Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7d0355cd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7d0355cd
编写于
5月 26, 2017
作者:
X
xuwei06
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix V2 API
上级
da83d286
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
278 addition
and
623 deletion
+278
-623
paddle/parameter/Parameter.h
paddle/parameter/Parameter.h
+1
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+17
-14
python/paddle/trainer_config_helpers/config_parser_utils.py
python/paddle/trainer_config_helpers/config_parser_utils.py
+18
-4
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+6
-0
python/paddle/v2/evaluator.py
python/paddle/v2/evaluator.py
+1
-13
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+204
-542
python/paddle/v2/networks.py
python/paddle/v2/networks.py
+1
-14
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+9
-9
python/paddle/v2/tests/test_rnn_layer.py
python/paddle/v2/tests/test_rnn_layer.py
+7
-0
python/paddle/v2/tests/test_topology.py
python/paddle/v2/tests/test_topology.py
+6
-6
python/paddle/v2/topology.py
python/paddle/v2/topology.py
+8
-21
未找到文件。
paddle/parameter/Parameter.h
浏览文件 @
7d0355cd
...
...
@@ -324,6 +324,7 @@ protected:
std
::
vector
<
std
::
shared_ptr
<
IParameterUpdaterHook
>>
updaterHooks_
;
public:
void
setSharedCount
(
int
cnt
)
{
sharedCount_
=
cnt
;
}
int
getSharedCount
()
{
return
sharedCount_
;
}
bool
isSparse
()
{
return
config_
.
is_sparse
();
}
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
7d0355cd
...
...
@@ -3371,7 +3371,7 @@ def make_importer(config_dir, config_args):
return
Import
settings
=
dict
(
default_
settings
=
dict
(
batch_size
=
None
,
mini_batch_size
=
None
,
algorithm
=
'async_sgd'
,
...
...
@@ -3404,6 +3404,8 @@ settings = dict(
adam_beta2
=
0.999
,
adam_epsilon
=
1e-8
,
)
settings
=
copy
.
deepcopy
(
default_settings
)
settings_deprecated
=
dict
(
usage_ratio
=
1.
,
)
trainer_settings
=
dict
(
...
...
@@ -3544,10 +3546,8 @@ def update_g_config():
return
g_config
def
parse_config
(
trainer_config
,
config_arg_str
):
def
begin_parse
(
config_arg_str
=
''
):
'''
@param trainer_config: can be a string of config file name or a function name
with config logic
@param config_arg_str: a string of the form var1=val1,var2=val2. It will be
passed to config script as a dictionary CONFIG_ARGS
'''
...
...
@@ -3555,12 +3555,23 @@ def parse_config(trainer_config, config_arg_str):
for
hook
in
_parse_config_hooks
:
hook
()
config_args
=
{}
logger
.
findCaller
=
find_caller
logger
.
fatal
=
my_fatal
g_config
.
model_config
.
type
=
"nn"
global
g_current_submodel
,
g_root_submodel
g_root_submodel
=
g_config
.
model_config
.
sub_models
.
add
()
g_root_submodel
.
name
=
'root'
g_root_submodel
.
is_recurrent_layer_group
=
False
g_current_submodel
=
g_root_submodel
def
parse_config
(
trainer_config
,
config_arg_str
):
begin_parse
(
config_arg_str
)
config_args
=
{}
if
config_arg_str
:
config_args
=
dict
([
f
.
split
(
'='
)
for
f
in
config_arg_str
.
split
(
','
)])
...
...
@@ -3573,14 +3584,6 @@ def parse_config(trainer_config, config_arg_str):
extension_module
=
importlib
(
extension_module_name
)
g_extended_config_funcs
=
extension_module
.
get_config_funcs
(
g_config
)
g_config
.
model_config
.
type
=
'nn'
global
g_current_submodel
,
g_root_submodel
g_root_submodel
=
g_config
.
model_config
.
sub_models
.
add
()
g_root_submodel
.
name
=
'root'
g_root_submodel
.
is_recurrent_layer_group
=
False
g_current_submodel
=
g_root_submodel
if
hasattr
(
trainer_config
,
'__call__'
):
trainer_config
.
func_globals
.
update
(
make_config_environment
(
""
,
config_args
))
...
...
python/paddle/trainer_config_helpers/config_parser_utils.py
浏览文件 @
7d0355cd
...
...
@@ -12,7 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
paddle.trainer.config_parser
as
config_parser
from
paddle.proto.TrainerConfig_pb2
import
OptimizationConfig
'''
This file is a wrapper of formal config_parser. The main idea of this file is to
separete different config logic into different function, such as network configuration
...
...
@@ -20,7 +23,8 @@ separete different config logic into different function, such as network configu
'''
__all__
=
[
"parse_trainer_config"
,
"parse_network_config"
,
"parse_optimizer_config"
"parse_trainer_config"
,
"parse_network_config"
,
"parse_optimizer_config"
,
"reset_parser"
]
...
...
@@ -34,5 +38,15 @@ def parse_network_config(network_conf, config_arg_str=''):
def
parse_optimizer_config
(
optimizer_conf
,
config_arg_str
=
''
):
config
=
config_parser
.
parse_config
(
optimizer_conf
,
config_arg_str
)
return
config
.
opt_config
config_parser
.
settings
=
copy
.
deepcopy
(
config_parser
.
default_settings
)
optimizer_conf
()
opt_config
=
OptimizationConfig
()
for
k
,
v
in
config_parser
.
settings
.
iteritems
():
if
v
is
None
:
continue
opt_config
.
__setattr__
(
k
,
v
)
return
opt_config
def
reset_parser
():
config_parser
.
begin_parse
()
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
7d0355cd
...
...
