Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
82b8a3c5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
82b8a3c5
编写于
9月 17, 2018
作者:
Y
yuyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Move trainer to contrib
上级
3fbfcd9c
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
1374 addition
and
1351 deletion
+1374
-1351
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+0
-9
python/paddle/fluid/contrib/inferencer.py
python/paddle/fluid/contrib/inferencer.py
+112
-0
python/paddle/fluid/contrib/trainer.py
python/paddle/fluid/contrib/trainer.py
+1258
-0
python/paddle/fluid/inferencer.py
python/paddle/fluid/inferencer.py
+2
-98
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+2
-1244
未找到文件。
python/paddle/fluid/__init__.py
浏览文件 @
82b8a3c5
...
...
@@ -19,17 +19,8 @@ from .framework import *
# import all class inside executor into fluid module
from
.
import
executor
from
.executor
import
*
from
.
import
trainer
from
.trainer
import
Trainer
from
.trainer
import
BeginEpochEvent
from
.trainer
import
EndEpochEvent
from
.trainer
import
BeginStepEvent
from
.trainer
import
EndStepEvent
from
.trainer
import
CheckpointConfig
from
.
import
inferencer
from
.inferencer
import
Inferencer
from
.
import
io
from
.
import
evaluator
...
...
python/paddle/fluid/contrib/inferencer.py
0 → 100644
浏览文件 @
82b8a3c5
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
contextlib
from
..
import
core
from
..
import
executor
from
..
import
framework
from
..
import
io
from
..
import
parallel_executor
from
..
import
unique_name
from
.trainer
import
check_and_get_place
__all__
=
[
'Inferencer'
,
]
class
Inferencer
(
object
):
"""
Inferencer High Level API.
Args:
infer_func (Python func): Infer function that will return predict Variable
param_path (str): The path where the inference model is saved by fluid.io.save_params
place (Place): place to do the inference
parallel (bool): use parallel_executor to run the inference, it will use multi CPU/GPU.
Examples:
.. code-block:: python
def inference_program():
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
return y_predict
place = fluid.CPUPlace()
inferencer = fluid.Inferencer(
infer_func=inference_program, param_path="/tmp/model", place=place)
"""
def
__init__
(
self
,
infer_func
,
param_path
,
place
=
None
,
parallel
=
False
):
self
.
param_path
=
param_path
self
.
scope
=
core
.
Scope
()
self
.
parallel
=
parallel
self
.
place
=
check_and_get_place
(
place
)
self
.
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
inference_program
):
with
unique_name
.
guard
():
self
.
predict_var
=
infer_func
()
with
self
.
_prog_and_scope_guard
():
# load params from param_path into scope
io
.
load_params
(
executor
.
Executor
(
self
.
place
),
param_path
)
if
parallel
:
with
self
.
_prog_and_scope_guard
():
self
.
exe
=
parallel_executor
.
ParallelExecutor
(
use_cuda
=
isinstance
(
self
.
place
,
core
.
CUDAPlace
),
loss_name
=
self
.
predict_var
.
name
)
else
:
self
.
exe
=
executor
.
Executor
(
self
.
place
)
self
.
inference_program
=
self
.
inference_program
.
clone
(
for_test
=
True
)
def
infer
(
self
,
inputs
,
return_numpy
=
True
):
"""
Do Inference for Inputs
Args:
inputs (map): a map of {"input_name": input_var} that will be feed into the inference program
return_numpy (bool): transform return value into numpy or not
Returns:
Tensor or Numpy: the predict value of the inference model for the inputs
Examples:
.. code-block:: python
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
results = inferencer.infer({'x': tensor_x})
"""
if
not
isinstance
(
inputs
,
dict
):
raise
ValueError
(
"inputs should be a map of {'input_name': input_var}"
)
with
self
.
_prog_and_scope_guard
():
results
=
self
.
exe
.
run
(
feed
=
inputs
,
fetch_list
=
[
self
.
predict_var
.
name
],
return_numpy
=
return_numpy
)
return
results
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
main_program
=
self
.
inference_program
):
with
executor
.
scope_guard
(
self
.
scope
):
yield
python/paddle/fluid/contrib/trainer.py
0 → 100644
浏览文件 @
82b8a3c5
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
contextlib
import
os
import
errno
import
shutil
import
six
import
time
from
..
import
core
from
..
import
data_feeder
from
..
import
executor
from
..
import
framework
from
..
import
io
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
from
..
import
optimizer
as
opt_module
from
..
import
parallel_executor
from
..transpiler
import
distribute_transpiler
__all__
=
[
'Trainer'
,
'BeginEpochEvent'
,
'EndEpochEvent'
,
'BeginStepEvent'
,
'EndStepEvent'
,
'CheckpointConfig'
]
class
BeginEpochEvent
(
object
):
"""
The begin of a training epoch.
Args:
epoch_id(int): The current epoch ID.
"""
def
__init__
(
self
,
epoch_id
):
self
.
epoch
=
epoch_id
class
EndEpochEvent
(
object
):
"""
The end of a training epoch.
Args:
epoch_id(int): The current epoch ID.
"""
def
__init__
(
self
,
epoch_id
):
self
.
epoch
=
epoch_id
class
BeginStepEvent
(
object
):
"""
The begin of a training epoch.
Args:
epoch_id(int): The current epoch ID.
step_id(int): The current step ID.
"""
def
__init__
(
self
,
epoch_id
,
step_id
):
self
.
epoch
=
epoch_id
self
.
step
=
step_id
self
.
fetch_metrics
=
True
"""
If fetch_metrics is true, the metrics will be fetched at the
EndStepEvent. Default is True.
"""
class
EndStepEvent
(
object
):
"""
The end of a training step.
Args:
epoch_id(int): The current epoch ID.
step_id(int): The current step ID.
metrics(list): A list of fetched tensor. The order of this list is same
as the :code:`train_func` returns.
"""
def
__init__
(
self
,
epoch_id
,
step_id
,
metrics
):
self
.
epoch
=
epoch_id
self
.
step
=
step_id
self
.
metrics
=
metrics
class
CheckpointConfig
(
object
):
"""
Parameter object for :code:`save_checkpoint` and
:code:`fluid.Trainer`. Used to configuration how to save checkpoint.
Args:
checkpoint_dir(str): Directory path to save check point. Default is the
current directory.
max_num_checkpoints(int): The max number of local check points.
epoch_interval(int): Every number of epoch to save check point.
step_interval(int): Every number of step to save check point.
Examples:
>>> config = fluid.CheckpointConfig("./checkpoints")
>>> trainer = fluid.Trainer(train_func=train_program,
>>> place=place,
>>> optimizer_func=optimizer_func,
>>> checkpoint_config=config)
>>> trainer.train(...)
"""
def
__init__
(
self
,
checkpoint_dir
=
None
,
max_num_checkpoints
=
3
,
epoch_interval
=
1
,
step_interval
=
10
):
assert
epoch_interval
>=
1
assert
step_interval
>=
1
self
.
checkpoint_dir
=
checkpoint_dir
\
if
checkpoint_dir
is
not
None
else
os
.
getcwd
()
self
.
max_num_checkpoints
=
max_num_checkpoints
self
.
epoch_interval
=
epoch_interval
self
.
step_interval
=
step_interval
self
.
epoch_id
=
0
self
.
step_id
=
0
self
.
load_serial
=
None
self
.
pserver_id
=
None
self
.
lookup_table_name
=
None
def
check_and_get_place
(
place
):
"""
Check the type of place or get the default place
Args:
place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.
Raises:
TypeError if the type mismatched.
Returns:
the original place if it is not None.
if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
Otherwise returns CPUPlace by default.
"""
if
place
is
None
:
if
core
.
is_compiled_with_cuda
():
return
core
.
CUDAPlace
(
0
)
else
:
return
core
.
CPUPlace
()
else
:
if
not
isinstance
(
place
,
core
.
CUDAPlace
)
and
not
isinstance
(
place
,
core
.
CPUPlace
):
raise
TypeError
(
"Place should be either CUDAPlace or CPUPlace"
)
return
place
class
Trainer
(
object
):
"""
A trainer wraps MultiGPU/MultiNode training loops and can be used to train a
simple neural network easily.
This API takes a :code:`train_func`. A :code:`train_func` is a function that
return loss as it first return value. The reset value can be fetched by
EndStepEvent.metrics
This API also takes a :code:`optimizer_func` that will return an optimizer
instance.
For example, to train a MLP for MNIST dataset, the sample program is
>>> import paddle.fluid as fluid
>>>
>>> def mlp(image, layer_sizes=[200, 100], activation="relu", num_classes=10):
>>> hidden = image
>>> for layer_size in layer_sizes:
>>> hidden = fluid.layers.fc(input=hidden, size=layer_size, act=activation)
>>> return fluid.layers.fc(input=hidden, size=num_classes, act="softmax")
>>>
>>> def train_mnist_mlp():
>>> img = fluid.layers.data(name='image', shape=[784])
>>> label = fluid.layers.data(name='label', shape=[1], dtype='int64')
>>> prediction = mlp(img)
>>> return fluid.layers.mean(fluid.layers.cross_entropy(prediction, label))
>>>
>>> def optimizer():
>>> return fluid.optimizer.Adam()
>>>
>>> trainer = Trainer(train_func=train_mnist_mlp,
>>> optimizer_func=optimizer,
>>> place=fluid.CUDAPlace(0),
>>> parallel=True)
>>>
>>> def train_callback(event):
>>> if isinstance(event, fluid.EndStepEvent):
>>> print "Epoch ID", event.epoch, "Step ID",
\
>>> event.step, "AvgLoss", event.metrics[0]
>>> elif isinstance(event, fluid.EndEpochEvent):
>>> trainer.save_params("./model_{0}".format(event.epoch))
>>>
>>> trainer.train(num_epochs=100, event_handler=train_callback)
For more example, please see :ref:`api_guide_high_level_api`.
