diff --git a/python/paddle/utils/dump_config.py b/python/paddle/utils/dump_config.py index d27af7f76246a4c9db9a43c17715506d82031b9c..6a96a0a78fc77c50904ee7822c725c41e646c5e6 100644 --- a/python/paddle/utils/dump_config.py +++ b/python/paddle/utils/dump_config.py @@ -37,9 +37,9 @@ if __name__ == '__main__': assert isinstance(conf, TrainerConfig_pb2.TrainerConfig) if whole_conf: - print conf + print(conf) else: if binary: sys.stdout.write(conf.model_config.SerializeToString()) else: - print conf.model_config + print(conf.model_config) diff --git a/python/paddle/utils/image_multiproc.py b/python/paddle/utils/image_multiproc.py index 3e3e519f76d388eeb477f0014bcbb3e7cd09352a..d1bbda3fd3562efe486377d41a9fb7359bafa4e7 100644 --- a/python/paddle/utils/image_multiproc.py +++ b/python/paddle/utils/image_multiproc.py @@ -15,7 +15,8 @@ import os, sys import numpy as np from PIL import Image -from cStringIO import StringIO +import six +from six.moves import cStringIO as StringIO import multiprocessing import functools import itertools @@ -187,7 +188,8 @@ class PILTransformer(ImageTransformer): return self.transform(im) -def job(is_img_string, transformer, (data, label)): +def job(is_img_string, transformer, data_label_pack): + (data, label) = data_label_pack if is_img_string: return transformer.transform_from_string(data), label else: @@ -208,7 +210,7 @@ class MultiProcessImageTransformer(object): """ Processing image with multi-process. If it is used in PyDataProvider, the simple usage for CNN is as follows: - + .. code-block:: python def hool(settings, is_train, **kwargs): @@ -229,7 +231,7 @@ class MultiProcessImageTransformer(object): @provider(init_hook=hook, pool_size=20480) def process(settings, file_list): with open(file_list, 'r') as fdata: - for line in fdata: + for line in fdata: data_dic = np.load(line.strip()) # load the data batch pickled by Pickle. data = data_dic['data'] labels = data_dic['label'] @@ -249,10 +251,10 @@ class MultiProcessImageTransformer(object): :type channel_swap: tuple or list :param mean: the mean values of image, per-channel mean or element-wise mean. :type mean: array, The dimension is 1 for per-channel mean. - The dimension is 3 for element-wise mean. + The dimension is 3 for element-wise mean. :param is_train: training peroid or testing peroid. :type is_train: bool. - :param is_color: the image is color or gray. + :param is_color: the image is color or gray. :type is_color: bool. :param is_img_string: The input can be the file name of image or image string. :type is_img_string: bool. @@ -273,4 +275,4 @@ class MultiProcessImageTransformer(object): def run(self, data, label): fun = functools.partial(job, self.is_img_string, self.transformer) return self.pool.imap_unordered( - fun, itertools.izip(data, label), chunksize=100 * self.procnum) + fun, six.moves.zip(data, label), chunksize=100 * self.procnum) diff --git a/python/paddle/utils/image_util.py b/python/paddle/utils/image_util.py index d3d79b14405256bbc95c41d805dbee56cb104f5e..a8092349cde8a4cb30873bf819fd5ed96289a945 100644 --- a/python/paddle/utils/image_util.py +++ b/python/paddle/utils/image_util.py @@ -14,7 +14,7 @@ import numpy as np from PIL import Image -from cStringIO import StringIO +from six.moves import cStringIO as StringIO def resize_image(img, target_size): @@ -34,7 +34,7 @@ def flip(im): """ Return the flipped image. Flip an image along the horizontal direction. - im: input image, (H x W x K) ndarrays + im: input image, (H x W x K) ndarrays """ if len(im.shape) == 3: return im[:, :, ::-1] @@ -132,7 +132,7 @@ def load_meta(meta_path, mean_img_size, crop_size, color=True): def