@@ -285,6 +285,7 @@ class LayerOutput(object):
assert
size
is
not
None
assert
LayerType
.
is_layer_type
(
layer_type
)
self
.
name
=
name
self
.
full_name
=
MakeLayerNameInSubmodel
(
name
)
self
.
layer_type
=
layer_type
if
parents
is
not
None
and
type
(
parents
)
!=
list
:
parents
=
[
parents
]
...
...
@@ -3489,6 +3490,11 @@ def recurrent_group(step,
RecurrentLayerGroupEnd
(
name
=
name
)
for
layer_out
in
layer_outs
:
# Thee previous full_name is the name is the rnn group
# We need a full_name outside the rnn group
layer_out
.
full_name
=
MakeLayerNameInSubmodel
(
layer_out
.
name
)
if
len
(
layer_outs
)
==
1
:
return
layer_outs
[
0
]
else
:
...
...
python/paddle/v2/evaluator.py
浏览文件 @
7d0355cd
...
...
@@ -25,21 +25,9 @@ def initialize():
for
__ev_name__
in
filter
(
lambda
x
:
x
.
endswith
(
'_evaluator'
),
evs
.
__all__
):
__ev__
=
getattr
(
evs
,
__ev_name__
)
if
hasattr
(
__ev__
,
'argspec'
):
argspec
=
__ev__
.
argspec
else
:
argspec
=
inspect
.
getargspec
(
__ev__
)
parent_names
=
filter
(
lambda
x
:
x
in
[
'input'
,
'label'
,
'weight'
],
argspec
.
args
)
v2_ev
=
__convert_to_v2__
(
__ev_name__
,
parent_names
=
parent_names
,
is_default_name
=
'name'
in
argspec
.
args
,
attach_parent
=
True
)
__new_name__
=
convert_to_new_name
(
__ev_name__
)
globals
()[
__new_name__
]
=
v2_ev
globals
()[
__new_name__
]
=
__ev__
globals
()[
__new_name__
].
__name__
=
__new_name__
__all__
.
append
(
__new_name__
)
...
...
python/paddle/v2/layer.py
浏览文件 @
7d0355cd
...
...
@@ -32,392 +32,39 @@ The primary usage shows below.
"""
import
collections
import
inspect
import
re
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer.config_parser
import
\
RecurrentLayerGroupWithoutOutLinksBegin
,
RecurrentLayerGroupSetOutLink
,
\
RecurrentLayerGroupEnd
,
model_type
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
\
wrap_bias_attr_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.layers
import
RecurrentLayerGroupSetGenerator
,
Generator
from
paddle.trainer_config_helpers.layers
import
layer_support
import
activation
import
attr
import
data_type
from
config_base
import
Layer
,
__convert_to_v2__
__all__
=
[
'parse_network'
,
'data'
]
def
parse_network
(
output_layers
,
extra_layers
=
None
):
"""
Parse all layers in the neural network graph and
then generate a ModelConfig object.
.. note::
This function is used internally in paddle.v2 module. User should never
invoke this method.
:param output_layers: Output layers.
:type output_layers: Layer
:param extra_layers: Some layers in the neural network graph are not in the
path of output_layers.
:type extra_layers: Layer
:return: A ModelConfig object instance.
:rtype: ModelConfig
"""
if
not
isinstance
(
output_layers
,
collections
.
Sequence
):
output_layers
=
[
output_layers
]
if
extra_layers
is
not
None
and
not
isinstance
(
extra_layers
,
collections
.
Sequence
):
extra_layers
=
[
extra_layers
]
def
__real_func__
():
"""
__real_func__ is the function that config_parser.parse invoked. It is
the plain old paddle configuration function.
"""
context
=
dict
()
real_output
=
[
each
.
to_proto
(
context
=
context
)
for
each
in
output_layers
]
if
extra_layers
is
not
None
:
extra_output
=
[
each
.
to_proto
(
context
=
context
)
for
each
in
extra_layers
]
conf_helps
.
outputs
(
real_output
)
return
__parse__
(
__real_func__
)
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""
class
DataLayerV2
(
Layer
):
METHOD_NAME
=
'data_layer'
def
__init__
(
self
,
name
,
type
,
**
kwargs
):
assert
isinstance
(
type
,
data_type
.
InputType
)
self
.
type
=
type
self
.
__method_name__
=
'data_layer'
self
.
__kwargs__
=
kwargs
super
(
DataLayerV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
dict
())
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
args
[
'size'
]
=
self
.
type
.
dim
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__kwargs__
:
args
[
each
]
=
self
.
__kwargs__
[
each
]
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
def
__map_docstr__
(
doc
):
doc
=
re
.
sub
(
r
'(data = [^\)]+)\).*'
,
"data = paddle.layer.data(name=
\"
input
\"
, "
"type=paddle.data_type.dense_vector(1000))"
,
doc
)
doc
=
re
.
sub
(
r
':param size:.*'
,
':param type: Data type of this data layer'
,
doc
)
doc
=
re
.
sub
(
r
':type size:.*'
,
":type size: paddle.v2.data_type.InputType"
,
doc
)
return
doc
class
MemoryV2
(
Layer
):
def
__init__
(
self
,
name
,
extra_input
=
None
,
**
kwargs
):
"""
Init memory object, if memory is inited inside recurrent_group step
function, it may depend on a boot_layer that should be initialized
outside recurrent_group, so we:
1. add RecurrentLayerInput to extra_parent of self.
2. add boot_layer to the extra_parent of RecurrentLayerInput.
:param extra_input: list of RecurrentLayerInput
:type extra_input: [RecurrentLayerInput]
"""
self
.
name
=
name
super
(
MemoryV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
dict
())
self
.
__kwargs__
=
kwargs
self
.
__boot_layer_name__
=
None
if
'boot_layer'
in
kwargs
:
begin_of_current_rnn
=
[]
# TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
# function inside step.
st
=
inspect
.
stack
()
for
i
in
xrange
(
len
(
st
)):
locs
=
inspect
.
stack
()[
i
][
0
].
f_locals
keys
=
locs
.
keys
()
for
key
in
keys
:
val
=
locs
[
key
]
if
isinstance
(
val
,
RecurrentLayerInput
):
begin_of_current_rnn
.
append
(
val
)
elif
isinstance
(
val
,
collections
.
