Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
80a5ee00
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
80a5ee00
编写于
10月 17, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix forward and add backward.
上级
3123e3cf
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
302 addition
and
94 deletion
+302
-94
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+259
-75
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+12
-8
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
+31
-11
未找到文件。
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
80a5ee00
...
@@ -17,6 +17,22 @@ limitations under the License. */
...
@@ -17,6 +17,22 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
namespace
{
template
<
typename
T
>
T
NormalizeL1
(
T
*
x
,
size_t
len
)
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
sum
+=
x
[
i
];
// (This comment is from the old LinearChainCRFLayer.)
// Right now, we just bet that sum won't be zero. If this really happens, we
// will figure out what should be done then.
PADDLE_ENFORCE
(
sum
,
"The unnormalized probabilites of all possible unfinished "
"sequences must be greater than 0."
);
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
x
[
i
]
/=
sum
;
return
sum
;
}
}
// namespace
using
framework
::
LoDTensor
;
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
using
framework
::
LoD
;
...
@@ -54,13 +70,25 @@ class LinearChainCrfOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -54,13 +70,25 @@ class LinearChainCrfOpMaker : public framework::OpProtoAndCheckerMaker {
"each tag value
\f
$v$
\f
. This vector is called a forward vecotr and "
"each tag value
\f
$v$
\f
. This vector is called a forward vecotr and "
"will also be used in backward computations."
)
"will also be used in backward computations."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"EmissionExps"
,
"The exponentials of Input(Emission). This is an intermediate "
"computational result in forward computation, and will be reused "
"in backward computation."
)
.
AsIntermediate
();
AddOutput
(
"TransitionExps"
,
"The exponentials of Input(Transition). This is an intermediate "
"computational result in forward computation, and will be reused "
"in backward computation."
)
.
AsIntermediate
();
AddOutput
(
AddOutput
(
"LogLikelihood"
,
"LogLikelihood"
,
"(Tensor, default: Tensor<float>). The logarithm of the conditional "
"(Tensor, default: Tensor<float>). The logarithm of the "
"conditional "
"likelihood of each training sample in a mini-batch. This is a 2-D "
"likelihood of each training sample in a mini-batch. This is a 2-D "
"tensor with shape [S x 1], where S is the sequence number in a "
"tensor with shape [S x 1], where S is the sequence number in a "
"mini-batch. "
"mini-batch. "
"Note: S is equal to the sequence number in a mini-batch. The output "
"Note: S is equal to the sequence number in a mini-batch. The "
"output "
"is no longer a LoDTensor."
);
"is no longer a LoDTensor."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
Conditional Random Field defines an undirected probabilistic graph with nodes
...
@@ -129,6 +157,10 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
...
@@ -129,6 +157,10 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Alpha"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Alpha"
),
"Output(Alpha) should be not null."
);
"Output(Alpha) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"EmissionExps"
),
"Output(EmissionExps) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"TransitionExps"
),
"Output(TransitionExps) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LogLikelihood"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LogLikelihood"
),
"Output(LogLikelihood) should be not null."
);
"Output(LogLikelihood) should be not null."
);
...
@@ -143,7 +175,7 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
...
@@ -143,7 +175,7 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
transition_dims
[
0
]
-
2
,
transition_dims
[
1
],
transition_dims
[
0
]
-
2
,
transition_dims
[
1
],
"An invalid dimension for the Input(Transition), which should "
"An invalid dimension for the Input(Transition), which should "
"be a 2-D tensor with shape [
D + 2
x D]."
);
"be a 2-D tensor with shape [
(D + 2)
x D]."
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
emission_dims
[
1
],
transition_dims
[
1
],
emission_dims
[
1
],
transition_dims
[
1
],
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
...
@@ -157,11 +189,14 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
...
@@ -157,11 +189,14 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
"should be the same."
);
"should be the same."
);
ctx
->
SetOutputDim
(
"Alpha"
,
emission_dims
);
ctx
->
SetOutputDim
(
"Alpha"
,
emission_dims
);
ctx
->
SetOutputDim
(
"EmissionExps"
,
emission_dims
);
ctx
->
SetOutputDim
(
"TransitionExps"
,
transition_dims
);
// (TODO caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
// (TODO caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
// is the sequence number in a mini-batch. The dimension set here should be
// is the sequence number in a mini-batch. The dimension set here should be
// resized to its correct size in the function Compute.
