diff --git a/paddle/fluid/operators/interpolate_op.h b/paddle/fluid/operators/interpolate_op.h index 5fd42809dfec6dd821c9b27bc97d61de94b5d326..652aec9a5385335ea2649c208a7b174aad744a71 100644 --- a/paddle/fluid/operators/interpolate_op.h +++ b/paddle/fluid/operators/interpolate_op.h @@ -11,6 +11,7 @@ #pragma once #include +#include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" @@ -57,7 +58,17 @@ static void BilinearInterpolation(const Tensor& input, Tensor* output, auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); bool align_flag = (align_mode == 0 && !align_corners); - for (int k = 0; k < out_h; k++) { // loop for images + + std::vector vy_n, vy_s; + std::vector vd_n, vd_s; + vy_n.reserve(out_h); + vy_s.reserve(out_h); + vd_n.reserve(out_h); + vd_s.reserve(out_h); +#ifdef PADDLE_WITH_MKLML +#pragma omp parallel for +#endif + for (int k = 0; k < out_h; k++) { int y_n = align_flag ? static_cast(ratio_h * (k + 0.5) - 0.5) : static_cast(ratio_h * k); y_n = (y_n > 0) ? y_n : 0; @@ -65,24 +76,53 @@ static void BilinearInterpolation(const Tensor& input, Tensor* output, float d_n = align_flag ? ratio_h * (k + 0.5) - 0.5 - y_n : ratio_h * k - y_n; float d_s = 1.f - d_n; + { + vy_n[k] = y_n; + vy_s[k] = y_s; + vd_n[k] = d_n; + vd_s[k] = d_s; + } + } - for (int l = 0; l < out_w; l++) { - int x_w = (align_mode == 0 && !align_corners) - ? static_cast(ratio_w * (l + 0.5) - 0.5) - : static_cast(ratio_w * l); - x_w = (x_w > 0) ? x_w : 0; - int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1); - float d_w = - align_flag ? ratio_w * (l + 0.5) - 0.5 - x_w : ratio_w * l - x_w; - float d_e = 1.f - d_w; + std::vector vx_w, vx_e; + std::vector vd_w, vd_e; + vx_w.reserve(out_w); + vx_e.reserve(out_w); + vd_w.reserve(out_w); + vd_e.reserve(out_w); +#ifdef PADDLE_WITH_MKLML +#pragma omp parallel for +#endif + for (int l = 0; l < out_w; l++) { + int x_w = (align_mode == 0 && !align_corners) + ? static_cast(ratio_w * (l + 0.5) - 0.5) + : static_cast(ratio_w * l); + x_w = (x_w > 0) ? x_w : 0; + int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1); + float d_w = + align_flag ? ratio_w * (l + 0.5) - 0.5 - x_w : ratio_w * l - x_w; + float d_e = 1.f - d_w; + { + vx_w[l] = x_w; + vx_e[l] = x_e; + vd_w[l] = d_w; + vd_e[l] = d_e; + } + } - for (int i = 0; i < n; i++) { // loop for batches - for (int j = 0; j < c; j++) { // loop for channels +#ifdef PADDLE_WITH_MKLML +#pragma omp parallel for collapse(4) +#endif + for (int i = 0; i < n; i++) { // loop for batches + for (int j = 0; j < c; j++) { // loop for channels + for (int k = 0; k < out_h; k++) { // loop for images + for (int l = 0; l < out_w; l++) { // bilinear interpolation - output_t(i, j, k, l) = input_t(i, j, y_n, x_w) * d_s * d_e + - input_t(i, j, y_s, x_w) * d_n * d_e + - input_t(i, j, y_n, x_e) * d_s * d_w + - input_t(i, j, y_s, x_e) * d_n * d_w; + T out_t = input_t(i, j, vy_n[k], vx_w[l]) * vd_s[k] * vd_e[l] + + input_t(i, j, vy_s[k], vx_w[l]) * vd_n[k] * vd_e[l] + + input_t(i, j, vy_n[k], vx_e[l]) * vd_s[k] * vd_w[l] + + input_t(i, j, vy_s[k], vx_e[l]) * vd_n[k] * vd_w[l]; + output_t(i, j, k, l) = out_t; } } }