Sequence
):
for
v
in
val
:
if
isinstance
(
v
,
RecurrentLayerInput
):
begin_of_current_rnn
.
append
(
v
)
if
begin_of_current_rnn
:
break
assert
begin_of_current_rnn
is
not
None
for
extra
in
begin_of_current_rnn
:
self
.
append_extra_parent
(
extra
)
extra
.
append_extra_parent
(
kwargs
[
'boot_layer'
])
self
.
__boot_layer_name__
=
kwargs
[
'boot_layer'
].
name
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__kwargs__
:
args
[
each
]
=
self
.
__kwargs__
[
each
]
if
self
.
__boot_layer_name__
is
not
None
:
args
[
'boot_layer'
]
=
self
.
__context__
[
self
.
__boot_layer_name__
]
size
=
args
.
get
(
'size'
,
None
)
if
size
is
not
None
:
if
callable
(
size
):
real_size
=
size
()
else
:
real_size
=
size
args
[
'size'
]
=
real_size
return
conf_helps
.
memory
(
name
=
self
.
name
,
**
args
)
def
context_name
(
self
):
return
self
.
name
+
"#memory"
def
use_context_name
(
self
):
"""
memory layer will have the same name with some layer
:return:
"""
import
copy
import
paddle.trainer_config_helpers.layers
as
v1_layers
import
paddle.trainer.config_parser
as
cp
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
,
SubModelConfig
__all__
=
[
'data'
,
'parse_network'
]
__layer_map__
=
{}
def
__wrap__
(
f
):
def
wrapped
(
*
args
,
**
xargs
):
out
=
f
(
*
args
,
**
xargs
)
outs
=
out
if
not
isinstance
(
out
,
collections
.
Sequence
):
outs
=
[
out
]
for
l
in
outs
:
if
isinstance
(
l
,
v1_layers
.
LayerOutput
):
__layer_map__
[
l
.
full_name
]
=
l
return
out
return
wrapped
def
__need_to_keep__
(
name
):
if
name
in
[
'StaticInput'
,
'LayerType'
,
'layer_support'
]:
return
False
return
True
class
StaticInputV2
(
object
):
def
__init__
(
self
,
input
,
is_seq
=
False
,
size
=
None
):
assert
isinstance
(
input
,
LayerV2
)
self
.
name
=
input
.
name
self
.
input
=
input
self
.
is_seq
=
is_seq
self
.
size
=
size
# TODO(add size check)
# assert input.size is not None or size is not None
class
BaseGeneratedInputV2
(
object
):
def
__init__
(
self
):
self
.
bos_id
=
None
self
.
eos_id
=
None
def
before_real_step
(
self
):
raise
NotImplementedError
()
def
after_real_step
(
self
,
*
args
):
raise
NotImplementedError
()
class
GeneratedInputV2
(
BaseGeneratedInputV2
):
def
__init__
(
self
,
size
,
embedding_name
,
embedding_size
):
super
(
GeneratedInputV2
,
self
).
__init__
()
self
.
size
=
size
self
.
embedding_name
=
embedding_name
self
.
embedding_size
=
embedding_size
def
after_real_step
(
self
,
input
):
return
max_id
(
input
=
input
,
name
=
'__beam_search_predict__'
)
def
before_real_step
(
self
):
predict_id
=
memory
(
name
=
'__beam_search_predict__'
,
size
=
self
.
size
,
boot_with_const_id
=
self
.
bos_id
)
trg_emb
=
embedding
(
input
=
predict_id
,
size
=
self
.
embedding_size
,
param_attr
=
attr
.
ParamAttr
(
name
=
self
.
embedding_name
))
return
trg_emb
class
RecurrentLayerGroupSetGeneratorV2
(
Layer
):
def
__init__
(
self
,
eos_name
,
max_length
,
beam_size
,
num_results_per_sample
):
self
.
eos_name
=
eos_name
self
.
max_length
=
max_length
self
.
beam_size
=
beam_size
self
.
num_results_per_sample
=
num_results_per_sample
super
(
RecurrentLayerGroupSetGeneratorV2
,
self
).
__init__
(
name
=
eos_name
,
parent_layers
=
{})
def
to_proto_impl
(
self
,
**
kwargs
):
RecurrentLayerGroupSetGenerator
(
Generator
(
eos_layer_name
=
self
.
eos_name
,
max_num_frames
=
self
.
max_length
,
beam_size
=
self
.
beam_size
,
num_results_per_sample
=
self
.
num_results_per_sample
))
return
self
def
context_name
(
self
):
return
self
.
eos_name
+
".fake"
def
use_context_name
(
self
):
return
True
class
MixedLayerV2
(
Layer
):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class
AddToSealedMixedLayerExceptionV2
(
Exception
):
pass
def
__init__
(
self
,
size
=
0
,
input
=
None
,
name
=
None
,
act
=
None
,
bias_attr
=
None
,
layer_attr
=
None
):
self
.
__method_name__
=
'mixed_layer'
self
.
finalized
=
False
self
.
__inputs__
=
[]
if
input
is
not
None
:
self
.
__inputs__
=
input
other_kwargs
=
dict
()
other_kwargs
[
'name'
]
=
name
other_kwargs
[
'size'
]
=
size
other_kwargs
[
'act'
]
=
act
other_kwargs
[
'bias_attr'
]
=
bias_attr
other_kwargs
[
'layer_attr'
]
=
layer_attr
parent_layers
=
{
"input"
:
self
.
__inputs__
}
super
(
MixedLayerV2
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
def
__iadd__
(
self
,
other
):
if
not
self
.
finalized
:
self
.