load_image(img_path, is_color=True): """ - Load image and return. + Load image and return. img_path: image path. is_color: is color image or not. """ @@ -205,7 +205,7 @@ class ImageTransformer: def set_mean(self, mean): if mean is not None: - # mean value, may be one value per channel + # mean value, may be one value per channel if mean.ndim == 1: mean = mean[:, np.newaxis, np.newaxis] else: diff --git a/python/paddle/utils/make_model_diagram.py b/python/paddle/utils/make_model_diagram.py index 40f99075de7fb2401b3b704afe1eb44dbe6072dd..52759d3ad230c3a5a5488a8bc46a2e8f8fae1025 100644 --- a/python/paddle/utils/make_model_diagram.py +++ b/python/paddle/utils/make_model_diagram.py @@ -15,6 +15,9 @@ # Generate dot diagram file for the given paddle model config # The generated file can be viewed using Graphviz (http://graphviz.org) +from __future__ import print_function + +import six import sys import traceback @@ -61,9 +64,9 @@ def make_diagram_from_proto(model_config, dot_file): name2id[mem.link_name]) return s - print >> f, 'digraph graphname {' - print >> f, 'node [width=0.375,height=0.25];' - for i in xrange(len(model_config.layers)): + print('digraph graphname {', file=f) + print('node [width=0.375,height=0.25];', file=f) + for i in six.moves.xrange(len(model_config.layers)): l = model_config.layers[i] name2id[l.name] = i @@ -71,12 +74,12 @@ def make_diagram_from_proto(model_config, dot_file): for sub_model in model_config.sub_models: if sub_model.name == 'root': continue - print >> f, 'subgraph cluster_%s {' % i - print >> f, 'style=dashed;' + print('subgraph cluster_%s {' % i, file=f) + print('style=dashed;', file=f) label = '%s ' % sub_model.name if sub_model.reversed: label += '<==' - print >> f, 'label = "%s";' % label + print('label = "%s";' % label, file=f) i += 1 submodel_layers.add(sub_model.name) for layer_name in sub_model.layer_names: @@ -84,37 +87,41 @@ def make_diagram_from_proto(model_config, dot_file): lid = name2id[layer_name] layer_config = model_config.layers[lid] label = make_layer_label(layer_config) - print >> f, 'l%s [label="%s", shape=box];' % (lid, label) - print >> f, '}' + print('l%s [label="%s", shape=box];' % (lid, label), file=f) + print('}', file=f) - for i in xrange(len(model_config.layers)): + for i in six.moves.xrange(len(model_config.layers)): l = model_config.layers[i] if l.name not in submodel_layers: label = make_layer_label(l) - print >> f, 'l%s [label="%s", shape=box];' % (i, label) + print('l%s [label="%s", shape=box];' % (i, label), file=f) for sub_model in model_config.sub_models: if sub_model.name == 'root': continue for link in sub_model.in_links: - print >> f, make_link(link) + print(make_link(link), file=f) for link in sub_model.out_links: - print >> f, make_link(link) + print(make_link(link), file=f) for mem in sub_model.memories: - print >> f, make_mem(mem) + print(make_mem(mem), file=f) - for i in xrange(len(model_config.layers)): + for i in six.moves.xrange(len(model_config.layers)): for l in model_config.layers[i].inputs: - print >> f, 'l%s -> l%s [label="%s"];' % ( - name2id[l.input_layer_name], i, l.input_parameter_name) + print( + 'l%s -> l%s [label="%s"];' % (name2id[l.input_layer_name], i, + l.input_parameter_name), + file=f) - print >> f, '}' + print('}', file=f) f.close() def usage(): - print >> sys.stderr, ("Usage: python show_model_diagram.py" + - " CONFIG_FILE DOT_FILE [config_str]") + print( + ("Usage: python show_model_diagram.py" + + " CONFIG_FILE DOT_FILE [config_str]"), + file=sys.stderr) exit(1) diff --git a/python/paddle/utils/merge_model.py