// resized to its correct size in the function Compute.
ctx
->
SetOutputDim
(
"LogLikelihood"
,
{
emission_dims
[
0
],
1
});
ctx
->
SetOutputDim
(
"LogLikelihood"
,
{
emission_dims
[
0
],
1
});
ctx
->
ShareLoD
(
"Emission"
,
/*->*/
"EmissionExps"
);
}
}
protected:
protected:
...
@@ -180,9 +215,12 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
...
@@ -180,9 +215,12 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
"This kernel only runs on CPU."
);
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
emission_exps
=
ctx
.
Output
<
LoDTensor
>
(
"EmissionExps"
);
emission_exps
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
transition_exps
=
ctx
.
Output
<
Tensor
>
(
"TransitionExps"
);
transition_exps
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
in_lod
=
emission_weights
->
lod
();
auto
in_lod
=
emission_weights
->
lod
();
...
@@ -195,136 +233,154 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
...
@@ -195,136 +233,154 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
const
size_t
level
=
0
;
const
size_t
level
=
0
;
auto
emission_dims
=
emission_weights
->
dims
();
auto
emission_dims
=
emission_weights
->
dims
();
const
size_t
batch_size
=
emission_dims
[
0
];
const
size_t
tag_num
=
emission_dims
[
1
];
const
size_t
seq_num
=
in_lod
[
level
].
size
()
-
1
;
const
size_t
seq_num
=
in_lod
[
level
].
size
()
-
1
;
// TODO(caoying) These local variables seems to be created and destroied
// every time this function is called. Will this bring additional overhead?
Tensor
emission_exps
;
Tensor
emission_row_max
;
Tensor
emission_row_max
;
Tensor
transition_exps
;
emission_exps
.
mutable_data
<
T
>
(
emission_dims
,
platform
::
CPUPlace
());
emission_row_max
.
mutable_data
<
T
>
(
emission_row_max
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
emission_dims
[
0
],
1
}),
platform
::
CPUPlace
());
framework
::
make_ddim
({
static_cast
<
int
>
(
batch_size
),
1
}),
transition_exps
.
mutable_data
<
T
>
(
transition_weights
->
dims
(),
platform
::
CPUPlace
());
platform
::
CPUPlace
());
auto
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
auto
x
=
EigenMatrix
<
T
>::
From
(
*
emission_weights
);
auto
x_row_max
=
EigenMatrix
<
T
>::
From
(
emission_row_max
);
x_row_max
.
device
(
place
)
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
int
(
batch_size
),
1
));
auto
x_exps
=
EigenMatrix
<
T
>::
From
(
*
emission_exps
);
x_exps
.
device
(
place
)
=
(
x
-
x_row_max
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
))).
exp
();
auto
w
=
EigenMatrix
<
T
>::
From
(
*
transition_weights
);
auto
w_exps
=
EigenMatrix
<
T
>::
From
(
*
transition_exps
);
w_exps
.
device
(
place
)
=
w
.
exp
();
auto
*
alpha
=
ctx
.
Output
<
LoDTensor
>
(
"Alpha"
);
auto
*
alpha
=
ctx
.
Output
<
LoDTensor
>
(
"Alpha"
);
alpha
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
alpha
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
ll
=
ctx
.
Output
<
LoDTensor
>
(
"LogLikelihood"
);
auto
*
ll
=
ctx
.
Output
<
LoDTensor
>
(
"LogLikelihood"
);
// resize the output tensor to the correct dimension.
// resize the output tensor to the correct dimension.
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
const
Tensor
one_seq
=
emission_weights
->
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq
=
emission_weights
->
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_row_max
=
emission_row_max
.
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_row_max
=
emission_row_max
.
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_exps
=
emission_exps
.
