf4d35f3365605b264ac144a96e16394c7 100755 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -33,7 +33,8 @@ __all__ = [ 'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than', 'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal', 'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN', - 'reorder_lod_tensor_by_rank', 'Print', 'is_empty', 'case', 'switch_case' + 'reorder_lod_tensor_by_rank', 'Print', 'is_empty', 'case', 'switch_case', + 'while_loop' ] @@ -918,6 +919,93 @@ class While(object): "is_test": self.is_test}) +def while_loop(cond, body, loop_vars, name=None): + """ + while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False. + + Args: + cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. + body(Callable): A callable returning a tuple or list of tensors of the same arity (length and structure) + and types as ``loops_vars`` . + loop_vars(list|tuple): A list or tuple of tensors that is passed to both ``cond`` and ``body`` . + name(str, optional): Normally there is no need for users to set this property. For more information, please + refer to :ref:`api_guide_Name`. Default is None. + + Returns: + A list or tuple of tensors which returned by ``body`` . + + Returen type: + list(Variable)|tuple(Variable). + + Raises: + TypeError: If the type of ``cond`` is not callable. + TypeError: If the type of ``body`` is not callable. + TypeError: If the type of ``loop_vars`` is not list or tuple. + TypeError: If the type of ``cond`` returns is not Variable. + TypeError: If the type of ``cond`` returns is not a boolean variable. + TypeError: If the shape of ``cond`` returns is not equals 1. + ValueError: If the ``var_loops`` is empty. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import paddle.fluid.layers as layers + + def cond(i): + return layers.less_than(i, ten) + + def body(i): + return layers.increment(x=i, value=1, in_place=True) + + main_program = fluid.default_main_program() + startup_program = fluid.default_startup_program() + + with fluid.program_guard(main_program, startup_program): + i = layers.fill_constant(shape=[1], dtype='int64', value=0) # loop counter + ten = layers.fill_constant(shape=[1], dtype='int64', value=10) # loop length + out = layers.while_loop(cond, body, [i]) + + exe = fluid.Executor(fluid.CPUPlace()) + res = exe.run(main_program, feed={}, fetch_list=out) + print(res) # [array([10])] + """ + helper = LayerHelper('while_loop', **locals()) + + if not callable(cond): + raise TypeError("cond in while_loop should be callable") + if not callable(body): + raise TypeError("body in while_loop should be callable") + if not isinstance(loop_vars, (list, tuple)): + raise TypeError("loop_vars in while_loop should be a list or tuple") + if len(loop_vars) == 0: + raise ValueError("loop_vars in while_loop should not be empty") + + pre_cond = cond(*loop_vars) + if not isinstance(pre_cond, Variable): + raise TypeError("cond in while_loop should return a variable") + if pre_cond.dtype != core.VarDesc.VarType.BOOL: + raise TypeError("cond in while_loop should return a boolean variable") + if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1: + raise TypeError( + "the shape of the variable returned by cond should be []," + "but given shape as {0}.".format(list(pre_cond.shape))) + + while_loop_block = While(pre_cond) + with while_loop_block.block(): + output_vars = body(*loop_vars) + if len(loop_vars) == 1: + assign(output_vars, loop_vars[0]) + now_cond = cond(output_vars) + else: + for i in range(len(output_vars)): + assign(output_vars[i], loop_vars[i]) + now_cond = cond(*output_vars) + assign(now_cond, pre_cond) + + return loop_vars + + def lod_rank_table(x, level=0): """ LoD Rank Table Operator. Given an input variable **x** and a level number diff --git a/python/paddle/fluid/tests/unittests/test_while_loop_op.py b/python/paddle/fluid/tests/unittests/test_while_loop_op.py new file mode 100644 index 0000000000000000000000000000000000000000..78ceb5250cf658431b09bfc34fe820747c26c81d --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_while_loop_op.py @@ -0,0 +1,205 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import print_function + +import numpy as np +import unittest + +import paddle.fluid as fluid +import paddle.fluid.core as core +import paddle.fluid.layers as layers +import paddle.fluid.framework as framework +from paddle.fluid.executor import Executor +from paddle.fluid.framework import Program, program_guard + + +class TestApiWhileLoop(unittest.TestCase): + def test_var_tuple(self): + def cond(i): + return layers.less_than(i, ten) + + def body(i): + return layers.elementwise_add(x=i, y=one) + + main_program = Program() + startup_program = Program() + with program_guard(main_program, startup_program): + i = layers.fill_constant(shape=[1], dtype='int64', value=0) + one = layers.fill_constant(shape=[1], dtype='int64', value=1) + ten = layers.fill_constant(shape=[1], dtype='int64', value=10) + out = layers.while_loop(cond, body, (i, )) + + place = fluid.CPUPlace() + exe = fluid.Executor(place) + res = exe.run(main_program, fetch_list=out) + self.assertTrue( + np.allclose(np.asarray(res[0]), np.full((1), 