Args:
train_func(callable): A function which will return loss. The loss must be
a scalar tensor.
optimizer_func(callable): A function that returns an Optimizer object.
place(CUDAPlace|CPUPlace): The device place of this trainer. If
:code:`parallel=True,` all CUDA Places will be used if :code:`place`
is a :code:`CUDAPlace`.
parallel(bool): True if use multiple devices.
checkpoint_config(CheckpointConfig): Configuration about how to save
checkpoints.
"""
def
__init__
(
self
,
train_func
,
optimizer_func
,
param_path
=
None
,
place
=
None
,
parallel
=
False
,
checkpoint_config
=
None
):
self
.
__stop
=
False
self
.
parallel
=
parallel
# config for checkpoint
# only chief worker will save variables
self
.
trainer_id
=
0
self
.
checkpoint_cfg
=
checkpoint_config
if
self
.
checkpoint_cfg
:
assert
isinstance
(
self
.
checkpoint_cfg
,
CheckpointConfig
)
serial
=
_get_latest_checkpoint_serial
(
self
.
checkpoint_cfg
.
checkpoint_dir
)
self
.
checkpoint_cfg
.
load_serial
=
serial
if
serial
>=
0
else
None
self
.
scope
=
core
.
Scope
()
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
self
.
startup_program
=
framework
.
Program
()
self
.
train_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
train_program
,
self
.
startup_program
):
program_func_outs
=
train_func
()
self
.
train_func_outputs
=
program_func_outs
if
isinstance
(
program_func_outs
,
list
)
else
[
program_func_outs
]
self
.
test_program
=
self
.
train_program
.
clone
(
for_test
=
True
)
# The first element of program_func_outs is loss.
loss
=
self
.
train_func_outputs
[
0
]
optimizer
=
optimizer_func
()
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
raise
TypeError
(
"The optimizer should be an instance of Optimizer"
)
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
loss
)
self
.
place
=
check_and_get_place
(
place
)
self
.
_dist_transpile_if_necessary
(
optimize_ops
,
params_grads
)
# 2. move the default_main_program to self.program and run the
# default_startup program on an empty core.Scope()
# Run startup program
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
place
)
exe
.
run
(
self
.
startup_program
)
if
self
.
checkpoint_cfg
and
self
.
checkpoint_cfg
.
load_serial
is
not
None
:
self
.
_load_checkpoint
()
if
param_path
and
os
.
path
.
isdir
(
param_path
):
with
self
.
_prog_and_scope_guard
():
# load params from param_path into scope
io
.
load_persistables
(
executor
=
exe
,
dirname
=
param_path
,
main_program
=
self
.
startup_program
)
def
_transpile_nccl2_dist
(
self
):
# PADDLE_TRAINER_IPS
if
"PADDLE_TRAINER_IPS"
not
in
os
.
environ
:
self
.
nccl_id_var
=
None
else
:
self
.
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
port
=
os
.
getenv
(
"PADDLE_PSERVER_PORT"
)
worker_ips
=
os
.
getenv
(
"PADDLE_TRAINER_IPS"
)
worker_endpoints
=
[]
for
ip
in
worker_ips
.
split
(
","
):
worker_endpoints
.
append
(
':'
.
join
([
ip
,
port
]))
self
.
num_trainers
=
len
(
worker_endpoints
)
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_IP"
)
+
":"
+
port
worker_endpoints
.
remove
(
current_endpoint
)
# TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
# in ParallelExecutor to start
# distributed training using NCCL2
self
.
nccl_id_var
=
self
.
startup_program
.
global_block
().
create_var
(
name
=
"NCCLID"
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
self
.
startup_program
.
global_block
().
append_op
(
type
=
"gen_nccl_id"
,
inputs
=
{},
outputs
=
{
"NCCLID"
:
self
.
nccl_id_var
},
attrs
=
{
"endpoint"
:
current_endpoint
,
"endpoint_list"
:
worker_endpoints
,
"trainer_id"
:
self
.
trainer_id
})
def
_dist_transpile_if_necessary
(
self
,
optimize_ops
,
params_grads
):
self
.
_transpile_nccl2_dist
()
if
self
.
nccl_id_var
!=
None
:
return
if
"PADDLE_TRAINING_ROLE"
not
in
os
.
environ
:
return
# the port of all pservers, needed by both trainer and pserver
port
=
os
.
getenv
(
"PADDLE_PSERVER_PORT"
,
"6174"
)
# comma separated ips of all pservers, needed by trainer and
# pserver
pserver_ips
=
os
.
getenv
(
"PADDLE_PSERVER_IPS"
,
""
)
eplist
=
[]
for
ip
in
pserver_ips
.
split
(
","
):
eplist
.
append
(
':'
.
join
([
ip
,
port
]))
pserver_endpoints
=
","
.
join
(
eplist
)
# total number of workers/trainers in the job, needed by
# trainer and pserver
trainers
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS"
))
# the IP of the local machine, needed by pserver only
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_IP"
,
""
)
+
":"
+
port
# the unique trainer id, starting from 0, needed by trainer
# only
self
.
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
# the role, should be either PSERVER or TRAINER
training_role
=
os
.
getenv
(
"PADDLE_TRAINING_ROLE"
)
with
self
.
_prog_and_scope_guard
():
t
=
distribute_transpiler
.
DistributeTranspiler
()
t
.
transpile
(
self
.
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
if
training_role
==
"PSERVER"
:
if
self
.
checkpoint_cfg
:
pserver_id
=
eplist
.
index
(
current_endpoint
)
self
.
checkpoint_cfg
.
pserver_id
=
pserver_id
if
t
.
has_distributed_lookup_table
:
self
.
checkpoint_cfg
.
lookup_table_name
=
t
.
table_name
self
.
train_program
=
t
.
get_pserver_program
(
current_endpoint
)
self
.
startup_program
=
t
.
get_startup_program
(
current_endpoint
,
self
.
train_program
)
elif
training_role
==
"TRAINER"
:
self
.
train_program
=
t
.
get_trainer_program
()
else
:
raise
ValueError
(
'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
)
def
stop
(
self
):
"""
stop training
"""
self
.
__stop
=
True
def
train
(
self
,
num_epochs
,
event_handler
,
reader
=
None
,
feed_order
=
None
):
"""
Start the train loop to train the model.
Args:
num_epochs(int): The number of epoch. An epoch will process all data in reader
event_handler(callable): The event handler. A function with type (ev:Event)->void
reader(callable): A reader creator object. See also
:ref:`api_guide_python_reader` .
feed_order(list): Feeding order of reader. None will following the defining
order in program
Returns:
None
"""
training_role
=
os
.
getenv
(
"PADDLE_TRAINING_ROLE"
,
""
)
if
training_role
==
"PSERVER"
:
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
exe
.
run
()
return
if
self
.
parallel
:
self
.
_train_by_parallel_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
else
:
self
.
_train_by_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
def
test
(
self
,
reader
,
feed_order
):
"""
Test the model on given test data
Args:
reader(callable): The reader that yields test data.
feed_order(list): Feeding order of reader. None will following the
defining order in program
"""
return
self
.
_test_by_executor
(
reader
,
feed_order
,
self
.
train_func_outputs
)
def
save_params
(
self
,
param_path
):
"""
Save all parameters into :code:`param_path`.
Args:
param_path(str): The path to save parameters.
Returns:
None
"""
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_persistables
(
exe
,
dirname
=
param_path
)
def
save_inference_model
(
self
,
param_path
,
feeded_var_names
,
target_var_indexes
):
"""
Save model for cpp inference into :code:`param_path`.
Args:
param_path(str): The path to save parameters.
feeded_var_names(list(str)): The name of the vars that you
need to feed in before run program.
target_var_indexes(list(int)): the index of target var that
you need to return in trainer.train_func.
Returns:
None
"""
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
target_vars
=
[
self
.
train_func_outputs
[
index
]
for
index
in
target_var_indexes
]
io
.
save_inference_model
(
param_path
,
feeded_var_names
,
target_vars
,
exe
)
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
main_program
=
self
.
train_program
,
startup_program
=
self
.
startup_program
):
with
executor
.
scope_guard
(
self
.
scope
):
yield
def
_train_by_executor
(
self
,
num_epochs
,
event_handler
,
reader
,
feed_order
):
"""
Train by Executor and single device.
Args:
num_epochs:
event_handler:
reader:
feed_order:
Returns:
"""
with
self
.
_prog_and_scope_guard
():
feed_var_list
=
build_feed_var_list
(
self
.
train_program
,
feed_order
)
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
exe
=
executor
.
Executor
(
self
.
place
)
reader
=
feeder
.
decorate_reader
(
reader
,
multi_devices
=
False
)
self
.
_train_by_any_executor
(
event_handler
,
exe
,
num_epochs
,
reader
)
def
_train_by_any_executor
(
self
,
event_handler
,
exe
,
num_epochs
,
reader
):
if
self
.
checkpoint_cfg
:
epochs
=
[
epoch_id
for
epoch_id
in
range
(
num_epochs
)
if
epoch_id
>=
self
.
checkpoint_cfg
.
epoch_id
]
else
:
epochs
=
[
epoch_id
for
epoch_id
in
range
(
num_epochs
)]
for
epoch_id
in
epochs
:
event_handler
(
BeginEpochEvent
(
epoch_id
))
for
step_id
,
data
in
enumerate
(
reader
()):
if
self
.
__stop
:
if
self
.
checkpoint_cfg
:
self
.
_clean_checkpoint
()
return
if
self
.
checkpoint_cfg
and
self
.
checkpoint_cfg
.
load_serial
\
and
self
.
checkpoint_cfg
.
step_id
>=
step_id
and
self
.
checkpoint_cfg
.
epoch_id
==
epoch_id
:
continue
begin_event
=
BeginStepEvent
(
epoch_id
,
step_id
)
event_handler
(
begin_event
)
if
begin_event
.
fetch_metrics
:
metrics
=
exe
.
run
(
feed
=
data
,
fetch_list
=
[
var
.
name
for
var
in
self
.
train_func_outputs
])
else
:
metrics
=
exe
.
run
(
feed
=
data
,
fetch_list
=
[])
if
self
.
checkpoint_cfg
:
self
.
