Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
81abaaf5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
81abaaf5
编写于
6月 15, 2022
作者:
G
Guoxia Wang
提交者:
GitHub
6月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify index dtype from int to int64_t of concat_and_split_functor (#43479)
上级
a89060ac
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
30 addition
and
34 deletion
+30
-34
paddle/phi/kernels/funcs/concat_and_split_functor.cu
paddle/phi/kernels/funcs/concat_and_split_functor.cu
+30
-34
未找到文件。
paddle/phi/kernels/funcs/concat_and_split_functor.cu
浏览文件 @
81abaaf5
...
...
@@ -26,22 +26,21 @@ __global__ void ConcatKernel_(const T** inputs,
const
int64_t
output_rows
,
const
int64_t
output_cols
,
T
*
output
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
curr_segment
=
0
;
int
curr_offset
=
input_cols
[
0
];
for
(;
tid_x
<
output_cols
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
curr_col_offset
=
input_cols
[
curr_segment
+
1
];
int64_t
curr_segment
=
0
;
int64_t
curr_offset
=
input_cols
[
0
];
CUDA_KERNEL_LOOP_TYPE
(
tid_x
,
output_cols
,
int64_t
)
{
int64_t
curr_col_offset
=
input_cols
[
curr_segment
+
1
];
while
(
curr_col_offset
<=
tid_x
)
{
curr_offset
=
curr_col_offset
;
++
curr_segment
;
curr_col_offset
=
input_cols
[
curr_segment
+
1
];
}
int
local_col
=
tid_x
-
curr_offset
;
int
segment_width
=
curr_col_offset
-
curr_offset
;
int
64_t
local_col
=
tid_x
-
curr_offset
;
int
64_t
segment_width
=
curr_col_offset
-
curr_offset
;
const
T
*
input_ptr
=
inputs
[
curr_segment
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
int
64_t
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
output_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output
[
tid_y
*
output_cols
+
tid_x
]
=
input_ptr
[
tid_y
*
segment_width
+
local_col
];
...
...
@@ -50,16 +49,15 @@ __global__ void ConcatKernel_(const T** inputs,
template
<
typename
T
>
__device__
void
ConcatKernelDetail
(
const
T
**
inputs_data
,
const
int
fixed_in_col
,
const
int
out_rows
,
const
int
out_cols
,
const
int
64_t
fixed_in_col
,
const
int
64_t
out_rows
,
const
int
64_t
out_cols
,
T
*
output_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
out_cols
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
split
=
tid_x
*
1.0
/
fixed_in_col
;
int
in_offset
=
tid_x
-
split
*
fixed_in_col
;
CUDA_KERNEL_LOOP_TYPE
(
tid_x
,
out_cols
,
int64_t
)
{
int64_t
split
=
tid_x
*
1.0
/
fixed_in_col
;
int64_t
in_offset
=
tid_x
-
split
*
fixed_in_col
;
const
T
*
input_ptr
=
inputs_data
[
split
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
int
64_t
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
out_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
output_data
[
tid_y
*
out_cols
+
tid_x
]
=
input_ptr
[
tid_y
*
fixed_in_col
+
in_offset
];
...
...
@@ -133,22 +131,21 @@ __global__ void SplitKernel_(const T* input_data,
const
int64_t
*
out_cols
,
int
out_cols_size
,
T
**
outputs_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
curr_segment
=
0
;
int
curr_offset
=
out_cols
[
0
];
for
(;
tid_x
<
in_col
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
curr_col_offset
=
out_cols
[
curr_segment
+
1
];
int64_t
curr_segment
=
0
;
int64_t
curr_offset
=
out_cols
[
0
];
CUDA_KERNEL_LOOP_TYPE
(
tid_x
,
in_col
,
int64_t
)
{
int64_t
curr_col_offset
=
out_cols
[
curr_segment
+
1
];
while
(
curr_col_offset
<=
tid_x
)
{
curr_offset
=
curr_col_offset
;
++
curr_segment
;
curr_col_offset
=
out_cols
[
curr_segment
+
1
];
}
int
local_col
=
tid_x
-
curr_offset
;
int
segment_width
=
curr_col_offset
-
curr_offset
;
int
64_t
local_col
=
tid_x
-
curr_offset
;
int
64_t
segment_width
=
curr_col_offset
-
curr_offset
;
T
*
output_ptr
=
outputs_data
[
curr_segment
];
if
(
output_ptr
!=
nullptr
)
{
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
int
64_t
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
segment_width
+
local_col
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
...
...
@@ -158,17 +155,16 @@ __global__ void SplitKernel_(const T* input_data,
template
<
typename
T
>
__device__
void
SplitKernelDetail
(
const
T
*
input_data
,
const
int
in_row
,
const
int
in_col
,
const
int
fixed_out_col
,
const
int
64_t
in_row
,
const
int
64_t
in_col
,
const
int
64_t
fixed_out_col
,
T
**
outputs_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
in_col
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
split
=
tid_x
/
fixed_out_col
;
int
in_offset
=
tid_x
-
split
*
fixed_out_col
;
CUDA_KERNEL_LOOP_TYPE
(
tid_x
,
in_col
,
int64_t
)
{
int64_t
split
=
tid_x
/
fixed_out_col
;
int64_t
in_offset
=
tid_x
-
split
*
fixed_out_col
;
T
*
output_ptr
=
outputs_data
[
split
];
if
(
output_ptr
!=
nullptr
)
{
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
int
64_t
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
fixed_out_col
+
in_offset
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
...
...
@@ -266,7 +262,7 @@ struct ConcatFunctor<phi::GPUContext, T> {
int
axis
,
phi
::
DenseTensor
*
output
)
{
// TODO(zcd): Add input data validity checking
int
in_num
=
input
.
size
();
int
64_t
in_num
=
input
.
size
();
int64_t
in_row
=
1
;
auto
dim_0
=
input
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
...
...
@@ -275,7 +271,7 @@ struct ConcatFunctor<phi::GPUContext, T> {
int64_t
in_col
=
input
[
0
].
numel
()
/
in_row
;
int64_t
out_row
=
in_row
,
out_col
=
0
;
int
inputs_col_num
=
in_num
+
1
;
int
64_t
inputs_col_num
=
in_num
+
1
;
std
::
vector
<
const
T
*>
inputs_data_vec
(
in_num
);
std
::
vector
<
int64_t
>
inputs_col_vec
(
inputs_col_num
);
const
T
**
inputs_data
=
inputs_data_vec
.
data
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录