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_exps
=
emission_exps
->
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_alpha
=
alpha
->
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_alpha
=
alpha
->
Slice
<
T
>
(
start_pos
,
end_pos
);
log_likelihood
[
i
]
=
ForwardOneSequence
(
log_likelihood
[
i
]
=
ForwardOneSequence
(
ctx
.
device_context
(),
one_seq
,
one_seq_row_max
,
one_seq_exp
s
,
&
one_seq
,
&
one_seq_row_max
,
&
one_seq_exps
,
transition_weight
s
,
(
*
transition_weights
),
transition_exps
,
one_seq_label
,
one_seq_alpha
);
transition_exps
,
&
one_seq_label
,
&
one_seq_alpha
);
}
}
}
}
protected:
protected:
T
ForwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
T
ForwardOneSequence
(
const
Tensor
*
emission
,
const
Tensor
*
emission_row_max
,
const
Tensor
&
emission
,
Tensor
&
emission_row_max
,
const
Tensor
*
emission_exps
,
const
Tensor
*
trans_weights
,
Tensor
&
emission_exps
,
const
Tensor
&
trans_weights
,
const
Tensor
*
trans_weight_exps
,
const
Tensor
*
label
,
Tensor
&
trans_weight_exps
,
const
Tensor
&
label
,
Tensor
*
alpha
)
const
{
Tensor
&
alpha
)
const
{
const
T
*
x
=
emission
->
data
<
T
>
();
// (TODO caoying) Evaluate and optimize this.
const
T
*
x_row_max
=
emission_row_max
->
data
<
T
>
();
// The Eigen compution kernel will be invoked for multiple times.
const
T
*
x_exps
=
emission_exps
->
data
<
T
>
();
// Some computations regardless of sequence inforamtion could be performed
const
T
*
w
=
trans_weights
->
data
<
T
>
();
// only one time for the entire batch. This potentially could be optimized.
const
T
*
w_exps
=
trans_weight_exps
->
data
<
T
>
();
T
*
alpha_value
=
alpha
->
data
<
T
>
();
auto
x_dims
=
emission
.
dims
();
auto
x_dims
=
emission
->
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
const
size_t
tag_num
=
x_dims
[
1
];
T
*
alpha_value
=
alpha
.
data
<
T
>
();
auto
x
=
EigenMatrix
<
T
>::
From
(
emission
);
auto
x_row_max
=
EigenMatrix
<
T
>::
From
(
emission_row_max
);
const
int
class_dim
=
1
;
x_row_max
.
device
(
*
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
class_dim
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
int
(
seq_length
),
1
));
auto
x_exps
=
EigenMatrix
<
T
>::
From
(
emission_exps
);
x_exps
.
device
(
*
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
(
x
-
x_row_max
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
))).
exp
();
auto
w
=
EigenMatrix
<
T
>::
From
(
trans_weights
);
auto
w_exps
=
EigenMatrix
<
T
>::
From
(
trans_weight_exps
);
w_exps
.
device
(
*
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
w
.
exp
();
// The 1st row of w are transition weights for start mask.
// The 1st row of w are transition weights for start mask.
const
size_t
start_ridx
=
0
;
// The 2nd row of w are transition weights for end mask.
// The 2nd row of w are transition weights for end mask.
const
size_t
end_ridx
=
1
;
// Transition weights among other tags begins from the 3rd row of w.
// Transition weights among other tags begins from the 3rd row of w.
const
size_t
state_
base_r
idx
=
2
;
const
size_t
state_
trans_base_
idx
=
2
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
alpha_value
[
i
]
=
w_exps
(
start_ridx
,
i
)
*
x_exps
(
0
,
i
)
;
alpha_value
[
i
]
=
w_exps
[
i
]
*
x_exps
[
i
]
;
}
}
T
ll
=
-
x_row_max
(
0
,
1
)
-
std
::
log
(
NormalizeL1
(
alpha_value
,
tag_num
));
T
ll
=
-
x_row_max
[
0
]
-
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
,
tag_num
));
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
*
sum
+=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
*
w_exps
(
j
+
state_base_ridx
,
i
)
;
w_exps
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
]
;
}
}
alpha_value
[
k
*
tag_num
+
i
]
=
x_exps
(
k
,
i
)
*
sum
;
alpha_value
[
k
*
tag_num
+
i
]
=
x_exps
[
k
*
tag_num
+
i
]
*
sum
;
}
}
ll
-=
x_row_max
(
k
,
1
)
+
ll
-=
x_row_max
[
k
]
+
std
::
log
(
NormalizeL1
(
alpha_value
+
k
*
tag_num
,
tag_num
));
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
+
k
*
tag_num
,
tag_num
));
}
}
T
sum
=
0.
;
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
sum
+=
alpha_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
*
w_exps
(
end_ridx
,
i
)
;
sum
+=
alpha_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
*
w_exps
[
tag_num
+
i
]
;
}
}
ll
-=
std
::
log
(
sum
);
ll
-=
std
::
log
(
sum
);
const
int
*
lbl
=
label
.
data
<
int
>
();
const
int
*
lbl
=
label
->
data
<
int
>
();
PADDLE_ENFORCE_LT
(
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
"An invalid tag label that execesses the largest tag number."