_save_checkpoint
(
epoch_id
,
step_id
)
event_handler
(
EndStepEvent
(
epoch_id
,
step_id
,
metrics
))
event_handler
(
EndEpochEvent
(
epoch_id
))
if
self
.
checkpoint_cfg
:
self
.
_clean_checkpoint
()
def
_test_by_executor
(
self
,
reader
,
feed_order
,
fetch_list
):
with
executor
.
scope_guard
(
self
.
scope
):
feed_var_list
=
build_feed_var_list
(
self
.
test_program
,
feed_order
)
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
exe
=
executor
.
Executor
(
self
.
place
)
accumulated
=
len
(
fetch_list
)
*
[
0
]
count
=
0
for
data
in
reader
():
outs
=
exe
.
run
(
program
=
self
.
test_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_list
)
accumulated
=
[
x
[
0
]
+
x
[
1
][
0
]
for
x
in
zip
(
accumulated
,
outs
)]
count
+=
1
return
[
x
/
count
for
x
in
accumulated
]
def
_train_by_parallel_executor
(
self
,
num_epochs
,
event_handler
,
reader
,
feed_order
):
with
self
.
_prog_and_scope_guard
():
pe
=
self
.
_get_or_create_parallel_executor
()
feed_var_list
=
build_feed_var_list
(
self
.
train_program
,
feed_order
)
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
reader
=
feeder
.
decorate_reader
(
reader
,
multi_devices
=
True
)
self
.
_train_by_any_executor
(
event_handler
,
pe
,
num_epochs
,
reader
)
def
_get_parallel_executor
(
self
):
return
getattr
(
self
,
'parallel_executor'
,
None
)
def
_get_or_create_parallel_executor
(
self
):
if
self
.
_get_parallel_executor
()
is
None
:
self
.
parallel_executor
=
parallel_executor
.
ParallelExecutor
(
use_cuda
=
isinstance
(
self
.
place
,
core
.
CUDAPlace
),
loss_name
=
self
.
train_func_outputs
[
0
].
name
)
return
self
.
_get_parallel_executor
()
def
_clean_checkpoint
(
self
):
assert
self
.
checkpoint_cfg
clean_checkpoint
(
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
)
def
_get_checkpoint_load_args
(
self
):
"""
epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
"""
return
[
"epoch_id"
,
"step_id"
]
def
_get_checkpoint_save_args
(
self
,
epoch_id
,
step_id
):
"""
epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
"""
trainer_args
=
{}
trainer_args
[
"epoch_id"
]
=
epoch_id
trainer_args
[
"step_id"
]
=
step_id
return
trainer_args
def
_save_checkpoint
(
self
,
epoch_id
,
step_id
):
assert
self
.
checkpoint_cfg
if
epoch_id
%
self
.
checkpoint_cfg
.
epoch_interval
==
0
\
and
step_id
%
self
.
checkpoint_cfg
.
step_interval
==
0
:
exe
=
executor
.
Executor
(
self
.
place
)
save_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
trainer_id
=
self
.
trainer_id
,
trainer_args
=
self
.
_get_checkpoint_save_args
(
epoch_id
,
step_id
),
main_program
=
self
.
train_program
,
max_num_checkpoints
=
self
.
checkpoint_cfg
.
max_num_checkpoints
)
def
_load_checkpoint
(
self
):
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
)
if
not
self
.
checkpoint_cfg
.
pserver_id
:
load_trainer_args
=
self
.
_get_checkpoint_load_args
()
trainer_args
=
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
trainer_id
,
is_trainer
=
True
,
load_trainer_args
=
load_trainer_args
)
if
len
(
trainer_args
)
!=
2
:
raise
ValueError
(
"the return trainer_args length do not equal _get_checkpoint_load_args"
)
self
.
checkpoint_cfg
.
epoch_id
=
int
(
trainer_args
[
0
])
self
.
checkpoint_cfg
.
step_id
=
int
(
trainer_args
[
1
])
else
:
if
self
.
checkpoint_cfg
.
lookup_table_name
:
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
checkpoint_cfg
.
pserver_id
,
is_trainer
=
False
,
load_trainer_args
=
None
,
load_lookup_table
=
self
.
checkpoint_cfg
.
lookup_table_name
)
def
build_feed_var_list
(
program
,
feed_order
):
if
not
isinstance
(
program
,
framework
.
Program
):
raise
TypeError
(
"The 'program' should be an object of Program"
)
if
isinstance
(
feed_order
,
list
):
feed_var_list
=
[
program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
else
:
if
not
isinstance
(
feed_order
,
dict
):
raise
TypeError
(
"The 'feed_order' should be either None, list or dict."
)
if
not
sorted
(
feed_order
.
values
())
==
list
(
range
(
len
(
feed_order
))):
raise
ValueError
(
"The values of 'feed_order' should be a permutation of [0, len(feed_order))"
)
sorted_pair_list
=
sorted
(
six
.
iteritems
(
feed_order
),
key
=
lambda
item
:
item
[
1
])
feed_var_list
=
[
program
.
global_block
().
var
(
pair
[
0
])
for
pair
in
sorted_pair_list
]
return
feed_var_list
# move Checkpoint APIs from io.py to trainer.py, make all of them are private.
SUCCESS_MARK_FILENAME
=
"_SUCCESS"
CHECKPOINT_PREFIX
=
"checkpoint"
MODEL_DIR
=
"__model__"
LOOKUP_TABLE_DIR
=
"__lookup_table__"
TRAINER_PREFIX
=
"trainer"
CHECKPOINT_SEPARATOR
=
"_"
def
save_checkpoint
(
executor
,
checkpoint_dir
,
trainer_id
,
main_program
,
trainer_args
=
None
,
max_num_checkpoints
=
3
,
lookup_table
=
None
,
pserver_endpoints
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then saves these variables to the `checkpoint_dir`
directory.
In the training precess, we generally save a checkpoint in each
iteration. So there might be a lot of checkpoints in the
`checkpoint_dir`. To avoid them taking too much disk space, the
`max_num_checkpoints` are introduced to limit the total number of
checkpoints. If the number of existing checkpints is greater than
the `max_num_checkpoints`, oldest ones will be scroll deleted.
A variable is a checkpoint variable and will be saved if it meets
all following conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for save checkpoint.
checkpoint_dir(str): The folder where to save checkpoints.
trainer_id(int): currect trainer id, if id is equal to 0, the trainer
is chief.
trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
and 'step_id'.
Defaut: None
main_program(Program): The program whose checkpoint variables will
be saved.
max_num_checkpoints(int): The max number of total number of existing
checkpoints.
Default: 3
lookup_table(string|None): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
pserver_endpoints(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get pserver_endpoints by
distribute arguments.
Returns:
None
Raises:
ValueError: If `checkpoint_dir` is None.
AssertionError: If `trainer_args` is not a dict.
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
trainer_args = {"epoch_id": 200,
"step_id": 20} # just an example
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
save_checkpoint(executor=exe,
checkpoint_dir=path,
trainer_id=0,
trainer_args=trainer_args,
main_program=prog,
max_num_checkpoints=3,
lookup_table=table_name,
pserver_endpoints = ps_endpoints)
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
if
trainer_args
:
assert
isinstance
(
trainer_args
,
dict
)
is_chief
=
trainer_id
==
0
_make_chekcpoint_dirs
(
checkpoint_dir
)
serial
=
_get_latest_checkpoint_serial
(
checkpoint_dir
)
+
1
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
_save_trainer_args
(
cur_dir
,
trainer_id
,
trainer_args
)
if
is_chief
:
_save_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
)
if
is_chief
and
lookup_table
and
pserver_endpoints
:
_save_pserver_vars_by_notify
(
executor
,
cur_dir
,
lookup_table
,
pserver_endpoints
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
)
def
load_checkpoint
(
executor
,
checkpoint_dir
,
main_program
,
role_id
=
0
,
is_trainer
=
True
,
load_trainer_args
=
None
,
load_lookup_table
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then try to load these variables from the
`checkpoint_dir` directory.
In the training precess, we generally save a checkpoint in each
iteration. So there are more than one checkpoint in the
`checkpoint_dir` (each checkpoint has its own sub folder), use
`serial` to specify which serial of checkpoint you would like to
load.
A variable is a checkpoint variable and will be loaded if it meets
all following conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for loading checkpoint.
checkpoint_dir(str): The folder where all checkpoints are.
serial(int): The serial of checkpoint you would like to load.
main_program(Program): The program whose checkpoint variables will
be loaded.
role_id(int): the trainer id or the parameter server id.
is_trainer(bool): trainer is True and parameter server is False.
load_trainer_args(list|None): list about load trainer args.
load_lookup_table(str|None): the lookup table name
Returns:
None
Raises:
ValueError: If `checkpoint_dir` is None.
ValueError: If `main_program` is None.
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
load_checkpoint(executor=exe, checkpoint_dir=path,
serial=9, main_program=prog)
# In this example, `load_checkpoint` function
# will first filters out all checkpoint variables in the default
# main program, and then try to load these variables form the
# folder "./checkpoints/checkpoint_9/__model__".
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
serial
=
_get_latest_checkpoint_serial
(
checkpoint_dir
)
# there are nothing need to be loaded
if
serial
is
None
or
serial
<
0
:
return
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
if
is_trainer
and
load_trainer_args
is
None
:
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
_load_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
,
True
)
return
if
is_trainer
and
load_trainer_args
:
return
_load_trainer_args
(
checkpoint_dir
,
serial
,
role_id
,
load_trainer_args
)
if
not
is_trainer
and
load_lookup_table
:
_load_lookup_table_vars
(
executor
,
checkpoint_dir
,
main_program
,
role_id
,
load_lookup_table
)
def
clean_checkpoint
(
checkpoint_dir
,
delete_dir
=
False
):
"""
clean the checkpoint dir, when the train exits normally,
the trainer will call clean_checkpoint to delete checkpoint directory saved before.
delete_dir only works when the directory is empty, otherwise, OSError is raised.
