未验证 提交 7edfac9e 编写于 作者: W wangzhen38 提交者: GitHub

[rm fluid] for the non distribution (#50313)

上级 d93c63a0
......@@ -12,20 +12,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert the fluid program to distributed data-parallelism programs.
Convert the static program to distributed data-parallelism programs.
"""
import os
import sys
import warnings
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import default_main_program
from paddle.fluid.framework import default_startup_program
from paddle.fluid.framework import Program
import paddle
from paddle.framework import core
from paddle.static import (
default_main_program,
default_startup_program,
Program,
Executor,
)
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.optimizer import Optimizer
......@@ -274,7 +276,7 @@ class FleetTranspiler(Fleet):
)
)
fluid.io.load_vars(
paddle.static.load_vars(
self._executor,
main_program=self.main_program,
dirname=model_dir,
......@@ -430,8 +432,8 @@ class FleetTranspiler(Fleet):
)
# Todo(MrChengmo): support recv&save GPU-Kernel for ps-gpu model save
if not isinstance(executor.place, fluid.CPUPlace):
save_executor = Executor(fluid.CPUPlace())
if not isinstance(executor.place, paddle.CPUPlace):
save_executor = Executor(paddle.CPUPlace())
else:
save_executor = executor
......@@ -440,7 +442,7 @@ class FleetTranspiler(Fleet):
raise TypeError(
"in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed"
)
fluid.io.save_inference_model(
paddle.static.save_inference_model(
dirname,
feeded_var_names,
target_vars,
......@@ -451,7 +453,7 @@ class FleetTranspiler(Fleet):
export_for_deployment,
)
else:
fluid.io.save_inference_model(
paddle.static.save_inference_model(
dirname,
feeded_var_names,
target_vars,
......@@ -733,7 +735,7 @@ class FleetTranspiler(Fleet):
)
)
fluid.io.save_vars(
paddle.static.save_vars(
executor,
main_program=main_program,
dirname=dirname,
......@@ -766,8 +768,8 @@ class FleetTranspiler(Fleet):
"in fleet.save_persistables() function, executor must be as Executor type"
)
# Todo(MrChengmo): support recv&save GPU-Kernel for ps-gpu model save
if not isinstance(executor.place, fluid.CPUPlace):
save_executor = Executor(fluid.CPUPlace())
if not isinstance(executor.place, paddle.CPUPlace):
save_executor = Executor(paddle.CPUPlace())
else:
save_executor = executor
......@@ -894,8 +896,8 @@ class ParameterServerOptimizer(DistributedOptimizer):
return _main, _startup
def _build_pserver_programs(self, compiled_config):
_main = fluid.Program()
_startup = fluid.Program()
_main = paddle.static.Program()
_startup = paddle.static.Program()
if not compiled_config.is_geo_mode():
_main = server.add_listen_and_serv_pass(_main, compiled_config)
......
......@@ -14,10 +14,9 @@
import warnings
import paddle.fluid.core as core
import paddle.fluid.framework as framework
import paddle.framework.core as core
import paddle
from paddle.fluid.transpiler.details.program_utils import delete_ops
from paddle.fluid.incubate.fleet.parameter_server.ir.trainer_pass import (
find_heter_ops,
)
......@@ -60,7 +59,7 @@ def split_heter_worker_ops_pass(program, config, stage_id, device):
program_block_ops = union_forward_gradient_op(program_block_ops)
block_vars_detail = find_block_joints(program, program_block_ops, heter_ops)
heter_program = framework.Program()
heter_program = paddle.static.Program()
create_heter_program(
program,
config,
......
......@@ -14,8 +14,7 @@
import collections
from paddle.fluid import core
from paddle.fluid.framework import Block
from paddle.framework import core, Block
from paddle.fluid.incubate.fleet.parameter_server.ir.public import (
_get_optimize_ops,
......