);
"An invalid tag label that execesses the largest tag number."
);
// Calculate the nominator part, which depends on the label sequence.
// Calculate the nominator part, which depends on the label sequence.
ll
+=
w
(
start_ridx
,
lbl
[
0
])
+
x
(
start_ridx
,
lbl
[
0
])
+
ll
+=
w
[
lbl
[
0
]]
/*start transition*/
+
x
[
lbl
[
0
]]
+
w
(
end_ridx
,
lbl
[
seq_length
-
1
])
;
w
[
tag_num
+
lbl
[
seq_length
-
1
]]
/*end transition*/
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
ll
+=
x
(
k
,
lbl
[
k
])
+
w
(
lbl
[
k
-
1
],
lbl
[
k
])
;
ll
+=
x
[
k
*
tag_num
+
lbl
[
k
]]
+
w
[
lbl
[
k
-
1
]
*
tag_num
+
lbl
[
k
]]
;
return
-
ll
;
return
-
ll
;
}
}
private:
T
NormalizeL1
(
T
*
x
,
size_t
len
)
const
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
sum
+=
x
[
i
];
// (This comment is from the old LinearChainCRFLayer.)
// Right now, we just bet that sum won't be zero. If this really happens, we
// will figure out what should be done then.
PADDLE_ENFORCE
(
sum
,
"The unnormalized probabilites of all possible unfinished "
"sequences must be greater than 0."
);
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
x
[
i
]
/=
sum
;
return
sum
;
}
};
};
class
LinearChainCrfGradOp
:
public
framework
::
OperatorWithKernel
{
class
LinearChainCrfGradOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"EmissionExps"
),
"Input(EmissionExps) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"TransitionExps"
),
"Input(TransitionExps) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"LogLikelihood"
)),
"Input(LogLikelihood@GRAD) shoudl be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Emission"
)),
"Output(Emission@GRAD) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Transition"
)),
"Output(Transition@GRAD) should be not null."
);
auto
emission_exps_dims
=
ctx
->
GetInputDim
(
"EmissionExps"
);
auto
transition_exps_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"TransitionExps"
));
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
emission_exps_dims
.
size
(),
2UL
,
"The Input(EmissionExps) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
transition_exps_dims
.
size
(),
2UL
,
"The Input(TransitionExps) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
transition_exps_dims
[
0
]
-
2
,
transition_exps_dims
[
1
],
"An invalid dimension for the Input(TransitionExps), which should "
"be a 2-D tensor with shape [(D + 2) x D]."
);
PADDLE_ENFORCE_EQ
(
emission_exps_dims
[
1
],
transition_exps_dims
[
1
],
"The 2nd dimension of the Input(EmissionExps) and the "
"Input(TransitionExps) should be equal to the tag number."
);
PADDLE_ENFORCE
(
label_dims
.
size
()
==
2UL
&&
label_dims
[
1
]
==
1UL
,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1."
);
PADDLE_ENFORCE_EQ
(
emission_exps_dims
[
0
],
label_dims
[
0
],
"The height of Input(EmissionExps) and the height of Input(Label) "
"should be the same."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Emission"
),
emission_exps_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Transition"
),
transition_exps_dims
);
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -334,6 +390,134 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
...
@@ -334,6 +390,134 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
"This kernel only runs on CPU."
);
auto
*
ll_grad
=
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
));
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
emission_exps
=
ctx
.
Input
<
LoDTensor
>
(
"EmissionExps"
);
auto
*
transition_exps
=
ctx
.
Input
<
Tensor
>
(
"TransitionExps"
);
auto
*
alpha
=
ctx
.
Input
<
Tensor
>
(
"Alpha"
);
auto
*
emission_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
));
emission_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
trans_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Transition"
));
if
(
trans_grad
)
trans_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
emission_dims
=
emission_exps
->
dims
();
// Beta is the memo table used in dynamic programming to calculate the
// backwark vectors. For a backward vector i (the i-th row of beta), it
// captures the unnormalized probabilities of partial sequences starting at
// position i.