: param checkpoint_dir
: param delete_dir
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
=
0
)
if
delete_dir
and
not
os
.
listdir
(
checkpoint_dir
):
os
.
rmdir
(
checkpoint_dir
)
def
_load_persist_vars_without_grad
(
executor
,
dirname
,
program
,
has_model_dir
=
False
):
"""
This function filters out all checkpoint variables from the give
program and then trys to load these variables from the given directory.
A variable is a checkpoint variable if it meets all following
conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for loading variables.
dirname(str): The directory path.
program(Program): The program whose checkpoint variables will
be loaded.
has_model_dir(bool): if True, the function loads variables
from a sub directory named '__model__'.
Default: False
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
_load_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog, has_model_dir=True)
# In this example, `_load_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then trys to load these variables form the
# folder "./my_paddle_model/__model__".
"""
if
has_model_dir
:
dirname
=
_get_model_dir
(
dirname
)
io
.
load_vars
(
executor
,
dirname
=
dirname
,
main_program
=
program
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
def
_load_lookup_table_vars
(
executor
,
dirname
,
program
,
pserver_id
,
table_name
):
"""
The parameter server will load lookup table's local file in
selectedrows variable.
Args:
executor(Executor): The executor to run for loading persistable variables
dirname(str): The directory path
main_program(Program): Find the variable named table_name in main_program
pserver_id(int): the serial number in pserver_endpoints list
table_name(str): lookup table name
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
dirname = "./checkpoints/checkpoint_9/"
prog = fluid.default_main_program()
pserver_id = 1
table_name = "share_w"
_load_lookup_table_vars(executor=exe,
dirname=dirname, program=prog, pserver_id=pserver_id,
table_name=table_name)
"""
for
var
in
program
.
list_vars
():
if
var
.
name
==
table_name
:
lookup_table_var
=
var
break
assert
lookup_table_var
is
not
None
lookup_table_dir
=
os
.
path
.
join
(
dirname
,
LOOKUP_TABLE_DIR
)
table_file
=
table_name
+
CHECKPOINT_SEPARATOR
+
str
(
pserver_id
)
load_prog
=
framework
.
Program
()
load_block
=
load_prog
.
global_block
()
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
lookup_table_var
]},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
lookup_table_dir
,
table_file
)})
executor
.
run
(
load_prog
)
def
_save_persist_vars_without_grad
(
executor
,
dirname
,
program
):
"""
This function filters out all checkpoint variables from the give
program and then save these variables to a sub-folder '__model__' of
the given directory.
A variable is a checkpoint variable if it meets all following
conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for saving variables.
dirname(str): The directory path.
program(Program): The program whose checkpoint variables will
be saved.
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
_save_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog)
# In this example, `_save_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then saves these variables to the folder
# "./my_paddle_model/__model__".
"""
cur_dir
=
_get_model_dir
(
dirname
)
io
.
save_vars
(
executor
,
dirname
=
cur_dir
,
main_program
=
program
,
vars
=
None
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
_write_success
(
cur_dir
)
def
_save_pserver_vars_by_notify
(
executor
,
dirname
,
lookup_table
,
ps_endpoint_list
):
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
The checkpoint notify message contains lookup table name,
the absolute path on pserver to save lookup_table.
Args:
executor(Executor): The executor to run for send checkpoint notify.
dirname(str): The folder where to save checkpoints.
lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
distribute arguments.
Return:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
_save_pserver_vars_by_notify(executor=exe,
dirname=param_path, lookup_table=table_name,
ps_endpoint_list=ps_endpoints)
"""
cur_dir
=
_get_lookuptable_dir
(
dirname
)
checkpoint_notify_program
=
framework
.
Program
()
checkpoint_notify_block
=
checkpoint_notify_program
.
global_block
()
attrs
=
{}
attrs
[
'epmap'
]
=
ps_endpoint_list
attrs
[
'dir'
]
=
cur_dir
attrs
[
'lookup_table'
]
=
lookup_table
checkpoint_notify_block
.
append_op
(
type
=
'checkpoint_notify'
,
inputs
=
{},
outputs
=
{},
attrs
=
attrs
)
executor
.
run
(
checkpoint_notify_program
)
def
_save_trainer_args
(
dirname
,
trainer_id
,
trainer_args
):
assert
isinstance
(
trainer_args
,
dict
)
cur_dir
=
_get_trainer_dir
(
dirname
,
trainer_id
)
for
name
,
value
in
six
.
iteritems
(
trainer_args
):
args_file
=
os
.
path
.
join
(
cur_dir
,
name
)
with
open
(
args_file
,
'w'
)
as
f
:
f
.
write
(
str
(
value
))
_write_success
(
cur_dir
)
def
_load_trainer_args
(
checkpoint_dir
,
serial
,
trainer_id
,
trainer_args
):
"""
trainer will load some args from it's independent directory,
such as epoch_id and step_id.
Args:
checkpoint_dir(str): The folder where all checkpoints are.
serial(int): The serial of checkpoint you would like to load.
trainer_id(int): current trainer id.
trainer_args(list): list about load trainer args
Return:
None
Examples:
.. code-block:: python
param_path = "./checkpoint/"
serial = 7
trainer_id = 2
trainer_args = ["epoch_id", "step_id"]
_load_trainer_args(checkpoint_dir=param_path, serial=serial,
trainer_id=trainer_id, trainer_args=trainer_args)
"""
assert
isinstance
(
trainer_args
,
list
)
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
cur_dir
=
_get_trainer_dir
(
cur_dir
,
trainer_id
)
ret_values
=
[]
for
arg
in
trainer_args
:
cur_file
=
os
.
path
.
join
(
cur_dir
,
arg
)
with
open
(
cur_file
,
'r'
)
as
f
:
contents
=
f
.
read
()
ret_values
.
append
(
contents
.
strip
())
return
ret_values
def
_is_checkpoint_var
(
var
):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
: param var(Variable)
"""
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
RAW
:
return
False
# @GRAD are named for gradient variables, checkpoint will not save it.
if
"@GRAD"
in
var
.
name
:
return
False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if
".trainer_"
in
var
.
name
:
return
False
# .block is named for distribute train variables, checkpoint will not save it.
if
".block"
in
var
.
name
:
return
False
return
var
.
persistable
def
_make_chekcpoint_dirs
(
dirs
):
"""
_make_chekcpoint_dirs will makdir local directory directly, when the directory is exist, it will igore it.
"""
assert
dirs
is
not
None
if
os
.
path
.
isfile
(
dirs
):
raise
OSError
(
errno
.
ENOTDIR
,
"dirs path shoule be a Directory."
,
dirs
)
if
not
os
.
path
.
isdir
(
dirs
):
try
:
os
.
makedirs
(
dirs
)
except
OSError
as
err
:
if
err
.
errno
!=
errno
.
EEXIST
:
raise
err
def
_get_dir_serial
(
dirname
):
_
,
serial
=
dirname
.
split
(
CHECKPOINT_SEPARATOR
)
try
:
serial_num
=
int
(
serial
)
except
ValueError
:
serial_num
=
-
1
return
serial_num
def
_get_serial_dir
(
dirname
,
serial
):
serial_folder
=
CHECKPOINT_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
serial
)
serial_dir
=
os
.
path
.
join
(
dirname
,
serial_folder
)
_make_chekcpoint_dirs
(
serial_dir
)
return
serial_dir
def
_get_model_dir
(
dirname
):
model_dir
=
os
.
path
.
join
(
dirname
,
MODEL_DIR
)
_make_chekcpoint_dirs
(
model_dir
)
return
model_dir
def
_get_lookuptable_dir
(
dirname
):
lookuptable_dir
=
os
.
path
.
join
(
dirname
,
LOOKUP_TABLE_DIR
)
_make_chekcpoint_dirs
(
lookuptable_dir
)
return
lookuptable_dir
def
_get_trainer_dir
(
dirname
,
trainer_id
):
trainer_folder
=
TRAINER_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
trainer_id
)
trainer_dir
=
os
.
path
.
join
(
dirname
,
trainer_folder
)
_make_chekcpoint_dirs
(
trainer_dir
)
return
trainer_dir
def
_scroll_delete
(
dirname
,
max_num_checkpoints
=
3
):
dirs
=
os
.
listdir
(
dirname
)
serial_map
=
{}
for
serial
in
dirs
:
serial_num
=
_get_dir_serial
(
serial
)
serial_map
[
serial_num
]
=
serial
if
len
(
list
(
serial_map
.
keys
()))
<=
max_num_checkpoints
:
return
serials
=
list
(
serial_map
.
keys
())
serials
.
sort
(
reverse
=
True
)
serials
=
serials
[
max_num_checkpoints
:]
for
serial
in
serials
:
cur_dir
=
_get_serial_dir
(
dirname
,
serial
)
try
:
shutil
.
rmtree
(
cur_dir
)
except
OSError
as
err
:
if
err
.
errno
!=
errno
.
ENOENT
:
raise
err
def
_write_success
(
dirname
):
"""
write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.
: param dirname
"""
success_file
=
os
.
path
.
join
(
dirname
,
SUCCESS_MARK_FILENAME
)
with
open
(
success_file
,
'a'
)
as
f
:
now
=
time
.
ctime
()
f
.
write
(
now
)
def
_get_latest_checkpoint_serial
(
checkpoint_dir
):
"""
get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory
: param checkpoint_dir
"""
if
not
checkpoint_dir
:
return
-
1
def
has_success
(
checkpoint_dir
,
cur_dir
):
"""
is _SUCCESS in this dir
"""
serial
=
_get_dir_serial
(
cur_dir
)
if
serial
==
-
1
or
not
os
.
path
.
isdir
(
os
.
path
.
join
(
checkpoint_dir
,
cur_dir
)):
return
-
1
success_path
=
os
.
path
.
join
(
_get_serial_dir
(
checkpoint_dir
,
serial
),
MODEL_DIR
,
SUCCESS_MARK_FILENAME
)
if
os
.
path
.
isfile
(
success_path
):
return
serial
if
not
os
.
path
.
isdir
(
checkpoint_dir
):
return
-
1
current_dir
=
-
1
dirs
=
os
.
listdir
(
checkpoint_dir
)
for
cur_dir
in
dirs
:
success_num
=
has_success
(
checkpoint_dir
,
cur_dir
)
if
success_num
>
current_dir
:
current_dir
=
success_num
return
current_dir
python/paddle/fluid/inferencer.py
浏览文件 @
82b8a3c5
...