......@@ -14,15 +14,13 @@
from functools import reduce
import paddle
import collections
import math
import os
import warnings
import logging
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.core import CommContext
import paddle.fluid.framework as framework
from paddle.framework import core
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
from paddle.fluid.incubate.fleet.parameter_server.ir import vars_metatools
from paddle.fluid.incubate.fleet.parameter_server.ir.ps_dispatcher import (
......@@ -415,7 +413,7 @@ class CompileTimeStrategy:
trainer_id = self.get_role_id()
aggregate = True
ctx = CommContext(
ctx = core.CommContext(
name,
names,
eps,
......@@ -493,7 +491,7 @@ class CompileTimeStrategy:
is_distributed,
)
ctx = CommContext(
ctx = core.CommContext(
param_ctx.var_name(),
param_ctx.split_varnames(),
param_ctx.split_endpoints(),
......@@ -659,7 +657,7 @@ class CompileTimeStrategy:
]
var_numel = reduce(lambda x, y: x * y, var.shape[1:])
sparse_ctx = CommContext(
sparse_ctx = core.CommContext(
grad_name,
[grad_name],
["127.0.0.1:6071"],
......@@ -714,7 +712,7 @@ class CompileTimeStrategy:
grad_name = "Dense@Grad"
trainer_id = self.get_role_id()
aggregate = True
dense_ctx = CommContext(
dense_ctx = core.CommContext(
grad_name,
[grad_name],
["127.0.0.1:6071"],
......@@ -742,7 +740,7 @@ class CompileTimeStrategy:
var_numel = reduce(lambda x, y: x * y, var.shape)
grad_name = origin_varname
aggregate = True
dense_ctx = CommContext(
dense_ctx = core.CommContext(
grad_name,
[grad_name],
["127.0.0.1:6071"],
......@@ -809,7 +807,7 @@ class CompileTimeStrategy:
shape = list(var.shape)
shape[0] = 0 if is_distributed else shape[0]
sparse_ctx = CommContext(
sparse_ctx = core.CommContext(
grad_name,
splited_varname,
ep_list,
......@@ -901,7 +899,7 @@ class CompileTimeStrategy:
endpoints = self.get_ps_endpoints()
sections = [1] * len(endpoints)
names = [name] * len(endpoints)
ctx = CommContext(
ctx = core.CommContext(
name,
names,
endpoints,
......@@ -1417,7 +1415,7 @@ def _get_lr_sheduler_program(lr_sheduler, lr_param_dict, lr_decay_steps):
NaturalExpDecay,
InverseTimeDecay,
)
from paddle.fluid.layers.learning_rate_scheduler import (
from paddle.static.learning_rate_scheduler import (
exponential_decay,
noam_decay,
piecewise_decay,
......@@ -1425,12 +1423,14 @@ def _get_lr_sheduler_program(lr_sheduler, lr_param_dict, lr_decay_steps):
inverse_time_decay,
)
decay_main_program = fluid.framework.Program()
decay_startup_program = fluid.framework.Program()
decay_main_program = paddle.static.Program()
decay_startup_program = paddle.static.Program()
lr_name = ""
if isinstance(lr_sheduler, ExponentialDecay):
with fluid.program_guard(decay_main_program, decay_startup_program):
with paddle.static.program_guard(
decay_main_program, decay_startup_program
):
lr = exponential_decay(1.0, lr_decay_steps, lr_sheduler.gamma, True)
lr_name = lr.name
logging.warn(
......@@ -1441,7 +1441,9 @@ def _get_lr_sheduler_program(lr_sheduler, lr_param_dict, lr_decay_steps):
% lr_decay_steps
)
elif isinstance(lr_sheduler, NoamDecay):
with fluid.program_guard(decay_main_program, decay_startup_program):
with paddle.static.program_guard(
decay_main_program, decay_startup_program
):
lr = noam_decay(lr_sheduler.d_model, lr_sheduler.warmup_steps, 1.0)
lr_name = lr.name
logging.warn(
......@@ -1449,7 +1451,9 @@ def _get_lr_sheduler_program(lr_sheduler, lr_param_dict, lr_decay_steps):
% lr_sheduler.warmup_steps
)
elif isinstance(lr_sheduler, NaturalExpDecay):
with fluid.program_guard(decay_main_program, decay_startup_program):
with paddle.static.program_guard(
decay_main_program, decay_startup_program
):
lr = natural_exp_decay(1.0, lr_decay_steps, lr_sheduler.gamma, True)
lr_name = lr.name
logging.warn(
......@@ -1460,7 +1464,9 @@ def _get_lr_sheduler_program(lr_sheduler, lr_param_dict, lr_decay_steps):
% lr_decay_steps
)
elif isinstance(lr_sheduler, InverseTimeDecay):
with fluid.program_guard(decay_main_program, decay_startup_program):
with paddle.static.program_guard(
decay_main_program, decay_startup_program
):
lr = inverse_time_decay(
1.0, lr_decay_steps, lr_sheduler.gamma, True
)
......
