Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
81eaa97d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
81eaa97d
编写于
8月 26, 2022
作者:
Y
Yuang Liu
提交者:
GitHub
8月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[dygraph hybrid pp for interleave] Virtual pipeline layer forward function (#45444)
上级
9eb4d89b
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
67 addition
and
31 deletion
+67
-31
python/paddle/distributed/fleet/meta_parallel/parallel_layers/pp_layers.py
...tributed/fleet/meta_parallel/parallel_layers/pp_layers.py
+29
-6
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_layer_with_virtual_stage.py
.../unittests/hybrid_parallel_pp_layer_with_virtual_stage.py
+38
-25
未找到文件。
python/paddle/distributed/fleet/meta_parallel/parallel_layers/pp_layers.py
浏览文件 @
81eaa97d
...
...
@@ -172,17 +172,26 @@ class PipelineLayerChunk(Layer):
def
__init__
(
self
):
super
(
PipelineLayerChunk
,
self
).
__init__
()
self
.
functions
=
[]
self
.
run_function
=
[]
def
append
(
self
,
sublayer
):
# This method is used to unify codes in _build_layer_impl.
# For 1f1b scheduler, it will call append method of a List.
# For interleave scheduler, it will call append method of this class.
if
isinstance
(
sublayer
,
Layer
):
self
.
add_sublayer
(
str
(
len
(
self
.
functions
)),
sublayer
)
self
.
functions
.
append
(
sublayer
)
self
.
add_sublayer
(
str
(
len
(
self
.
run_function
)),
sublayer
)
self
.
run_function
.
append
(
sublayer
)
def
get_run_function
(
self
):
return
self
.
run_function
# TODO (Yuang Liu) forward function implement
def
forward
(
self
,
*
args
,
**
kwargs
):
# Users shouldn't call PipelineLayerChunk directly, since all logics relating with recompute
# are in the forward function of PipelineLayer. Any directly call will bring unexpected
# behavior under recompute circumstance.
raise
NotImplementedError
(
"The forward function of PipelineLayerChunk cannot be called directly. "
"Please call forward function of PipelineLayer."
)
class
PipelineLayer
(
Layer
):
...
...
@@ -520,8 +529,22 @@ class PipelineLayer(Layer):
return
execute_func
def
forward
(
self
,
input
):
# TODO(Yuang Liu): forward function for interleave scheduler
def
forward
(
self
,
input
,
chunk_id
=
None
):
if
chunk_id
is
not
None
:
assert
isinstance
(
chunk_id
,
int
),
"chunk_id should be an int"
assert
self
.
_num_virtual_pipeline_stages
>
1
,
\
"chunk_id is only valid when using virtual pipeline stage"
assert
chunk_id
<
len
(
self
.
_model_chunks
),
\
"The virtual pipeline only has {} chunks, "
\
"but received chunk_id {}."
.
format
(
len
(
self
.
_model_chunks
),
chunk_id
)
# Get the target model chunk.
model_chunk
=
self
.
_model_chunks
[
chunk_id
]
# Update the self.run_function to the target run functions.
# Runs for 1f1b and interleave are similar, just handle all functions in self.run_function.
# The only different is that, for 1f1b, self.run_function has already been inited during build_layer.
# But for interleave, self.run_function will keep updating to the target functions at every run.
self
.
run_function
=
model_chunk
.
get_run_function
()
if
self
.
_recompute_interval
==
0
:
input
=
self
.
forward_function
(
0
,
len
(
self
.
run_function
))(
input
)
else
:
...
...
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_layer_with_virtual_stage.py
浏览文件 @
81eaa97d
...
...
@@ -33,31 +33,22 @@ class ReshapeHelp(Layer):
return
x
.
reshape
(
shape
=
self
.
shape
)
class
FakeAlexNetPipeDesc
(
PipelineLayer
):
class
MLPForVirtualStageLayerTest
(
PipelineLayer
):
def
__init__
(
self
,
num_classes
=
10
,
**
kwargs
):
self
.
num_classes
=
num_classes
decs
=
[
LayerDesc
(
nn
.
Conv2D
,
1
,
64
,
kernel_size
=
11
,
stride
=
4
,
padding
=
5
),
LayerDesc
(
nn
.
Conv2D
,
64
,
64
,
kernel_size
=
11
,
stride
=
4
,
padding
=
5
),
LayerDesc
(
nn
.