...
@@ -12,101 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
contextlib
from
.
import
core
from
.
import
executor
from
.
import
framework
from
.
import
io
from
.
import
parallel_executor
from
.
import
unique_name
from
.trainer
import
check_and_get_place
__all__
=
[
'Inferencer'
,
]
class
Inferencer
(
object
):
"""
Inferencer High Level API.
Args:
infer_func (Python func): Infer function that will return predict Variable
param_path (str): The path where the inference model is saved by fluid.io.save_params
place (Place): place to do the inference
parallel (bool): use parallel_executor to run the inference, it will use multi CPU/GPU.
Examples:
.. code-block:: python
def inference_program():
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
return y_predict
place = fluid.CPUPlace()
inferencer = fluid.Inferencer(
infer_func=inference_program, param_path="/tmp/model", place=place)
"""
def
__init__
(
self
,
infer_func
,
param_path
,
place
=
None
,
parallel
=
False
):
self
.
param_path
=
param_path
self
.
scope
=
core
.
Scope
()
self
.
parallel
=
parallel
self
.
place
=
check_and_get_place
(
place
)
self
.
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
inference_program
):
with
unique_name
.
guard
():
self
.
predict_var
=
infer_func
()
with
self
.
_prog_and_scope_guard
():
# load params from param_path into scope
io
.
load_params
(
executor
.
Executor
(
self
.
place
),
param_path
)
if
parallel
:
with
self
.
_prog_and_scope_guard
():
self
.
exe
=
parallel_executor
.
ParallelExecutor
(
use_cuda
=
isinstance
(
self
.
place
,
core
.
CUDAPlace
),
loss_name
=
self
.
predict_var
.
name
)
else
:
self
.
exe
=
executor
.
Executor
(
self
.
place
)
self
.
inference_program
=
self
.
inference_program
.
clone
(
for_test
=
True
)
def
infer
(
self
,
inputs
,
return_numpy
=
True
):
"""
Do Inference for Inputs
Args:
inputs (map): a map of {"input_name": input_var} that will be feed into the inference program
return_numpy (bool): transform return value into numpy or not
Returns:
Tensor or Numpy: the predict value of the inference model for the inputs
Examples:
.. code-block:: python
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
results = inferencer.infer({'x': tensor_x})
"""
if
not
isinstance
(
inputs
,
dict
):
raise
ValueError
(
"inputs should be a map of {'input_name': input_var}"
)
with
self
.
_prog_and_scope_guard
():
results
=
self
.
exe
.
run
(
feed
=
inputs
,
fetch_list
=
[
self
.
predict_var
.
name
],
return_numpy
=
return_numpy
)
return
results
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
main_program
=
self
.
inference_program
):
with
executor
.
scope_guard
(
self
.
scope
):
yield
# NOTE: inferencer is moved into fluid.contrib.inferencer.
__all__
=
[]
python/paddle/fluid/trainer.py
浏览文件 @
82b8a3c5
...
...
@@ -12,1247 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
contextlib
import
os
import
errno
import
shutil
import
six
import
time
from
.
import
core
from
.
import
data_feeder
from
.
import
executor
from
.
import
framework
from
.
import
io
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
from
.
import
optimizer
as
opt_module
from
.
import
parallel_executor
from
.transpiler
import
distribute_transpiler
__all__
=
[
'Trainer'
,
'BeginEpochEvent'
,
'EndEpochEvent'
,
'BeginStepEvent'
,
'EndStepEvent'
,
'CheckpointConfig'
]
class
BeginEpochEvent
(
object
):
"""
The begin of a training epoch.
Args:
epoch_id(int): The current epoch ID.
"""
def
__init__
(
self
,
epoch_id
):
self
.
epoch
=
epoch_id
class
EndEpochEvent
(
object
):
"""
The end of a training epoch.
Args:
epoch_id(int): The current epoch ID.
"""
def
__init__
(
self
,
epoch_id
):
self
.
epoch
=
epoch_id
class
BeginStepEvent
(
object
):
"""
The begin of a training epoch.
Args:
epoch_id(int): The current epoch ID.
step_id(int): The current step ID.
"""
def
__init__
(
self
,
epoch_id
,
step_id
):
self
.
epoch
=
epoch_id
self
.
step
=
step_id
self
.
fetch_metrics
=
True
"""
If fetch_metrics is true, the metrics will be fetched at the
EndStepEvent. Default is True.
"""
class
EndStepEvent
(
object
):
"""
The end of a training step.
Args:
epoch_id(int): The current epoch ID.
step_id(int): The current step ID.
metrics(list): A list of fetched tensor. The order of this list is same
as the :code:`train_func` returns.
"""
def
__init__
(
self
,
epoch_id
,
step_id
,
metrics
):
self
.
epoch
=
epoch_id
self
.
step
=
step_id
self
.
metrics
=
metrics
class
CheckpointConfig
(
object
):
"""
Parameter object for :code:`save_checkpoint` and
:code:`fluid.Trainer`. Used to configuration how to save checkpoint.
Args:
checkpoint_dir(str): Directory path to save check point. Default is the
current directory.
max_num_checkpoints(int): The max number of local check points.
epoch_interval(int): Every number of epoch to save check point.
step_interval(int): Every number of step to save check point.
Examples:
>>> config = fluid.CheckpointConfig("./checkpoints")
>>> trainer = fluid.Trainer(train_func=train_program,
>>> place=place,
>>> optimizer_func=optimizer_func,
>>> checkpoint_config=config)
>>> trainer.train(...)
"""
def
__init__
(
self
,
checkpoint_dir
=
None
,
max_num_checkpoints
=
3
,
epoch_interval
=
1
,
step_interval
=
10
):
assert
epoch_interval
>=
1
assert
step_interval
>=
1
self
.
checkpoint_dir
=
checkpoint_dir
\
if
checkpoint_dir
is
not
None
else
os
.
getcwd
()
self
.
max_num_checkpoints
=
max_num_checkpoints
self
.
epoch_interval
=
epoch_interval
self
.
step_interval
=
step_interval
self
.
epoch_id
=
0
self
.
step_id
=
0
self
.
load_serial
=
None
self
.
pserver_id
=
None
self
.
lookup_table_name
=
None
def
check_and_get_place
(
place
):
"""
Check the type of place or get the default place
Args:
place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.
Raises:
TypeError if the type mismatched.
Returns:
the original place if it is not None.
if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
Otherwise returns CPUPlace by default.
"""
if
place
is
None
:
if
core
.
is_compiled_with_cuda
():
return
core
.
CUDAPlace
(
0
)
else
:
return
core
.
CPUPlace
()
else
:
if
not
isinstance
(
place
,
core
.
CUDAPlace
)
and
not
isinstance
(
place
,
core
.
CPUPlace
):
raise
TypeError
(
"Place should be either CUDAPlace or CPUPlace"
)
return
place
class
Trainer
(
object
):
"""
A trainer wraps MultiGPU/MultiNode training loops and can be used to train a
simple neural network easily.
This API takes a :code:`train_func`. A :code:`train_func` is a function that
return loss as it first return value. The reset value can be fetched by
EndStepEvent.metrics
This API also takes a :code:`optimizer_func` that will return an optimizer
instance.
For example, to train a MLP for MNIST dataset, the sample program is
>>> import paddle.fluid as fluid
>>>
>>> def mlp(image, layer_sizes=[200, 100], activation="relu", num_classes=10):
>>> hidden = image
>>> for layer_size in layer_sizes:
>>> hidden = fluid.layers.fc(input=hidden, size=layer_size, act=activation)
>>> return fluid.layers.fc(input=hidden, size=num_classes, act="softmax")
>>>
>>> def train_mnist_mlp():
>>> img = fluid.layers.data(name='image', shape=[784])
>>> label = fluid.layers.data(name='label', shape=[1], dtype='int64')
>>> prediction = mlp(img)
>>> return fluid.layers.mean(fluid.layers.cross_entropy(prediction, label))
>>>
>>> def optimizer():
>>> return fluid.optimizer.Adam()
>>>
>>> trainer = Trainer(train_func=train_mnist_mlp,
>>> optimizer_func=optimizer,
>>> place=fluid.CUDAPlace(0),
>>> parallel=True)
>>>
>>> def train_callback(event):
>>> if isinstance(event, fluid.EndStepEvent):
>>> print "Epoch ID", event.epoch, "Step ID",
\
>>> event.step, "AvgLoss", event.metrics[0]
>>> elif isinstance(event, fluid.EndEpochEvent):
>>> trainer.save_params("./model_{0}".format(event.epoch))
>>>
>>> trainer.train(num_epochs=100, event_handler=train_callback)
For more example, please see :ref:`api_guide_high_level_api`.
Args:
train_func(callable): A function which will return loss. The loss must be
a scalar tensor.
optimizer_func(callable): A function that returns an Optimizer object.
place(CUDAPlace|CPUPlace): The device place of this trainer. If
:code:`parallel=True,` all CUDA Places will be used if :code:`place`
is a :code:`CUDAPlace`.
parallel(bool): True if use multiple devices.
checkpoint_config(CheckpointConfig): Configuration about how to save
checkpoints.
"""
def
__init__
(
self
,
train_func
,
optimizer_func
,
param_path
=
None
,
place
=
None
,
parallel
=
False
,
checkpoint_config
=
None
):
self
.