__inputs__
.
append
(
other
)
return
self
else
:
raise
MixedLayerV2
.
AddToSealedMixedLayerExceptionV2
()
def
__enter__
(
self
):
assert
len
(
self
.
__inputs__
)
==
0
return
self
def
__exit__
(
self
,
*
args
,
**
kwargs
):
self
.
finalized
=
True
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
size
=
args
.
get
(
'size'
,
None
)
if
size
is
not
None
:
if
callable
(
size
):
real_size
=
size
()
else
:
real_size
=
size
args
[
'size'
]
=
real_size
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
**
args
)
@
wrap_name_default
(
"mixed"
)
@
wrap_act_default
(
act
=
activation
.
Linear
())
@
wrap_bias_attr_default
(
has_bias
=
False
)
@
layer_support
(
conf_helps
.
layers
.
ERROR_CLIPPING
,
conf_helps
.
layers
.
DROPOUT
)
def
mixed
(
size
=
0
,
name
=
None
,
input
=
None
,
act
=
None
,
bias_attr
=
False
,
layer_attr
=
None
):
return
MixedLayerV2
(
size
,
input
,
name
,
act
,
bias_attr
,
layer_attr
)
def
__need_to_wrap__
(
name
):
return
name
not
in
[
'AggregateLevel'
,
'ExpandLevel'
]
mixed
.
__doc__
=
conf_helps
.
mixed_layer
.
__doc__
class
RecurrentLayerInput
(
Layer
):
def
__init__
(
self
,
recurrent_name
,
index
,
parent_layers
,
reverse
):
parents_len
=
len
(
parent_layers
)
assert
parents_len
<=
1
if
parents_len
==
0
:
self
.
__parents__
=
[]
else
:
self
.
__parents__
=
parent_layers
.
values
()[
0
]
self
.
__recurrent_name__
=
recurrent_name
self
.
__reverse__
=
reverse
name
=
self
.
__parents__
[
index
].
name
if
index
>=
0
else
self
.
context_name
()
super
(
RecurrentLayerInput
,
self
).
__init__
(
name
=
name
,
parent_layers
=
parent_layers
)
def
context_name
(
self
):
return
self
.
__recurrent_name__
+
".begin"
def
to_proto_impl
(
self
,
**
kwargs
):
model_type
(
'recurrent_nn'
)
RecurrentLayerGroupWithoutOutLinksBegin
(
name
=
self
.
__recurrent_name__
,
in_links
=
map
(
lambda
x
:
x
.
name
,
self
.
__parents__
),
seq_reversed
=
self
.
__reverse__
)
return
self
class
RecurrentLayerOutput
(
Layer
):
def
__init__
(
self
,
recurrent_name
,
index
,
parent_layers
):
assert
len
(
parent_layers
)
==
1
self
.
__parents__
=
parent_layers
.
values
()[
0
]
super
(
RecurrentLayerOutput
,
self
).
__init__
(
name
=
self
.
__parents__
[
index
].
name
,
parent_layers
=
parent_layers
)
self
.
__recurrent_name__
=
recurrent_name
def
context_name
(
self
):
return
self
.
__recurrent_name__
+
".end"
def
to_proto_impl
(
self
,
**
kwargs
):
for
l
in
self
.
__parents__
:
RecurrentLayerGroupSetOutLink
(
l
.
name
)
RecurrentLayerGroupEnd
(
name
=
self
.
__recurrent_name__
)
LayerV2
=
Layer
data
=
DataLayerV2
data
.
__name__
=
'data'
AggregateLevel
=
conf_helps
.
AggregateLevel
ExpandLevel
=
conf_helps
.
ExpandLevel
memory
=
MemoryV2
memory
.
__name__
=
'memory'
memory
.
__doc__
=
conf_helps
.
memory
.
__doc__
def
__layer_name_mapping__
(
inname
):
if
inname
in
[
'data_layer'
,
'memory'
,
'mixed_layer'
,
'recurrent_group'
]:
# Do Not handle these layers
return
elif
inname
==
'maxid_layer'
:
def
__convert_name__
(
inname
):
if
inname
==
'maxid_layer'
:
return
'max_id'
elif
inname
.
endswith
(
'memory'
)
or
inname
.
endswith
(
'_seq'
)
or
inname
.
endswith
(
'_sim'
)
or
inname
==
'hsigmoid'
:
...
...
@@ -431,187 +78,202 @@ def __layer_name_mapping__(inname):
return
inname
elif
inname
.
endswith
(
"_layer"
):
return
inname
[:
-
len
(
"_layer"
)]
else
:
return
inname
def
__layer_name_mapping_parent_names__
(
inname
):
all_args
=
getattr
(
conf_helps
,
inname
).
argspec
.
args
return
filter
(
lambda
x
:
x
in
[
'input1'
,
'input2'
,
'label'
,
'input'
,
'a'
,
'b'
,
'expand_as'
,
'weights'
,
'vectors'
,
'weight'
,
'score'
,
'left'
,
'right'
,
'output_mem'
],
all_args
)
def
__convert_layer__
(
_new_name_
,
_old_name_
,
_parent_names_
):
global
__all__
__all__
.
append
(
_new_name_
)
globals
()[
new_name
]
=
__convert_to_v2__
(
_old_name_
,
_parent_names_
)
globals
()[
new_name
].
__name__
=
new_name
for
each_layer_name
in
dir
(
conf_helps
):
new_name
=
__layer_name_mapping__
(
each_layer_name
)
if
new_name
is
not
None
:
parent_names
=
__layer_name_mapping_parent_names__
(
each_layer_name
)
assert
len
(
parent_names
)
!=
0
,
each_layer_name
__convert_layer__
(
new_name
,
each_layer_name
,
parent_names
)
del
parent_names
del
new_name
del
each_layer_name
@
wrap_name_default
()
def
recurrent_group
(
step
,
input
,
reverse
=
False
,
name
=
None
):
if
not
isinstance
(
input
,
collections
.
