提交 7f5f4cad 编写于 作者: T Travis CI

Deploy to GitHub Pages: d130d181

上级 3efa499e
此差异已折叠。
......@@ -381,7 +381,7 @@ layers.py for the maths) does. A promising benefit is that LSTM memory
cell states, or hidden states in every time step are accessible to for the
user. This is especially useful in attention model. If you do not need to
access to the internal states of the lstm, but merely use its outputs,
it is recommanded to use the lstmemory, which is relatively faster than
it is recommended to use the lstmemory, which is relatively faster than
lstmemory_group.</p>
<p>NOTE: In PaddlePaddle&#8217;s implementation, the following input-to-hidden
multiplications:
......@@ -736,7 +736,7 @@ compute attention weight.</li>
<h2>outputs<a class="headerlink" href="#outputs" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.networks.</code><code class="descname">outputs</code><span class="sig-paren">(</span><em>layers</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.trainer_config_helpers.networks.</code><code class="descname">outputs</code><span class="sig-paren">(</span><em>layers</em>, <em>*args</em><span class="sig-paren">)</span></dt>
<dd><p>Declare the end of network. Currently it will only calculate the
input/output order of network. It will calculate the predict network or
train network&#8217;s output automatically.</p>
......
......@@ -92,11 +92,20 @@ Each PoolingType contains one parameter:</p>
<h1>MaxPooling<a class="headerlink" href="#maxpooling" title="Permalink to this headline"></a></h1>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.trainer_config_helpers.poolings.</code><code class="descname">MaxPooling</code></dt>
<em class="property">class </em><code class="descclassname">paddle.trainer_config_helpers.poolings.</code><code class="descname">MaxPooling</code><span class="sig-paren">(</span><em>output_max_index=None</em><span class="sig-paren">)</span></dt>
<dd><p>Max pooling.</p>
<p>Return the very large values for each dimension in sequence or time steps.</p>
<div class="math">
\[max(samples\_of\_a\_sequence)\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>output_max_index</strong> (<em>bool|None</em>) &#8211; True if output sequence max index instead of max
value. None means use default value in proto.</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册