__stop
=
False
self
.
parallel
=
parallel
# config for checkpoint
# only chief worker will save variables
self
.
trainer_id
=
0
self
.
checkpoint_cfg
=
checkpoint_config
if
self
.
checkpoint_cfg
:
assert
isinstance
(
self
.
checkpoint_cfg
,
CheckpointConfig
)
serial
=
_get_latest_checkpoint_serial
(
self
.
checkpoint_cfg
.
checkpoint_dir
)
self
.
checkpoint_cfg
.
load_serial
=
serial
if
serial
>=
0
else
None
self
.
scope
=
core
.
Scope
()
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
self
.
startup_program
=
framework
.
Program
()
self
.
train_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
train_program
,
self
.
startup_program
):
program_func_outs
=
train_func
()
self
.
train_func_outputs
=
program_func_outs
if
isinstance
(
program_func_outs
,
list
)
else
[
program_func_outs
]
self
.
test_program
=
self
.
train_program
.
clone
(
for_test
=
True
)
# The first element of program_func_outs is loss.
loss
=
self
.
train_func_outputs
[
0
]
optimizer
=
optimizer_func
()
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
raise
TypeError
(
"The optimizer should be an instance of Optimizer"
)
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
loss
)
self
.
place
=
check_and_get_place
(
place
)
self
.
_dist_transpile_if_necessary
(
optimize_ops
,
params_grads
)
# 2. move the default_main_program to self.program and run the
# default_startup program on an empty core.Scope()
# Run startup program
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
place
)
exe
.
run
(
self
.
startup_program
)
if
self
.
checkpoint_cfg
and
self
.
checkpoint_cfg
.
load_serial
is
not
None
:
self
.
_load_checkpoint
()
if
param_path
and
os
.
path
.
isdir
(
param_path
):
with
self
.
_prog_and_scope_guard
():
# load params from param_path into scope
io
.
load_persistables
(
executor
=
exe
,
dirname
=
param_path
,
main_program
=
self
.
startup_program
)
def
_transpile_nccl2_dist
(
self
):
# PADDLE_TRAINER_IPS
if
"PADDLE_TRAINER_IPS"
not
in
os
.
environ
:
self
.
nccl_id_var
=
None
else
:
self
.
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
port
=
os
.
getenv
(
"PADDLE_PSERVER_PORT"
)
worker_ips
=
os
.
getenv
(
"PADDLE_TRAINER_IPS"
)
worker_endpoints
=
[]
for
ip
in
worker_ips
.
split
(
","
):
worker_endpoints
.
append
(
':'
.
join
([
ip
,
port
]))
self
.
num_trainers
=
len
(
worker_endpoints
)
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_IP"
)
+
":"
+
port
worker_endpoints
.
remove
(
current_endpoint
)
# TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
# in ParallelExecutor to start
# distributed training using NCCL2
self
.
nccl_id_var
=
self
.
startup_program
.
global_block
().
create_var
(
name
=
"NCCLID"
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
self
.
startup_program
.
global_block
().
append_op
(
type
=
"gen_nccl_id"
,
inputs
=
{},
outputs
=
{
"NCCLID"
:
self
.
nccl_id_var
},
attrs
=
{
"endpoint"
:
current_endpoint
,
"endpoint_list"
:
worker_endpoints
,
"trainer_id"
:
self
.
trainer_id
})
def
_dist_transpile_if_necessary
(
self
,
optimize_ops
,
params_grads
):
self
.
_transpile_nccl2_dist
()
if
self
.
nccl_id_var
!=
None
:
return
if
"PADDLE_TRAINING_ROLE"
not
in
os
.
environ
:
return
# the port of all pservers, needed by both trainer and pserver
port
=
os
.
getenv
(
"PADDLE_PSERVER_PORT"
,
"6174"
)
# comma separated ips of all pservers, needed by trainer and
# pserver
pserver_ips
=
os
.
getenv
(
"PADDLE_PSERVER_IPS"
,
""
)
eplist
=
[]
for
ip
in
pserver_ips
.
split
(
","
):
eplist
.
append
(
':'
.
join
([
ip
,
port
]))
pserver_endpoints
=
","
.
join
(
eplist
)
# total number of workers/trainers in the job, needed by
# trainer and pserver
trainers
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS"
))
# the IP of the local machine, needed by pserver only
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_IP"
,
""
)
+
":"
+
port
# the unique trainer id, starting from 0, needed by trainer
# only
self
.
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
# the role, should be either PSERVER or TRAINER
training_role
=
os
.
getenv
(
"PADDLE_TRAINING_ROLE"
)
with
self
.
_prog_and_scope_guard
():
t
=
distribute_transpiler
.
DistributeTranspiler
()
t
.
transpile
(
self
.
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
if
training_role
==
"PSERVER"
:
if
self
.
checkpoint_cfg
:
pserver_id
=
eplist
.
index
(
current_endpoint
)
self
.
checkpoint_cfg
.
pserver_id
=
pserver_id
if
t
.
has_distributed_lookup_table
:
self
.
checkpoint_cfg
.
lookup_table_name
=
t
.
table_name
self
.
train_program
=
t
.
get_pserver_program
(
current_endpoint
)
self
.
startup_program
=
t
.
get_startup_program
(
current_endpoint
,
self
.
train_program
)
elif
training_role
==
"TRAINER"
:
self
.
train_program
=
t
.
get_trainer_program
()
else
:
raise
ValueError
(
'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
)
def
stop
(
self
):
"""
stop training
"""
self
.
__stop
=
True
def
train
(
self
,
num_epochs
,
event_handler
,
reader
=
None
,
feed_order
=
None
):
"""
Start the train loop to train the model.
Args:
num_epochs(int): The number of epoch. An epoch will process all data in reader
event_handler(callable): The event handler. A function with type (ev:Event)->void
reader(callable): A reader creator object. See also
:ref:`api_guide_python_reader` .
feed_order(list): Feeding order of reader. None will following the defining
order in program
Returns:
None
"""
training_role
=
os
.
getenv
(
"PADDLE_TRAINING_ROLE"
,
""
)
if
training_role
==
"PSERVER"
:
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
exe
.
run
()
return
if
self
.
parallel
:
self
.
_train_by_parallel_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
else
:
self
.
_train_by_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
def
test
(
self
,
reader
,
feed_order
):
"""
Test the model on given test data
Args:
reader(callable): The reader that yields test data.
feed_order(list): Feeding order of reader. None will following the
defining order in program
"""
return
self
.
_test_by_executor
(
reader
,
feed_order
,
self
.
train_func_outputs
)
def
save_params
(
self
,
param_path
):
"""
Save all parameters into :code:`param_path`.
Args:
param_path(str): The path to save parameters.
Returns:
None
"""
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_persistables
(
exe
,
dirname
=
param_path
)
def
save_inference_model
(
self
,
param_path
,
feeded_var_names
,
target_var_indexes
):
"""
Save model for cpp inference into :code:`param_path`.
Args:
param_path(str): The path to save parameters.
feeded_var_names(list(str)): The name of the vars that you
need to feed in before run program.
target_var_indexes(list(int)): the index of target var that
you need to return in trainer.train_func.
Returns:
None
"""
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
target_vars
=
[
self
.
train_func_outputs
[
index
]
for
index
in
target_var_indexes
]
io
.
save_inference_model
(
param_path
,
feeded_var_names
,
target_vars
,
exe
)
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
main_program
=
self
.
train_program
,
startup_program
=
self
.
startup_program
):
with
executor
.
scope_guard
(
self
.
scope
):
yield
def
_train_by_executor
(
self
,
num_epochs
,
event_handler
,
reader
,
feed_order
):
"""
Train by Executor and single device.
Args:
num_epochs:
event_handler:
reader:
feed_order:
Returns:
"""
with
self
.
_prog_and_scope_guard
():
feed_var_list
=
build_feed_var_list
(
self
.
train_program
,
feed_order
)
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
exe
=
executor
.
Executor
(
self
.
place
)
reader
=
feeder
.
decorate_reader
(
reader
,
multi_devices
=
False
)
self
.
_train_by_any_executor
(
event_handler
,
exe
,
num_epochs
,
reader
)
def
_train_by_any_executor
(
self
,
event_handler
,
exe
,
num_epochs
,
reader
):
if
self
.
checkpoint_cfg
:
epochs
=
[
epoch_id
for
epoch_id
in
range
(
num_epochs
)
if
epoch_id
>=
self
.
checkpoint_cfg
.
epoch_id
]
else
:
epochs
=
[
epoch_id
for
epoch_id
in
range
(
num_epochs
)]
for
epoch_id
in
epochs
:
event_handler
(
BeginEpochEvent
(
epoch_id
))
for
step_id
,
data
in
enumerate
(
reader
()):
if
self
.
__stop
:
if
self
.
checkpoint_cfg
:
self
.
_clean_checkpoint
()
return
if
self
.
checkpoint_cfg
and
self
.
checkpoint_cfg
.
load_serial
\
and
self
.
checkpoint_cfg
.
step_id
>=
step_id
and
self
.
checkpoint_cfg
.
epoch_id
==
epoch_id
:
continue
begin_event
=
BeginStepEvent
(
epoch_id
,
step_id
)
event_handler
(
begin_event
)
if
begin_event
.
fetch_metrics
:
metrics
=
exe
.
run
(
feed
=
data
,
fetch_list
=
[
var
.
name
for
var
in
self
.
train_func_outputs
])
else
:
metrics
=
exe
.
run
(
feed
=
data
,
fetch_list
=
[])
if
self
.
checkpoint_cfg
:
self
.
_save_checkpoint
(
epoch_id
,
step_id
)
event_handler
(
EndStepEvent
(
epoch_id
,
step_id
,
metrics
))
event_handler
(
EndEpochEvent
(
epoch_id
))
if
self
.
checkpoint_cfg
:
self
.
_clean_checkpoint
()
def
_test_by_executor
(
self
,
reader
,
feed_order
,
fetch_list
):
with
executor
.
scope_guard
(
self
.
scope
):
feed_var_list
=
build_feed_var_list
(
self
.
test_program
,
feed_order
)
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
exe
=
executor
.