Sequence
):
input
=
[
input
]
non_static_inputs
=
filter
(
lambda
x
:
not
isinstance
(
x
,
StaticInputV2
),
input
)
actual_input
=
[
RecurrentLayerInput
(
recurrent_name
=
name
,
index
=
i
,
parent_layers
=
{
'recurrent_inputs'
:
non_static_inputs
},
reverse
=
reverse
)
for
i
in
xrange
(
len
(
non_static_inputs
))
]
extra_input
=
None
if
len
(
non_static_inputs
)
==
0
:
extra_input
=
RecurrentLayerInput
(
recurrent_name
=
name
,
index
=-
1
,
parent_layers
=
{},
reverse
=
reverse
)
def
__real_step__
(
*
args
):
rnn_input
=
list
(
args
)
static_inputs
=
filter
(
lambda
x
:
isinstance
(
x
,
StaticInputV2
),
input
)
for
static_input
in
static_inputs
:
mem_name
=
"__%s_memory__"
%
static_input
.
input
.
name
mem
=
memory
(
name
=
mem_name
,
extra_input
=
extra_input
,
is_seq
=
static_input
.
is_seq
,
size
=
static_input
.
input
.
calculate_size
,
boot_layer
=
static_input
.
input
)
with
mixed
(
name
=
mem_name
,
size
=
static_input
.
input
.
calculate_size
,
act
=
activation
.
Identity
())
as
mix
:
mix
+=
identity_projection
(
input
=
mem
)
rnn_input
.
insert
(
input
.
index
(
static_input
),
mix
)
return
step
(
*
rnn_input
)
actual_output
=
__real_step__
(
*
actual_input
)
if
not
isinstance
(
actual_output
,
collections
.
Sequence
):
actual_output
=
[
actual_output
]
retv
=
[
RecurrentLayerOutput
(
recurrent_name
=
name
,
index
=
i
,
parent_layers
=
{
'recurrent_outputs'
:
actual_output
})
for
i
in
xrange
(
len
(
actual_output
))
]
if
len
(
retv
)
==
1
:
return
retv
[
0
]
for
name
in
v1_layers
.
__all__
:
obj
=
getattr
(
v1_layers
,
name
)
if
not
__need_to_keep__
(
name
):
continue
new_name
=
__convert_name__
(
name
)
if
callable
(
obj
)
and
__need_to_wrap__
(
name
):
globals
()[
new_name
]
=
__wrap__
(
obj
)
else
:
return
retv
recurrent_group
.
__doc__
=
conf_helps
.
recurrent_group
.
__doc__
@
wrap_name_default
()
def
beam_search
(
step
,
input
,
bos_id
,
eos_id
,
beam_size
,
max_length
=
500
,
name
=
None
,
num_results_per_sample
=
None
):
if
num_results_per_sample
is
None
:
num_results_per_sample
=
beam_size
assert
num_results_per_sample
<=
beam_size
# logger.warning("num_results_per_sample should be less than beam_size")
if
isinstance
(
input
,
StaticInputV2
)
or
isinstance
(
input
,
BaseGeneratedInputV2
):
input
=
[
input
]
generated_input_index
=
-
1
real_input
=
[]
for
i
,
each_input
in
enumerate
(
input
):
assert
isinstance
(
each_input
,
StaticInputV2
)
or
isinstance
(
each_input
,
BaseGeneratedInputV2
)
if
isinstance
(
each_input
,
BaseGeneratedInputV2
):
assert
generated_input_index
==
-
1
generated_input_index
=
i
else
:
real_input
.
append
(
each_input
)
globals
()[
new_name
]
=
obj
__all__
.
append
(
new_name
)
assert
generated_input_index
!=
-
1
def
__data_layer__
(
name
,
type
,
**
kwargs
):
l
=
v1_layers
.
data_layer
(
name
,
type
.
dim
,
**
kwargs
)
l
.
data_type
=
type
return
l
gipt
=
input
[
generated_input_index
]
assert
isinstance
(
gipt
,
BaseGeneratedInputV2
)
data
=
__wrap__
(
__data_layer__
)
gipt
.
bos_id
=
bos_id
gipt
.
eos_id
=
eos_id
LayerV2
=
v1_layers
.
LayerOutput
def
__real_step__
(
*
args
):
eos_name
=
"__%s_eos_layer__"
%
name
generator
=
RecurrentLayerGroupSetGeneratorV2
(
eos_name
,
max_length
,
beam_size
,
num_results_per_sample
)
args
=
list
(
args
)
before_step_layer
=
gipt
.
before_real_step
()
before_step_layer
.
append_child
(
layer
=
generator
,
parent_names
=
[
before_step_layer
.
name
])
args
.
insert
(
generated_input_index
,
before_step_layer
)
def
__get_used_layers__
(
output_layers
,
extra_layers
=
None
):
layer_names
=
set
()
parents
=
{}
def
add_parent
(
child
,
parent
):
if
child
in
parents
:
parents
[
child
].
append
(
parent
)
else
:
parents
[
child
]
=
[
parent
]
def
add_additional_parents
():
for
sub_model
in
cp
.
g_config
.
model_config
.
sub_models
:
if
sub_model
.
name
==
'root'
:
continue
for
link
in
sub_model
.
in_links
:
add_parent
(
link
.
link_name
,
link
.
layer_name
)
add_parent
(
sub_model
.
name
,
link
.
layer_name
)
for
link
in
sub_model
.
out_links
:
add_parent
(
link
.
link_name
,
link
.
layer_name
)
add_parent
(
link
.
link_name
,
sub_model
.
name
)
for
mem
in
sub_model
.
memories
:
if
mem
.
boot_layer_name
:
add_parent
(
mem
.
layer_name
,
mem
.