b/python/paddle/utils/merge_model.py index 2b100207728a8532e900992f7db4d3910e893dea..b74649e93640c3600636034d58792b8d12dffeda 100644 --- a/python/paddle/utils/merge_model.py +++ b/python/paddle/utils/merge_model.py @@ -70,4 +70,4 @@ def merge_v2_model(net, param_file, output_file): for pname in param_names: params.serialize(pname, f) - print 'Generate %s success!' % (output_file) + print('Generate %s success!' % (output_file)) diff --git a/python/paddle/utils/plotcurve.py b/python/paddle/utils/plotcurve.py index 27bd8157d39632913e2fa3278f3af20ddea61da7..a95e5497e23571e61e5d7652830a99efd7793083 100644 --- a/python/paddle/utils/plotcurve.py +++ b/python/paddle/utils/plotcurve.py @@ -44,6 +44,7 @@ To use this script to generate plot for AvgCost, error: python plotcurve.py -i paddle.INFO -o figure.png AvgCost error """ +import six import sys import matplotlib # the following line is added immediately after import matplotlib @@ -91,7 +92,7 @@ def plot_paddle_curve(keys, inputfile, outputfile, format='png', sys.stderr.write("No data to plot. Exiting!\n") return m = len(keys) + 1 - for i in xrange(1, m): + for i in six.moves.xrange(1, m): pyplot.plot( x[:, 0], x[:, i], diff --git a/python/paddle/utils/predefined_net.py b/python/paddle/utils/predefined_net.py index fa05f981f2b66bf55303a6f7c332c0bc9b112d29..2801f4877c079615239b92be146b3e33df16b37f 100644 --- a/python/paddle/utils/predefined_net.py +++ b/python/paddle/utils/predefined_net.py @@ -13,6 +13,7 @@ # limitations under the License. import numpy as np +import six import os from paddle.trainer.config_parser import * from paddle.utils.preprocess_img import \ @@ -112,7 +113,7 @@ def simple_conv_net(data_conf, is_color=False): num_classes: num of classes. is_color: whether the input images are color. """ - for k, v in data_conf.iteritems(): + for k, v in six.iteritems(data_conf): globals()[k] = v data_input, label_input, num_image_channels = \ image_data_layers(image_size, num_classes, is_color, is_predict) @@ -340,7 +341,7 @@ def small_vgg(data_conf, is_predict=False): num_classes: num of classes. is_color: whether the input images are color. """ - for k, v in data_conf.iteritems(): + for k, v in six.iteritems(data_conf): globals()[k] = v vgg_conv_net(image_size, num_classes, num_layers=[2, 2, 3, 3], diff --git a/python/paddle/utils/preprocess_img.py b/python/paddle/utils/preprocess_img.py index 975f1e9edea161331d37afbc6b5af46286f185bf..a322f7b769a2a32df516a4b8ea04289a7f882ff2 100644 --- a/python/paddle/utils/preprocess_img.py +++ b/python/paddle/utils/preprocess_img.py @@ -17,9 +17,9 @@ import os import random import numpy as np import PIL.Image as Image -import StringIO -import preprocess_util -from image_util import crop_img +from six.moves import cStringIO as StringIO +from . import preprocess_util +from .image_util import crop_img def resize_image(img, target_size): @@ -52,7 +52,7 @@ class DiskImage: def read_image(self): if self.img is None: - print "reading: " + self.path + print("reading: " + self.path) image = resize_image(Image.open(self.path), self.target_size) self.img = image @@ -69,7 +69,7 @@ class DiskImage: convert the image into the paddle batch format. """ self.read_image() - output = StringIO.StringIO() + output = StringIO() self.img.save(output, "jpeg") contents = output.getvalue() return contents @@ -127,7 +127,7 @@ class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater): image_path = items[0] label_name = items[1] if not label_name in label_set: - label_set[label_name] = len(label_set.keys()) + label_set[label_name] = len(list(label_set.keys())) img = DiskImage(path=image_path, target_size=self.target_size) label = preprocess_util.Lablel( label=label_set[label_name], name=label_name) @@ -144,7 +144,7 @@ class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater): return create_dataset_from_list(path) label_set = preprocess_util.get_label_set_from_dir(path) data = [] - for l_name in label_set.keys(): + for l_name in list(label_set.keys()): image_paths = preprocess_util.list_images( os.path.join(path, l_name)) for p in image_paths: diff --git a/python/paddle/utils/preprocess_util.py b/python/paddle/utils/preprocess_util.py index 1d17a488243eb81e46bea3ead686efd021499e22..05b2067d01a2c544d7f5bd68320e79c805282286 100644 --- a/python/paddle/utils/preprocess_util.py +++ b/python/paddle/utils/preprocess_util.py @@ -14,7 +14,7 @@ import os import math -import cPickle as pickle +import six.moves.cPickle as pickle import random import collections @@ -169,7 +169,7 @@ class Dataset: random.shuffle(keyvalue_indices[k]) num_data_per_key_batch = \ - math.ceil(num_per_batch / float(len(keyvalue_indices.keys()))) + math.ceil(num_per_batch / float(len(list(keyvalue_indices.keys())))) if num_data_per_key_batch < 2: raise Exception("The number of data in a batch is too small") @@ -182,8 +182,8 @@ class Dataset: end_idx = int( min(begin_idx + num_data_per_key_batch, len(keyvalue_indices[k]))) - print "begin_idx, end_idx" - print begin_idx, end_idx + print("begin_idx, end_idx") + print(begin_idx, end_idx) for idx in range(begin_idx, end_idx): permuted_data.append(self.data[keyvalue_indices[k][idx]]) keyvalue_readpointer[k] = end_idx @@ -357,6 +357,6 @@ class DatasetCreater(object): data_batcher.create_batches_and_list( self.output_path, self.train_list_name, self.test_list_name, self.label_set_name) - self.num_classes = len(train_label_set.keys()) + self.num_classes = len(list(train_label_set.keys())) self.create_meta_file(train_data) return out_path diff --git a/python/paddle/utils/show_pb.py b/python/paddle/utils/show_pb.py index 20614826d1d01f50a2bb54a840e2c584fb93b247..da7a71a665aea4d93d366e8508f438a9aba88e94 100644 --- a/python/paddle/utils/show_pb.py +++ b/python/paddle/utils/show_pb.py @@ -15,6 +15,8 @@ Show the content of proto buffer data file of PADDLE """ +from __future__ import print_function + import os import sys from google.protobuf.internal.decoder import _DecodeVarint @@ -39,7 +41,7 @@ def read_proto(file, message): def usage(): - print >> sys.stderr, "Usage: python show_pb.py PROTO_DATA_FILE" + print("Usage: python show_pb.py PROTO_DATA_FILE", file=sys.stderr) exit(1) @@ -50,8 +52,8 @@ if __name__ == '__main__': f = open(sys.argv[1]) header = DataFormat.DataHeader() read_proto(f, header) - print header + print(header) sample = DataFormat.DataSample() while read_proto(f, sample): - print sample + print(sample) diff --git a/python/paddle/utils/torch2paddle.py b/python/paddle/utils/torch2paddle.py index 91490111a1144ae25ed6566ff1c83db4f7954d33..398d3aa4e02cc74b7885f7e676937d7fd254bc5e 100644 --- a/python/paddle/utils/torch2paddle.py +++ b/python/paddle/utils/torch2paddle.py @@ -24,7 +24,7 @@ import sys import struct import numpy as np import torchfile -import cPickle as pickle +import six.moves.cPickle as pickle import argparse @@ -48,7 +48,7 @@ def save_net_parameters(layers, params, output_path): biases = params[i * 2 + 1] weight_file = os.path.join(output_path, '_%s.w0' % layers[i]) biases_file = os.path.join(output_path, '_%s.wbias' % layers[i]) - print "Saving for layer %s." % layers[i] + print("Saving for layer %s." % layers[i]) save_layer_parameters(weight_file, [weight]) save_layer_parameters(biases_file, biases)