Tensor
beta
;
beta
.
mutable_data
<
T
>
(
emission_dims
,
platform
::
CPUPlace
());
auto
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
auto
x_grad
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
out_grad
=
EigenMatrix
<
T
>::
From
(
*
ll_grad
);
x_grad
.
device
(
place
)
=
x_grad
*
out_grad
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
emission_dims
[
1
]));
const
size_t
level
=
0
;
// currently, only support sequence.
auto
lod
=
emission_exps
->
lod
();
for
(
size_t
i
=
0
;
i
<
lod
[
level
].
size
()
-
1
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
+
1
]);
const
Tensor
one_seq_emission_exps
=
emission_exps
->
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq_alpha
=
alpha
->
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_beta
=
beta
.
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_emission_grad
=
emission_grad
->
Slice
<
T
>
(
start_pos
,
end_pos
);
BackwardOneSequence
(
ctx
.
device_context
(),
&
one_seq_emission_exps
,
transition_exps
,
&
one_seq_alpha
,
&
one_seq_label
,
&
one_seq_beta
,
trans_grad
,
&
one_seq_emission_grad
);
}
}
protected:
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
*
emission_exps
,
const
Tensor
*
transition_exps
,
const
Tensor
*
alpha
,
const
Tensor
*
label
,
Tensor
*
beta
,
Tensor
*
transition_grad
,
Tensor
*
emission_grad
)
const
{
const
T
*
w_exps
=
transition_exps
->
data
<
T
>
();
const
T
*
x_exps
=
emission_exps
->
data
<
T
>
();
const
int
*
label_value
=
label
->
data
<
int
>
();
T
*
beta_value
=
beta
->
data
<
T
>
();
auto
x_dims
=
emission_exps
->
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
const
size_t
state_trans_base_idx
=
2
;
// Calculate the backwark vectors beta.
for
(
int
i
=
0
;
i
<
tag_num
;
++
i
)
beta_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
=
w_exps
[
tag_num
+
i
];
NormalizeL1
<
T
>
(
beta_value
+
(
seq_length
-
1
)
*
tag_num
,
tag_num
);
for
(
int
k
=
seq_length
-
2
;
k
>=
0
;
--
k
)
{
for
(
int
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
int
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
x_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
beta_value
[(
k
+
1
)
*
tag_num
+
j
]
*
x_exps
[(
k
+
1
)
*
tag_num
+
j
];
}
beta_value
[
k
*
tag_num
+
i
]
=
sum
;
}
NormalizeL1
<
T
>
(
beta_value
+
k
*
tag_num
,
tag_num
);
}
auto
alpha_mat
=
EigenMatrix
<
T
>::
From
(
*
alpha
);
auto
beta_mat
=
EigenMatrix
<
T
>::
From
(
*
beta
);
auto
x_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
*
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
x_grad_mat
.
device
(
*
place
)
=
alpha_mat
*
beta_mat
;
x_grad_mat
/=
x_grad_mat
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
for
(
int
k
=
0
;
k
<
seq_length
;
++
k
)
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
1
);
if
(
transition_grad
)
{
T
*
trans_grad
=
transition_grad
->
data
<
T
>
();
for
(
size_t
k
=
0
;
k
<
tag_num
;
++
k
)
{
trans_grad
[
k
]
+=
x_grad_mat
(
/*from start state*/
0
,
k
);
trans_grad
[
tag_num
+
k
]
+=
x_grad_mat
(
/*to end state*/
seq_length
-
1
,
k
);
}
auto
x_exps_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_exps
);
beta_mat
=
beta_mat
*
x_exps_mat
;
beta_mat
/=
beta_mat
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
for
(
int
k
=
1
;
k
<
seq_length
;
++
k
)
{
T
sum
=
0.
;
for
(
int
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
int
j
=
0
;
j
<
tag_num
;
++
j
)
sum
+=
x_exps_mat
(
i
,
j
)
*
alpha_mat
(
k
-
1
,
i
)
*
beta_mat
(
k
,
j
);
}
sum
=
static_cast
<
T
>
(
1
)
/
sum
;
for
(
int
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
int
j
=
0
;
j
<
tag_num
;
++
j
)
{
trans_grad
[(
i
+
2
)
*
tag_num
+
j
]
+=
sum
*
x_exps_mat
(
i
,
j
)
*
alpha_mat
(
k
-
1
,
i
)
*
beta_mat
(
k
,
j
);
}
}
trans_grad
[
label_value
[
k
-
1
]
*
tag_num
+
label_value
[
k
]]
-=
static_cast
<
T
>
(
1
);
}
}
}
}
};
};
...