Executor
(
self
.
place
)
accumulated
=
len
(
fetch_list
)
*
[
0
]
count
=
0
for
data
in
reader
():
outs
=
exe
.
run
(
program
=
self
.
test_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_list
)
accumulated
=
[
x
[
0
]
+
x
[
1
][
0
]
for
x
in
zip
(
accumulated
,
outs
)]
count
+=
1
return
[
x
/
count
for
x
in
accumulated
]
def
_train_by_parallel_executor
(
self
,
num_epochs
,
event_handler
,
reader
,
feed_order
):
with
self
.
_prog_and_scope_guard
():
pe
=
self
.
_get_or_create_parallel_executor
()
feed_var_list
=
build_feed_var_list
(
self
.
train_program
,
feed_order
)
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
reader
=
feeder
.
decorate_reader
(
reader
,
multi_devices
=
True
)
self
.
_train_by_any_executor
(
event_handler
,
pe
,
num_epochs
,
reader
)
def
_get_parallel_executor
(
self
):
return
getattr
(
self
,
'parallel_executor'
,
None
)
def
_get_or_create_parallel_executor
(
self
):
if
self
.
_get_parallel_executor
()
is
None
:
self
.
parallel_executor
=
parallel_executor
.
ParallelExecutor
(
use_cuda
=
isinstance
(
self
.
place
,
core
.
CUDAPlace
),
loss_name
=
self
.
train_func_outputs
[
0
].
name
)
return
self
.
_get_parallel_executor
()
def
_clean_checkpoint
(
self
):
assert
self
.
checkpoint_cfg
clean_checkpoint
(
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
)
def
_get_checkpoint_load_args
(
self
):
"""
epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
"""
return
[
"epoch_id"
,
"step_id"
]
def
_get_checkpoint_save_args
(
self
,
epoch_id
,
step_id
):
"""
epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
"""
trainer_args
=
{}
trainer_args
[
"epoch_id"
]
=
epoch_id
trainer_args
[
"step_id"
]
=
step_id
return
trainer_args
def
_save_checkpoint
(
self
,
epoch_id
,
step_id
):
assert
self
.
checkpoint_cfg
if
epoch_id
%
self
.
checkpoint_cfg
.
epoch_interval
==
0
\
and
step_id
%
self
.
checkpoint_cfg
.
step_interval
==
0
:
exe
=
executor
.
Executor
(
self
.
place
)
save_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
trainer_id
=
self
.
trainer_id
,
trainer_args
=
self
.
_get_checkpoint_save_args
(
epoch_id
,
step_id
),
main_program
=
self
.
train_program
,
max_num_checkpoints
=
self
.
checkpoint_cfg
.
max_num_checkpoints
)
def
_load_checkpoint
(
self
):
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
)
if
not
self
.
checkpoint_cfg
.
pserver_id
:
load_trainer_args
=
self
.
_get_checkpoint_load_args
()
trainer_args
=
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
trainer_id
,
is_trainer
=
True
,
load_trainer_args
=
load_trainer_args
)
if
len
(
trainer_args
)
!=
2
:
raise
ValueError
(
"the return trainer_args length do not equal _get_checkpoint_load_args"
)
self
.
checkpoint_cfg
.
epoch_id
=
int
(
trainer_args
[
0
])
self
.
checkpoint_cfg
.
step_id
=
int
(
trainer_args
[
1
])
else
:
if
self
.
checkpoint_cfg
.
lookup_table_name
:
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
checkpoint_cfg
.
pserver_id
,
is_trainer
=
False
,
load_trainer_args
=
None
,
load_lookup_table
=
self
.
checkpoint_cfg
.
lookup_table_name
)
def
build_feed_var_list
(
program
,
feed_order
):
if
not
isinstance
(
program
,
framework
.
Program
):
raise
TypeError
(
"The 'program' should be an object of Program"
)
if
isinstance
(
feed_order
,
list
):
feed_var_list
=
[
program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
else
:
if
not
isinstance
(
feed_order
,
dict
):
raise
TypeError
(
"The 'feed_order' should be either None, list or dict."
)
if
not
sorted
(
feed_order
.
values
())
==
list
(
range
(
len
(
feed_order
))):
raise
ValueError
(
"The values of 'feed_order' should be a permutation of [0, len(feed_order))"
)
sorted_pair_list
=
sorted
(
six
.
iteritems
(
feed_order
),
key
=
lambda
item
:
item
[
1
])
feed_var_list
=
[
program
.
global_block
().
var
(
pair
[
0
])
for
pair
in
sorted_pair_list
]
return
feed_var_list
# move Checkpoint APIs from io.py to trainer.py, make all of them are private.
SUCCESS_MARK_FILENAME
=
"_SUCCESS"
CHECKPOINT_PREFIX
=
"checkpoint"
MODEL_DIR
=
"__model__"
LOOKUP_TABLE_DIR
=
"__lookup_table__"
TRAINER_PREFIX
=
"trainer"
CHECKPOINT_SEPARATOR
=
"_"
def
save_checkpoint
(
executor
,
checkpoint_dir
,
trainer_id
,
main_program
,
trainer_args
=
None
,
max_num_checkpoints
=
3
,
lookup_table
=
None
,
pserver_endpoints
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then saves these variables to the `checkpoint_dir`
directory.
In the training precess, we generally save a checkpoint in each
iteration. So there might be a lot of checkpoints in the
`checkpoint_dir`. To avoid them taking too much disk space, the
`max_num_checkpoints` are introduced to limit the total number of
checkpoints. If the number of existing checkpints is greater than
the `max_num_checkpoints`, oldest ones will be scroll deleted.
A variable is a checkpoint variable and will be saved if it meets
all following conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for save checkpoint.
checkpoint_dir(str): The folder where to save checkpoints.
trainer_id(int): currect trainer id, if id is equal to 0, the trainer
is chief.
trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
and 'step_id'.
Defaut: None
main_program(Program): The program whose checkpoint variables will
be saved.
max_num_checkpoints(int): The max number of total number of existing
checkpoints.
Default: 3
lookup_table(string|None): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
pserver_endpoints(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get pserver_endpoints by
distribute arguments.
Returns:
None
Raises:
ValueError: If `checkpoint_dir` is None.
AssertionError: If `trainer_args` is not a dict.
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
trainer_args = {"epoch_id": 200,
"step_id": 20} # just an example
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
save_checkpoint(executor=exe,
checkpoint_dir=path,
trainer_id=0,
trainer_args=trainer_args,
main_program=prog,
max_num_checkpoints=3,
lookup_table=table_name,
pserver_endpoints = ps_endpoints)
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
if
trainer_args
:
assert
isinstance
(
trainer_args
,
dict
)
is_chief
=
trainer_id
==
0
_make_chekcpoint_dirs
(
checkpoint_dir
)
serial
=
_get_latest_checkpoint_serial
(
checkpoint_dir
)
+
1
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
_save_trainer_args
(
cur_dir
,
trainer_id
,
trainer_args
)
if
is_chief
:
_save_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
)
if
is_chief
and
lookup_table
and
pserver_endpoints
:
_save_pserver_vars_by_notify
(
executor
,
cur_dir
,
lookup_table
,
pserver_endpoints
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
)
def
load_checkpoint
(
executor
,
checkpoint_dir
,
main_program
,
role_id
=
0
,
is_trainer
=
True
,
load_trainer_args
=
None
,
load_lookup_table
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then try to load these variables from the
`checkpoint_dir` directory.
In the training precess, we generally save a checkpoint in each
iteration. So there are more than one checkpoint in the
`checkpoint_dir` (each checkpoint has its own sub folder), use
`serial` to specify which serial of checkpoint you would like to
load.
A variable is a checkpoint variable and will be loaded if it meets
all following conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for loading checkpoint.
checkpoint_dir(str): The folder where all checkpoints are.
serial(int): The serial of checkpoint you would like to load.
main_program(Program): The program whose checkpoint variables will
be loaded.
role_id(int): the trainer id or the parameter server id.
is_trainer(bool): trainer is True and parameter server is False.
load_trainer_args(list|None): list about load trainer args.
load_lookup_table(str|None): the lookup table name
Returns:
None
Raises:
ValueError: If `checkpoint_dir` is None.
ValueError: If `main_program` is None.
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
load_checkpoint(executor=exe, checkpoint_dir=path,
serial=9, main_program=prog)
# In this example, `load_checkpoint` function
# will first filters out all checkpoint variables in the default
# main program, and then try to load these variables form the
# folder "./checkpoints/checkpoint_9/__model__".
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
serial
=
_get_latest_checkpoint_serial
(
checkpoint_dir
)
# there are nothing need to be loaded
if
serial
is
None
or
serial
<
0
:
return
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
if
is_trainer
and
load_trainer_args
is
None
:
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
_load_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
,
True
)
return
if
is_trainer
and
load_trainer_args
:
return
_load_trainer_args
(
checkpoint_dir
,
serial
,
role_id
,
load_trainer_args
)
if
not
is_trainer
and
load_lookup_table
:
_load_lookup_table_vars
(
executor
,
checkpoint_dir
,
main_program
,
role_id
,
load_lookup_table
)
def
clean_checkpoint
(
checkpoint_dir
,
delete_dir
=
False
):
"""
clean the checkpoint dir, when the train exits normally,
the trainer will call clean_checkpoint to delete checkpoint directory saved before.
delete_dir only works when the directory is empty, otherwise, OSError is raised.
: param checkpoint_dir
: param delete_dir
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
=
0
)
if
delete_dir
and
not
os
.
listdir
(
checkpoint_dir
):
os
.
rmdir
(
checkpoint_dir
)
def
_load_persist_vars_without_grad
(
executor
,
dirname
,
program
,
has_model_dir
=
False
):
"""
This function filters out all checkpoint variables from the give
program and then trys to load these variables from the given directory.