......@@ -19,9 +19,9 @@ import warnings
import math
from functools import reduce
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
import paddle
from paddle.framework import core
import paddle.framework as framework
from paddle.fluid.transpiler.details.program_utils import delete_ops
from paddle.fluid.incubate.fleet.parameter_server.ir.public import (
......@@ -962,7 +962,7 @@ def find_heter_ops(program, default_device="cpu"):
if len(heter_ops) == 0:
warnings.warn(
"No heterogeneous OP was found in your program , "
" please using fluid.device_guard() to run OPs on different device."
" please using paddle.static.device_guard() to run OPs on different device."
)
total_heter_ops = 0
......@@ -1824,7 +1824,7 @@ def screen_persistables(program, var_list):
else:
var = program.global_block().vars[var_name]
if fluid.io.is_persistable(var):
if paddle.static.is_persistable(var):
need_remove.append(var_name)
for var_name in need_remove:
......
......@@ -13,8 +13,8 @@
# limitations under the License.
from functools import reduce
from paddle.fluid.framework import Variable
from paddle.fluid import core
from paddle.framework.io import Variable
from paddle.framework import core
dtype_to_size = {
core.VarDesc.VarType.FP16: 2,
......
......@@ -16,8 +16,7 @@ import os
import sys
from .optimizer_factory import *
from google.protobuf import text_format
import paddle.fluid as fluid
from paddle.fluid.framework import Program
from paddle.framework import core
from paddle.fluid.incubate.fleet.base.fleet_base import Fleet
from paddle.fluid.incubate.fleet.base.mode import Mode
......@@ -44,10 +43,10 @@ class PSLib(Fleet):
if role_maker is None:
role_maker = MPISymetricRoleMaker()
super().init(role_maker)
self._fleet_ptr = fluid.core.Fleet()
self._fleet_ptr = core.Fleet()
self._heter_ptr = None
if isinstance(role_maker, HeterRoleMaker):
self._heter_ptr = fluid.core.Heter()
self._heter_ptr = core.Heter()
def _set_client_communication_config(
self, request_timeout_ms, connect_timeout_ms, max_retry
......
......@@ -14,8 +14,8 @@
"""Optimizer Factory."""
__all__ = ["DistributedAdam", "FLEET_GLOBAL_DICT"]
import paddle.fluid as fluid
from paddle.fluid import core
import paddle
from paddle.framework import core
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
from paddle.fluid.distribute_lookup_table import (
find_distributed_lookup_table_inputs,
......@@ -504,7 +504,7 @@ class DistributedAdam(DistributedOptimizerImplBase):
prog_id = str(id(loss.block.program))
# param_grads of program
params_grads = sorted(
fluid.backward.append_backward(loss, parameters, no_grad_set),
paddle.static.append_backward(loss, parameters, no_grad_set),
key=lambda x: x[0].name,
)
......
......@@ -61,6 +61,7 @@ from ..fluid.framework import (
OpProtoHolder,
) # noqa: F401
from ..fluid.framework import _dygraph_tracer # noqa: F401
from ..fluid.framework import generate_control_dev_var_name # noqa: F401
from ..fluid.layer_helper import LayerHelper # noqa: F401
from ..fluid.framework import in_dygraph_mode # noqa: F401
......
......@@ -76,6 +76,7 @@ from ..fluid.io import batch # noqa: F401
from ..fluid.contrib.layers import ctr_metric_bundle # noqa: F401
from ..fluid.layers import exponential_decay # noqa: F401
from ..fluid.layers import learning_rate_scheduler # noqa: F401
from .nn.metric import auc # noqa: F401
from .nn.metric import accuracy # noqa: F401
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册