...
paddle/operators/linear_chain_crf_op.h
浏览文件 @
80a5ee00
...
@@ -30,20 +30,24 @@ class LinearChainCrfOpKernel : public framework::OpKernel<T> {
...
@@ -30,20 +30,24 @@ class LinearChainCrfOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
protected:
protected:
T
ForwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
T
ForwardOneSequence
(
const
Tensor
*
emission
,
const
Tensor
*
emission_row_max
,
const
Tensor
&
emission
,
Tensor
&
emission_row_max
,
const
Tensor
*
emission_exps
,
const
Tensor
*
trans_weights
,
Tensor
&
emission_exps
,
const
Tensor
&
trans_weights
,
const
Tensor
*
trans_weight_exps
,
const
Tensor
*
label
,
Tensor
&
trans_weight_exps
,
const
Tensor
&
label
,
Tensor
*
alpha
)
const
;
Tensor
&
a
)
const
;
private:
T
NormalizeL1
(
T
*
x
,
size_t
len
)
const
;
};
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
class
LinearChainCrfGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
LinearChainCrfGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
protected:
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
*
emission_exps
,
const
Tensor
*
transition_exps
,
const
Tensor
*
alpha
,
const
Tensor
*
label
,
Tensor
*
beta
,
Tensor
*
transition_grad
,
Tensor
*
emission_grad
)
const
;
};
};
}
// namespace operators
}
// namespace operators
...
...
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
浏览文件 @
80a5ee00
...
@@ -4,10 +4,12 @@ import numpy as np
...
@@ -4,10 +4,12 @@ import numpy as np
from
op_test
import
OpTest
from
op_test
import
OpTest
import
pdb
class
LinearChainCrfForward
(
object
):
class
LinearChainCrfForward
(
object
):
def
__init__
(
self
,
seq_start_positions
,
emission_weights
,
def
__init__
(
self
,
seq_start_positions
,
emission_weights
,
emission_row_max
,
transition_weight
s
,
labels
):
emission_exps
,
transition_weights
,
transition_exp
s
,
labels
):
self
.
tag_num
=
emission_weights
.
shape
[
1
]
self
.
tag_num
=
emission_weights
.
shape
[
1
]
self
.
seq_num
=
len
(
seq_start_positions
)
-
1
self
.
seq_num
=
len
(
seq_start_positions
)
-
1
...
@@ -15,25 +17,25 @@ class LinearChainCrfForward(object):
...
@@ -15,25 +17,25 @@ class LinearChainCrfForward(object):
self
.
labels
=
labels
self
.
labels
=
labels
self
.
x
=
emission_weights
self
.
x
=
emission_weights
self
.
x_row_max
=
np
.
amax
(
self
.
x
,
axis
=
1
,
keepdims
=
True
)
self
.
x_row_max
=
emission_row_max
self
.
x_exps
=
np
.
exp
(
self
.
x
-
self
.
x_row_max
)
self
.
x_exps
=
emission_exps
# unnormalized logits of the transition weights for the start mark.
# unnormalized logits of the transition weights for the start mark.
self
.
a
=
transition_weights
[
0
,
:]
self
.
a
=
transition_weights
[
0
,
:]
self
.
a_exps
=
np
.
exp
(
self
.
a
)
self
.
a_exps
=
transition_exps
[
0
,
:]
# unnormalized logits of the transition weights for the end mark.
# unnormalized logits of the transition weights for the end mark.
self
.
b
=
transition_weights
[
1
,
:]
self
.
b
=
transition_weights
[
1
,
:]
self
.
b_exps
=
np
.
exp
(
self
.
b
)
self
.
b_exps
=
transition_exps
[
1
,
:]
# unnormalized logits of the transition weights for all the other tags.
# unnormalized logits of the transition weights for all the other tags.
self
.
w
=
transition_weights
[
2
:,
:]
self
.
w
=
transition_weights
[
2
:,
:]
self
.
w_exps
=
np
.
exp
(
self
.
w
)
self
.
w_exps
=
transition_exps
[
2
:,
:]
# The output of linear chain crf operator.
# The output of linear chain crf operator.
# alpha is a memo table in dynamic programming to caculate
# alpha is a memo table in dynamic programming to caculate
# nomalization factor.
# nomalization factor.
self
.