A variable is a checkpoint variable if it meets all following
conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for loading variables.
dirname(str): The directory path.
program(Program): The program whose checkpoint variables will
be loaded.
has_model_dir(bool): if True, the function loads variables
from a sub directory named '__model__'.
Default: False
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
_load_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog, has_model_dir=True)
# In this example, `_load_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then trys to load these variables form the
# folder "./my_paddle_model/__model__".
"""
if
has_model_dir
:
dirname
=
_get_model_dir
(
dirname
)
io
.
load_vars
(
executor
,
dirname
=
dirname
,
main_program
=
program
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
def
_load_lookup_table_vars
(
executor
,
dirname
,
program
,
pserver_id
,
table_name
):
"""
The parameter server will load lookup table's local file in
selectedrows variable.
Args:
executor(Executor): The executor to run for loading persistable variables
dirname(str): The directory path
main_program(Program): Find the variable named table_name in main_program
pserver_id(int): the serial number in pserver_endpoints list
table_name(str): lookup table name
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
dirname = "./checkpoints/checkpoint_9/"
prog = fluid.default_main_program()
pserver_id = 1
table_name = "share_w"
_load_lookup_table_vars(executor=exe,
dirname=dirname, program=prog, pserver_id=pserver_id,
table_name=table_name)
"""
for
var
in
program
.
list_vars
():
if
var
.
name
==
table_name
:
lookup_table_var
=
var
break
assert
lookup_table_var
is
not
None
lookup_table_dir
=
os
.
path
.
join
(
dirname
,
LOOKUP_TABLE_DIR
)
table_file
=
table_name
+
CHECKPOINT_SEPARATOR
+
str
(
pserver_id
)
load_prog
=
framework
.
Program
()
load_block
=
load_prog
.
global_block
()
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
lookup_table_var
]},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
lookup_table_dir
,
table_file
)})
executor
.
run
(
load_prog
)
def
_save_persist_vars_without_grad
(
executor
,
dirname
,
program
):
"""
This function filters out all checkpoint variables from the give
program and then save these variables to a sub-folder '__model__' of
the given directory.
A variable is a checkpoint variable if it meets all following
conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for saving variables.
dirname(str): The directory path.
program(Program): The program whose checkpoint variables will
be saved.
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
_save_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog)
# In this example, `_save_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then saves these variables to the folder
# "./my_paddle_model/__model__".
"""
cur_dir
=
_get_model_dir
(
dirname
)
io
.
save_vars
(
executor
,
dirname
=
cur_dir
,
main_program
=
program
,
vars
=
None
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
_write_success
(
cur_dir
)
def
_save_pserver_vars_by_notify
(
executor
,
dirname
,
lookup_table
,
ps_endpoint_list
):
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
The checkpoint notify message contains lookup table name,
the absolute path on pserver to save lookup_table.
Args:
executor(Executor): The executor to run for send checkpoint notify.
dirname(str): The folder where to save checkpoints.
lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
distribute arguments.
Return:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
_save_pserver_vars_by_notify(executor=exe,
dirname=param_path, lookup_table=table_name,
ps_endpoint_list=ps_endpoints)
"""
cur_dir
=
_get_lookuptable_dir
(
dirname
)
checkpoint_notify_program
=
framework
.
Program
()
checkpoint_notify_block
=
checkpoint_notify_program
.
global_block
()
attrs
=
{}
attrs
[
'epmap'
]
=
ps_endpoint_list
attrs
[
'dir'
]
=
cur_dir
attrs
[
'lookup_table'
]
=
lookup_table
checkpoint_notify_block
.
append_op
(
type
=
'checkpoint_notify'
,
inputs
=
{},
outputs
=
{},
attrs
=
attrs
)
executor
.
run
(
checkpoint_notify_program
)
def
_save_trainer_args
(
dirname
,
trainer_id
,
trainer_args
):
assert
isinstance
(
trainer_args
,
dict
)
cur_dir
=
_get_trainer_dir
(
dirname
,
trainer_id
)
for
name
,
value
in
six
.
iteritems
(
trainer_args
):
args_file
=
os
.
path
.
join
(
cur_dir
,
name
)
with
open
(
args_file
,
'w'
)
as
f
:
f
.
write
(
str
(
value
))
_write_success
(
cur_dir
)
def
_load_trainer_args
(
checkpoint_dir
,
serial
,
trainer_id
,
trainer_args
):
"""
trainer will load some args from it's independent directory,
such as epoch_id and step_id.
Args:
checkpoint_dir(str): The folder where all checkpoints are.
serial(int): The serial of checkpoint you would like to load.
trainer_id(int): current trainer id.
trainer_args(list): list about load trainer args
Return:
None
Examples:
.. code-block:: python
param_path = "./checkpoint/"
serial = 7
trainer_id = 2
trainer_args = ["epoch_id", "step_id"]
_load_trainer_args(checkpoint_dir=param_path, serial=serial,
trainer_id=trainer_id, trainer_args=trainer_args)
"""
assert
isinstance
(
trainer_args
,
list
)
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
cur_dir
=
_get_trainer_dir
(
cur_dir
,
trainer_id
)
ret_values
=
[]
for
arg
in
trainer_args
:
cur_file
=
os
.
path
.
join
(
cur_dir
,
arg
)
with
open
(
cur_file
,
'r'
)
as
f
:
contents
=
f
.
read
()
ret_values
.
append
(
contents
.
strip
())
return
ret_values
def
_is_checkpoint_var
(
var
):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
: param var(Variable)
"""
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
RAW
:
return
False
# @GRAD are named for gradient variables, checkpoint will not save it.
if
"@GRAD"
in
var
.
name
:
return
False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if
".trainer_"
in
var
.
name
:
return
False
# .block is named for distribute train variables, checkpoint will not save it.
if
".block"
in
var
.
name
:
return
False
return
var
.
persistable
def
_make_chekcpoint_dirs
(
dirs
):
"""
_make_chekcpoint_dirs will makdir local directory directly, when the directory is exist, it will igore it.
"""
assert
dirs
is
not
None
if
os
.
path
.
isfile
(
dirs
):
raise
OSError
(
errno
.
ENOTDIR
,
"dirs path shoule be a Directory."
,
dirs
)
if
not
os
.
path
.
isdir
(
dirs
):
try
:
os
.
makedirs
(
dirs
)
except
OSError
as
err
:
if
err
.
errno
!=
errno
.
EEXIST
:
raise
err
def
_get_dir_serial
(
dirname
):
_
,
serial
=
dirname
.
split
(
CHECKPOINT_SEPARATOR
)
try
:
serial_num
=
int
(
serial
)
except
ValueError
:
serial_num
=
-
1
return
serial_num
def
_get_serial_dir
(
dirname
,
serial
):
serial_folder
=
CHECKPOINT_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
serial
)
serial_dir
=
os
.
path
.
join
(
dirname
,
serial_folder
)
_make_chekcpoint_dirs
(
serial_dir
)
return
serial_dir
def
_get_model_dir
(
dirname
):
model_dir
=
os
.
path
.
join
(
dirname
,
MODEL_DIR
)
_make_chekcpoint_dirs
(
model_dir
)
return
model_dir
def
_get_lookuptable_dir
(
dirname
):
lookuptable_dir
=
os
.
path
.
join
(
dirname
,
LOOKUP_TABLE_DIR
)
_make_chekcpoint_dirs
(
lookuptable_dir
)
return
lookuptable_dir
def
_get_trainer_dir
(
dirname
,
trainer_id
):
trainer_folder
=
TRAINER_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
trainer_id
)
trainer_dir
=
os
.
path
.
join
(
dirname
,
trainer_folder
)
_make_chekcpoint_dirs
(
trainer_dir
)
return
trainer_dir
def
_scroll_delete
(
dirname
,
max_num_checkpoints
=
3
):
dirs
=
os
.
listdir
(
dirname
)
serial_map
=
{}
for
serial
in
dirs
:
serial_num
=
_get_dir_serial
(
serial
)
serial_map
[
serial_num
]
=
serial
if
len
(
list
(
serial_map
.
keys
()))
<=
max_num_checkpoints
:
return
serials
=
list
(
serial_map
.
keys
())
serials
.
sort
(
reverse
=
True
)
serials
=
serials
[
max_num_checkpoints
:]
for
serial
in
serials
:
cur_dir
=
_get_serial_dir
(
dirname
,
serial
)
try
:
shutil
.
rmtree
(
cur_dir
)
except
OSError
as
err
:
if
err
.
errno
!=
errno
.
ENOENT
:
raise
err
def
_write_success
(
dirname
):
"""
write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.
: param dirname
"""
success_file
=
os
.
path
.
join
(
dirname
,
SUCCESS_MARK_FILENAME
)
with
open
(
success_file
,
'a'
)
as
f
:
now
=
time
.
ctime
()
f
.
write
(
now
)
def
_get_latest_checkpoint_serial
(
checkpoint_dir
):
"""
get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory
: param checkpoint_dir
"""
if
not
checkpoint_dir
:
return
-
1
def
has_success
(
checkpoint_dir
,
cur_dir
):
"""
is _SUCCESS in this dir
"""
serial
=
_get_dir_serial
(
cur_dir
)
if
serial
==
-
1
or
not
os
.
path
.
isdir
(
os
.
path
.
join
(
checkpoint_dir
,
cur_dir
)):
return
-
1
success_path
=
os
.
path
.
join
(
_get_serial_dir
(
checkpoint_dir
,
serial
),
MODEL_DIR
,
SUCCESS_MARK_FILENAME
)
if
os
.
path
.
isfile
(
success_path
):
return
serial
if
not
os
.
path
.
isdir
(
checkpoint_dir
):
return
-
1
current_dir
=
-
1
dirs
=
os
.
listdir
(
checkpoint_dir
)
for
cur_dir
in
dirs
:
success_num
=
has_success
(
checkpoint_dir
,
cur_dir
)
if
success_num
>
current_dir
:
current_dir
=
success_num
return
current_dir
# NOTE: Trainer is moved into fluid.contrib.trainer.
__all__
=
[]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录