boot_layer_name
)
add_parent
(
mem
.
link_name
,
mem
.
layer_name
)
def
dfs_travel
(
layer_name
):
if
layer_name
in
layer_names
:
return
layer_names
.
add
(
layer_name
)
layer
=
cp
.
g_layer_map
[
layer_name
]
for
inp
in
layer
.
inputs
:
dfs_travel
(
inp
.
input_layer_name
)
if
layer
.
name
in
parents
:
for
p
in
parents
[
layer
.
name
]:
dfs_travel
(
p
)
add_additional_parents
()
for
layer
in
output_layers
:
dfs_travel
(
layer
.
full_name
)
return
layer_names
def
__get_used_parameters__
(
layer_names
):
parameter_names
=
set
()
for
name
in
layer_names
:
l
=
cp
.
g_layer_map
[
name
]
for
inp
in
l
.
inputs
:
if
inp
.
input_parameter_name
:
parameter_names
.
add
(
inp
.
input_parameter_name
)
if
l
.
bias_parameter_name
:
parameter_names
.
add
(
l
.
bias_parameter_name
)
return
parameter_names
def
__get_used_submodels__
(
layer_names
):
submodel_names
=
set
()
for
submodel
in
cp
.
g_config
.
model_config
.
sub_models
:
if
submodel
.
name
in
layer_names
:
submodel_names
.
add
(
submodel
.
name
)
return
submodel_names
def
__get_used_evaluators__
(
layer_names
):
evaluator_names
=
set
()
for
e
in
cp
.
g_config
.
model_config
.
evaluators
:
used
=
True
for
name
in
e
.
input_layers
:
if
name
not
in
layer_names
:
used
=
False
break
if
used
:
evaluator_names
.
add
(
e
.
name
)
return
evaluator_names
def
__trim_submodel__
(
old_submodel
,
layer_names
,
input_layer_names
,
output_layer_names
,
evaluator_names
):
submodel
=
SubModelConfig
()
submodel
.
name
=
old_submodel
.
name
submodel
.
layer_names
.
extend
(
filter
(
lambda
x
:
x
in
layer_names
,
old_submodel
.
layer_names
))
submodel
.
input_layer_names
.
extend
(
filter
(
lambda
x
:
x
in
input_layer_names
,
submodel
.
layer_names
))
submodel
.
output_layer_names
.
extend
(
filter
(
lambda
x
:
x
in
output_layer_names
,
submodel
.
layer_names
))
submodel
.
evaluator_names
.
extend
(
filter
(
lambda
x
:
x
in
evaluator_names
,
old_submodel
.
evaluator_names
))
submodel
.
is_recurrent_layer_group
=
old_submodel
.
is_recurrent_layer_group
submodel
.
reversed
=
old_submodel
.
reversed
submodel
.
memories
.
extend
(
filter
(
lambda
x
:
x
.
link_name
in
layer_names
,
old_submodel
.
memories
))
target_inlinkid
=
(
old_submodel
.
target_inlinkid
if
old_submodel
.
HasField
(
'target_inlinkid'
)
else
-
1
)
in_links
=
[]
for
i
,
link
in
enumerate
(
old_submodel
.
in_links
):
if
link
.
link_name
in
layer_names
or
i
==
target_inlinkid
:
in_links
.
append
(
link
)
if
i
==
target_inlinkid
:
target_inlinkid
=
len
(
in_links
)
-
1
submodel
.
in_links
.
extend
(
in_links
)
submodel
.
out_links
.
extend
(
filter
(
lambda
x
:
x
.
link_name
in
layer_names
,
old_submodel
.
out_links
))
if
old_submodel
.
HasField
(
'generator'
):
submodel
.
generator
.
CopyFrom
(
old_submodel
.
generator
)
if
old_submodel
.
HasField
(
'target_inlinkid'
):
submodel
.
target_inlinkid
=
target_inlinkid
return
submodel
predict
=
gipt
.
after_real_step
(
step
(
*
args
))
eos_layer
=
eos
(
input
=
predict
,
eos_id
=
eos_id
,
name
=
eos_name
)
predict
.
append_child
(
layer
=
eos_layer
,
parent_names
=
[
predict
.
name
])
def
parse_network
(
output_layers
,
extra_layers
=
None
):
if
not
isinstance
(
output_layers
,
collections
.
Sequence
):
output_layers
=
[
output_layers
]
if
extra_layers
is
not
None
and
not
isinstance
(
extra_layers
,
collections
.
Sequence
):
extra_layers
=
[
extra_layers
]
else
:
extra_layers
=
[]
layer_names
=
__get_used_layers__
(
output_layers
+
extra_layers
)
submodel_names
=
__get_used_submodels__
(
layer_names
)
submodel_names
.
add
(
'root'
)
parameter_names
=
__get_used_parameters__
(
layer_names
)
evaluator_names
=
__get_used_evaluators__
(
layer_names
)
input_layer_names
=
set
()
output_layer_names
=
set
()
return
predict
model_config
=
ModelConfig
()
model_config
.
type
=
cp
.
g_config
.
model_config
.
type
for
l
in
cp
.
g_config
.
model_config
.
layers
:
if
l
.
name
not
in
layer_names
:
continue
model_config
.
layers
.
extend
([
l
])
if
l
.
type
==
'data'
:
model_config
.
input_layer_names
.
append
(
l
.
name
)
input_layer_names
.
add
(
l
.
name
)
# tmp = paddle.layer.recurrent_group(
# step=__real_step__,
# input=real_input,
# reverse=False,
# name=name,
# is_generating=True)
tmp
=
recurrent_group
(
step
=
__real_step__
,
input
=
real_input
,
name
=
name
)
for
p
in
cp
.
g_config
.
model_config
.
parameters
:
if
p
.
name
in
parameter_names
:
model_config
.
parameters
.
extend
([
p
])
return
tmp
for
layer
in
output_layers
:
model_config
.
output_layer_names
.
append
(
layer
.
full_name
)
output_layer_names
.
add
(
layer
.
full_name
)
for
e
in
cp
.
g_config
.
model_config
.
evaluators
:
if
e
.
name
in
evaluator_names
:
model_config
.
evaluators
.
extend
([
e
])
beam_search
.