10, np.int64))) + + def test_var_list(self): + def cond(i, mem): + return layers.less_than(i, ten) + + def body(i, mem): + mem = layers.elementwise_add(x=mem, y=one) + i = layers.increment(i) + return [i, mem] + + main_program = Program() + startup_program = Program() + with program_guard(main_program, startup_program): + i = layers.zeros(shape=[1], dtype='int64') + ten = layers.fill_constant(shape=[1], dtype='int64', value=10) + mem = layers.data(name="mem", shape=[10], dtype='float32') + one = layers.fill_constant(shape=[10], dtype='float32', value=1) + out = layers.while_loop(cond, body, [i, mem]) + + data = np.random.rand(10).astype('float32') + data_one = np.ones(10).astype('float32') + + place = fluid.CPUPlace() + exe = fluid.Executor(place) + res = exe.run(main_program, feed={'mem': data}, fetch_list=out) + for i in range(10): + data = np.add(data, data_one) + self.assertTrue(np.allclose(np.asarray(res[1]), data)) + + +class TestApiWhileLoop_Nested(unittest.TestCase): + def test_nested_net(self): + def external_cond(i, j, init, sums): + return layers.less_than(i, loop_len1) + + def external_body(i, j, init, sums): + def internal_cond(j, init, sums): + return layers.less_than(j, loop_len2) + + def internal_body(j, init, sums): + init = layers.elementwise_add(x=init, y=ones) + sums = layers.elementwise_add(x=init, y=sums) + j = layers.increment(j) + return [j, init, sums] + + result = layers.while_loop(internal_cond, internal_body, + [j, init, sums]) + j = result[0] + init = result[1] + sums = result[2] + sums = layers.elementwise_add(x=init, y=sums) + i = layers.increment(i) + return [i, j, init, sums] + + main_program = Program() + startup_program = Program() + with program_guard(main_program, startup_program): + i = layers.zeros(shape=[1], dtype='int64') + j = layers.zeros(shape=[1], dtype='int64') + init = layers.data(name="init", shape=[3, 3], dtype='float32') + sums = layers.data(name="sums", shape=[3, 3], dtype='float32') + loop_len1 = layers.fill_constant(shape=[1], dtype='int64', value=2) + loop_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3) + ones = layers.fill_constant(shape=[3, 3], dtype='float32', value=1) + + res = layers.while_loop(external_cond, external_body, + [i, j, init, sums]) + + data = np.random.rand(3, 3).astype('float32') + data_sums = np.zeros([3, 3]).astype('float32') + + place = fluid.CPUPlace() + exe = fluid.Executor(place) + ret = exe.run(main_program, + feed={'init': data, + 'sums': data_sums}, + fetch_list=res) + for i in range(3): + data = np.add(data, 1) + data_sums = np.add(data, data_sums) + for j in range(2): + data_sums = np.add(data, data_sums) + self.assertTrue(np.allclose(np.asarray(ret[3]), data_sums)) + + +class TestApiWhileLoop_Error(unittest.TestCase): + def test_error(self): + def cond_returns_constant(i): + return 1 + + def cond_returns_not_bool_tensor(i): + return layers.increment(i) + + def cond_returns_bool_tensor(i): + return layers.less_than(i, ten) + + def cond_returns_2d_tensor(i): + return layers.less_than(i, ten_2d) + + def body(i): + return layers.increment(i) + + main_program = Program() + startup_program = Program() + with program_guard(main_program, startup_program): + data = layers.fill_constant(shape=[1], dtype='int64', value=1) + data_1d = layers.fill_constant(shape=[1], dtype='int64', value=1) + data_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=1) + ten = layers.fill_constant(shape=[1], dtype='int64', value=10) + ten_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=10) + + # The type of `cond` in Op(while_loop) must be callable + def type_error_cond(): + out = layers.while_loop(data, body, [data_1d]) + + self.assertRaises(TypeError, type_error_cond) + + # The type of `body` in Op(while_loop) must be callable + def type_error_body(): + out = layers.while_loop(cond_returns_bool_tensor, data, + [data_1d]) + + self.assertRaises(TypeError, type_error_body) + + # The type of `loop_vars` in Op(while_loop) must be list or tuple + def type_error_loop_vars(): + out = layers.while_loop(cond_returns_bool_tensor, body, data_1d) + + self.assertRaises(TypeError, type_error_loop_vars) + + # The value of `loop_vars` is empty + def value_error_loop_vars(): + out = layers.while_loop(cond_returns_bool_tensor, body, []) + + self.assertRaises(ValueError, value_error_loop_vars) + + # The type of `cond` returns in Op(while_loop) must be Variable + def type_error_cond_returns_not_variable(): + out = layers.while_loop(cond_returns_constant, body, [data_1d]) + + self.assertRaises(TypeError, type_error_cond_returns_not_variable) + + # The type of `cond` returns in Op(while_loop) must be a bollean variable + def type_error_cond_returns_not_boolean(): + out = layers.while_loop(cond_returns_not_bool_tensor, body, + [data_1d]) + + self.assertRaises(TypeError, type_error_cond_returns_not_boolean) + + # The shape of `cond` returns in Op(while_loop) must be 1 + def type_error_shape_cond_returns_2d(): + out = layers.while_loop(cond_returns_2d_tensor, body, [data_2d]) + + self.assertRaises(TypeError, type_error_shape_cond_returns_2d) + + +if __name__ == '__main__': + unittest.main()