ReLU
),
LayerDesc
(
nn
.
MaxPool2D
,
kernel_size
=
2
,
stride
=
2
),
LayerDesc
(
nn
.
Conv2D
,
64
,
192
,
kernel_size
=
5
,
padding
=
2
),
LayerDesc
(
nn
.
Conv2D
,
192
,
192
,
kernel_size
=
5
,
padding
=
2
),
F
.
relu
,
LayerDesc
(
nn
.
MaxPool2D
,
kernel_size
=
2
,
stride
=
2
),
LayerDesc
(
nn
.
Conv2D
,
192
,
384
,
kernel_size
=
3
,
padding
=
1
),
F
.
relu
,
LayerDesc
(
nn
.
Conv2D
,
384
,
256
,
kernel_size
=
3
,
padding
=
1
),
F
.
relu
,
LayerDesc
(
nn
.
Conv2D
,
256
,
256
,
kernel_size
=
3
,
padding
=
1
),
LayerDesc
(
nn
.
Conv2D
,
256
,
256
,
kernel_size
=
3
,
padding
=
1
),
F
.
relu
,
LayerDesc
(
nn
.
MaxPool2D
,
kernel_size
=
2
,
stride
=
2
),
LayerDesc
(
ReshapeHelp
,
shape
=
[
-
1
,
256
]),
LayerDesc
(
nn
.
Linear
,
256
,
self
.
num_classes
),
# classifier
LayerDesc
(
nn
.
Linear
,
2
,
self
.
num_classes
),
LayerDesc
(
nn
.
Linear
,
self
.
num_classes
,
2
),
LayerDesc
(
nn
.
Linear
,
2
,
self
.
num_classes
),
LayerDesc
(
nn
.
Linear
,
self
.
num_classes
,
2
),
LayerDesc
(
nn
.
Linear
,
2
,
self
.
num_classes
),
LayerDesc
(
nn
.
Linear
,
self
.
num_classes
,
2
),
LayerDesc
(
nn
.
Linear
,
2
,
self
.
num_classes
),
LayerDesc
(
nn
.
Linear
,
self
.
num_classes
,
2
),
]
super
(
FakeAlexNetPipeDesc
,
self
).
__init__
(
layers
=
decs
,
super
(
MLPForVirtualStageLayerTest
,
self
).
__init__
(
layers
=
decs
,
loss_fn
=
nn
.
CrossEntropyLoss
(),
**
kwargs
)
...
...
@@ -73,16 +64,38 @@ class TestPipeLayerAPI(unittest.TestCase):
"pp_degree"
:
self
.
pipeline_parallel_size
}
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
self
.
rank
=
fleet
.
worker_index
()
self
.
hcg
=
fleet
.
get_hybrid_communicate_group
()
def
test_pipelayer_desc
(
self
):
pipe_model
=
FakeAlexNetPipeDesc
(
seg_method
=
"layer:Conv2D"
,
pipe_model
=
MLPForVirtualStageLayerTest
(
seg_method
=
"layer:Linear"
,
num_stages
=
self
.
pipeline_parallel_size
,
num_virtual_pipeline_stages
=
2
)
num_virtual_pipeline_stages
=
2
,
recompute_interval
=
1
)
assert
len
(
pipe_model
.
parameters
())
>
0
model_chunks
=
pipe_model
.
get_model_chunks
()
assert
model_chunks
is
not
None
assert
len
(
model_chunks
)
==
2
optimizer
=
paddle
.
optimizer
.
SGD
(
parameters
=
pipe_model
.
parameters
())
try
:
model_chunks
[
0
](
paddle
.
to_tensor
([
1.
,
2.
]))
except
NotImplementedError
:
pass
# fake call for the forward function of virtual pipeline layer
for
i
in
range
(
len
(
model_chunks
)):
out
=
pipe_model
(
paddle
.
to_tensor
([
1.
,
2.
]),
chunk_id
=
i
)
assert
list
(
out
.
shape
)
==
[
2
]
out
=
F
.
relu
(
out
)
loss
=
paddle
.
mean
(
out
)
loss
.
backward
()
optimizer
.
step
()
# just make sure the model can be wrapped with distributed model
dist_model
=
fleet
.
distributed_model
(
pipe_model
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录