__doc__
=
conf_helps
.
beam_search
.
__doc__
for
s
in
cp
.
g_config
.
model_config
.
sub_models
:
if
s
.
name
in
submodel_names
:
s
=
__trim_submodel__
(
s
,
layer_names
,
input_layer_names
,
output_layer_names
,
evaluator_names
)
model_config
.
sub_models
.
extend
([
s
])
__projection_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_projection'
),
dir
(
conf_helps
))
return
model_config
__all__
+=
__projection_names__
__operator_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_operator'
),
dir
(
conf_helps
))
__all__
+=
__operator_names__
def
get_layer
(
name
):
return
__layer_map__
.
get
(
name
)
# convert projection
for
prj
in
__projection_names__
:
globals
()[
prj
]
=
__convert_to_v2__
(
prj
,
parent_names
=
[
'input'
],
is_default_name
=
False
)
globals
()[
prj
].
__name__
=
prj
# convert operator
operator_list
=
[
# [V1_method_name, parent_names],
[
'dotmul_operator'
,
[
'a'
,
'b'
]],
[
'conv_operator'
,
[
'img'
,
'filter'
]]
]
for
op
in
operator_list
:
globals
()[
op
[
0
]]
=
__convert_to_v2__
(
op
[
0
],
parent_names
=
op
[
1
],
is_default_name
=
False
)
globals
()[
op
[
0
]].
__name__
=
op
[
0
]
cp
.
begin_parse
()
python/paddle/v2/networks.py
浏览文件 @
7d0355cd
...
...
@@ -24,20 +24,7 @@ def __initialize__():
if
each_subnetwork
in
[
'inputs'
,
'outputs'
]:
continue
func
=
getattr
(
conf_nw
,
each_subnetwork
)
if
hasattr
(
func
,
'argspec'
):
argspec
=
func
.
argspec
else
:
argspec
=
inspect
.
getargspec
(
func
)
if
each_subnetwork
==
'simple_attention'
:
parents
=
[
'encoded_sequence'
,
'encoded_proj'
,
'decoder_state'
]
else
:
parents
=
filter
(
lambda
x
:
x
.
startswith
(
'input'
),
argspec
.
args
)
assert
len
(
parents
)
!=
0
,
each_subnetwork
v2_subnet
=
__convert_to_v2__
(
each_subnetwork
,
parent_names
=
parents
,
is_default_name
=
'name'
in
argspec
.
args
)
globals
()[
each_subnetwork
]
=
v2_subnet
globals
()[
each_subnetwork
]
=
func
globals
()[
each_subnetwork
].
__name__
=
each_subnetwork
global
__all__
__all__
.
append
(
each_subnetwork
)
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
7d0355cd
...
...
@@ -173,9 +173,9 @@ class OtherLayerTest(unittest.TestCase):
class
ProjOpTest
(
unittest
.
TestCase
):
def
test_projection
(
self
):
input
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
input
=
layer
.
data
(
name
=
'data
2
'
,
type
=
data_type
.
dense_vector
(
784
))
word
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
integer_value_sequence
(
10000
))
name
=
'word
2
'
,
type
=
data_type
.
integer_value_sequence
(
10000
))
fc0
=
layer
.
fc
(
input
=
input
,
size
=
100
,
act
=
activation
.
Sigmoid
())
fc1
=
layer
.
fc
(
input
=
input
,
size
=
200
,
act
=
activation
.
Sigmoid
())
mixed0
=
layer
.
mixed
(
...
...
@@ -204,8 +204,8 @@ class ProjOpTest(unittest.TestCase):
dotmul1
+=
dotmul
context
=
layer
.
context_projection
(
input
=
fc0
,
context_len
=
5
)
context0
=
layer
.
mixed
(
size
=
1
00
,
input
=
context
)
with
layer
.
mixed
(
size
=
1
00
)
as
context1
:
context0
=
layer
.
mixed
(
size
=
5
00
,
input
=
context
)
with
layer
.
mixed
(
size
=
5
00
)
as
context1
:
context1
+=
context
conv
=
layer
.
conv_projection
(
...
...
@@ -231,8 +231,8 @@ class ProjOpTest(unittest.TestCase):
print
layer
.
parse_network
(
conv1
)
def
test_operator
(
self
):
ipt0
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
ipt1
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
dense_vector
(
128
))
ipt0
=
layer
.
data
(
name
=
'data
1
'
,
type
=
data_type
.
dense_vector
(
784
))
ipt1
=
layer
.
data
(
name
=
'word
1
'
,
type
=
data_type
.
dense_vector
(
128
))
fc0
=
layer
.
fc
(
input
=
ipt0
,
size
=
100
,
act
=
activation
.
Sigmoid
())
fc1
=
layer
.
fc
(
input
=
ipt0
,
size
=
100
,
act
=
activation
.
Sigmoid
())
...
...
@@ -261,7 +261,7 @@ class ProjOpTest(unittest.TestCase):
class
NetworkTests
(
unittest
.
TestCase
):
def
test_vgg
(
self
):
img
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
img
=
layer
.
data
(
name
=
'pixel
1
'
,
type
=
data_type
.
dense_vector
(
784
))
vgg_out
=
networks
.
small_vgg
(
input_image
=
img
,
num_channels
=
1
,
num_classes
=
2
)
print
layer
.
parse_network
(
vgg_out
)
...
...
@@ -269,12 +269,12 @@ class NetworkTests(unittest.TestCase):
class
EvaluatorTest
(
unittest
.