alpha
=
np
.
zeros
(
self
.
alpha
=
np
.
zeros
(
(
seq_start_positions
[
-
1
],
self
.
tag_num
),
dtype
=
"float32"
)
(
seq_start_positions
[
-
1
],
self
.
tag_num
),
dtype
=
"float32"
)
self
.
log_likelihood
=
np
.
zeros
((
self
.
tag
_num
,
1
))
self
.
log_likelihood
=
np
.
zeros
((
self
.
seq
_num
,
1
))
def
_l1_norm
(
self
,
x
):
def
_l1_norm
(
self
,
x
):
s
=
np
.
sum
(
x
)
s
=
np
.
sum
(
x
)
...
@@ -91,11 +93,15 @@ class TestLinearChainCrfOp(OpTest):
...
@@ -91,11 +93,15 @@ class TestLinearChainCrfOp(OpTest):
lod
=
[[
0
]]
lod
=
[[
0
]]
for
i
in
range
(
SEQ_NUM
):
for
i
in
range
(
SEQ_NUM
):
lod
[
-
1
].
append
(
lod
[
-
1
][
-
1
]
+
random
.
randint
(
1
,
MAX_SEQ_LEN
))
lod
[
-
1
].
append
(
lod
[
-
1
][
-
1
]
+
random
.
randint
(
1
,
MAX_SEQ_LEN
))
emission
=
np
.
random
.
uniform
(
-
1
,
1
,
emission
=
np
.
random
.
uniform
(
-
1
,
1
,
[
lod
[
-
1
][
-
1
],
TAG_NUM
]).
astype
(
"float32"
)
[
lod
[
-
1
][
-
1
],
TAG_NUM
]).
astype
(
"float32"
)
emission_row_max
=
np
.
amax
(
emission
,
axis
=
1
,
keepdims
=
True
)
emission_exps
=
np
.
exp
(
emission
-
emission_row_max
)
transition
=
np
.
random
.
uniform
(
-
0.5
,
0.5
,
transition
=
np
.
random
.
uniform
(
-
0.5
,
0.5
,
[
TAG_NUM
+
2
,
TAG_NUM
]).
astype
(
"float32"
)
[
TAG_NUM
+
2
,
TAG_NUM
]).
astype
(
"float32"
)
transition_exps
=
np
.
exp
(
transition
)
labels
=
np
.
random
.
randint
(
labels
=
np
.
random
.
randint
(
low
=
0
,
high
=
TAG_NUM
,
size
=
(
lod
[
-
1
][
-
1
],
1
),
dtype
=
"int32"
)
low
=
0
,
high
=
TAG_NUM
,
size
=
(
lod
[
-
1
][
-
1
],
1
),
dtype
=
"int32"
)
...
@@ -105,10 +111,17 @@ class TestLinearChainCrfOp(OpTest):
...
@@ -105,10 +111,17 @@ class TestLinearChainCrfOp(OpTest):
"Label"
:
(
labels
,
lod
)
"Label"
:
(
labels
,
lod
)
}
}
crf
=
LinearChainCrfForward
(
lod
[
0
],
emission
,
transition
,
labels
)
crf
=
LinearChainCrfForward
(
lod
[
0
],
emission
,
emission_row_max
,
emission_exps
,
transition
,
transition_exps
,
labels
)
alpha
,
log_likelihood
=
crf
.
crf_forward_compute
()
alpha
,
log_likelihood
=
crf
.
crf_forward_compute
()
self
.
outputs
=
{
"Alpha"
:
alpha
,
"LogLikelihood"
:
log_likelihood
}
self
.
outputs
=
{
"Alpha"
:
alpha
,
"EmissionExps"
:
emission_exps
,
"TransitionExps"
:
transition_exps
,
"LogLikelihood"
:
log_likelihood
}
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"linear_chain_crf"
self
.
op_type
=
"linear_chain_crf"
...
@@ -117,6 +130,13 @@ class TestLinearChainCrfOp(OpTest):
...
@@ -117,6 +130,13 @@ class TestLinearChainCrfOp(OpTest):
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"Emission"
,
"Transition"
],
"LogLikelihood"
)
def
test_check_grad_ignore_transition
(
self
):
self
.
check_grad
(
[
"Emission"
],
"LogLikelihood"
,
no_grad_set
=
set
(
"Transition"
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录