TestCase
):
def
test_evaluator
(
self
):
img
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
img
=
layer
.
data
(
name
=
'pixel
2
'
,
type
=
data_type
.
dense_vector
(
784
))
output
=
layer
.
fc
(
input
=
img
,
size
=
10
,
act
=
activation
.
Softmax
(),
name
=
'fc_here'
)
lbl
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
lbl
=
layer
.
data
(
name
=
'label
2
'
,
type
=
data_type
.
integer_value
(
10
))
cost
=
layer
.
cross_entropy_cost
(
input
=
output
,
label
=
lbl
)
evaluator
.
classification_error
(
input
=
output
,
label
=
lbl
)
...
...
python/paddle/v2/tests/test_rnn_layer.py
浏览文件 @
7d0355cd
...
...
@@ -20,6 +20,8 @@ import paddle.v2.data_type as data_type
import
paddle.v2.layer
as
layer
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
from
paddle.trainer_config_helpers.config_parser_utils
import
\
reset_parser
class
RNNTest
(
unittest
.
TestCase
):
...
...
@@ -29,6 +31,7 @@ class RNNTest(unittest.TestCase):
hidden_dim
=
8
def
parse_old_rnn
():
reset_parser
()
def
step
(
y
):
mem
=
conf_helps
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
conf_helps
.
fc_layer
(
...
...
@@ -48,6 +51,7 @@ class RNNTest(unittest.TestCase):
return
str
(
parse_network
(
test
))
def
parse_new_rnn
():
reset_parser
()
def
new_step
(
y
):
mem
=
layer
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
layer
.
fc
(
input
=
[
y
,
mem
],
...
...
@@ -68,6 +72,7 @@ class RNNTest(unittest.TestCase):
parse_new_rnn
().
splitlines
(
1
))
print
''
.
join
(
diff
)
def
test_sequence_rnn_multi_input
(
self
):
dict_dim
=
10
word_dim
=
8
...
...
@@ -75,6 +80,7 @@ class RNNTest(unittest.TestCase):
label_dim
=
3
def
parse_old_rnn
():
reset_parser
()
def
test
():
data
=
conf_helps
.
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
label
=
conf_helps
.
data_layer
(
name
=
"label"
,
size
=
label_dim
)
...
...
@@ -114,6 +120,7 @@ class RNNTest(unittest.TestCase):
return
str
(
parse_network
(
test
))
def
parse_new_rnn
():
reset_parser
()
data
=
layer
.
data
(
name
=
"word"
,
type
=
data_type
.
dense_vector
(
dict_dim
))
label
=
layer
.
data
(
...
...
python/paddle/v2/tests/test_topology.py
浏览文件 @
7d0355cd
...
...
@@ -46,8 +46,8 @@ class TestTopology(unittest.TestCase):
self
.
assertEqual
(
label_data_type
[
1
].
dim
,
10
)
def
test_get_layer
(
self
):
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
pixel
=
layer
.
data
(
name
=
'pixel
2
'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label
2
'
,
type
=
data_type
.
integer_value
(
10
))
hidden
=
layer
.
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
...
...
@@ -56,14 +56,14 @@ class TestTopology(unittest.TestCase):
act
=
conf_helps
.
SoftmaxActivation
())
cost
=
layer
.
classification_cost
(
input
=
inference
,
label
=
label
)
topo
=
topology
.
Topology
(
cost
)
pixel_layer
=
topo
.
get_layer
(
"pixel"
)
label_layer
=
topo
.
get_layer
(
"label"
)
pixel_layer
=
topo
.
get_layer
(
"pixel
2
"
)
label_layer
=
topo
.
get_layer
(
"label
2
"
)
self
.
assertEqual
(
pixel_layer
,
pixel
)
self
.
assertEqual
(
label_layer
,
label
)
def
test_parse
(
self
):
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
pixel
=
layer
.
data
(
name
=
'pixel
3
'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label
3
'
,
type
=
data_type
.
integer_value
(
10
))
hidden
=
layer
.
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
...
...
python/paddle/v2/topology.py
浏览文件 @
7d0355cd
...
...
@@ -15,7 +15,7 @@
import
collections
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
import
paddle.trainer_config_helpers
as
conf_helps
import
layer
as
v2_layer
__all__
=
[
'Topology'
]
...
...
@@ -94,31 +94,18 @@ class Topology(object):
:param name:
:return:
"""
result_layer
=
[
None
]
def
__impl__
(
l
):
if
l
.
name
==
name
:
result_layer
[
0
]
=
l
return
True
# break
return
False
__bfs_travel__
(
__impl__
,
*
self
.
layers
)
if
result_layer
[
0
]
is
None
:
raise
ValueError
(
"No such layer %s"
%
name
)
return
result_layer
[
0
]
return
v2_layer
.
get_layer
(
name
)
def
data_layers
(
self
):
"""
get all data layer
:return:
"""
data_layers
=
dict
()
def
__impl__
(
l
):
if
isinstance
(
l
,
v2_layer
.
DataLayerV2
):
data_layers
[
l
.
name
]
=
l
__bfs_travel__
(
__impl__
,
*
self
.
layers
)
data_layers
=
{}
for
layer
in
self
.
proto
().
layers
:
l
=
v2_layer
.
get_layer
(
layer
.
name
)
if
l
and
l
.
layer_type
==
conf_helps
.
LayerType
.
DATA
:
data_layers
[
layer
.
name
]
=
l
return
data_layers
def
data_type
(
self
):
...
...
@@ -127,7 +114,7 @@ class Topology(object):
[('image', dense_vector(768)), ('label', integer_value(10))]
"""
data_layers
=
self
.
data_layers
()
return
[(
nm
,
data_layers
[
nm
].
type
)
return
[(
nm
,
data_layers
[
nm
].
data_
type
)
for
nm
in
self
.
proto
().
input_layer_names
]
def
get_layer_proto
(
self
,
name
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录