diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 988976b9a1d2d07bb5f99041c47eba080ddac23d..ec689fd900bcff371990f1c53ff74f15c9b94cee 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -43,7 +43,8 @@ ZERO_VAR_SUFFIX = core.kZeroVarSuffix() def grad_var_name(var_name): """ - return gradient name for a certain var name + Returns: + str: gradient name for a certain var name """ return var_name + GRAD_VAR_SUFFIX @@ -51,10 +52,12 @@ def grad_var_name(var_name): def convert_np_dtype_to_dtype_(np_dtype): """ Convert the data type in numpy to the data type in Paddle + Args: - np_dtype(np.dtype): the data type in numpy + np_dtype(np.dtype): the data type in numpy. - Returns(core.VarDesc.VarType): the data type in Paddle + Returns: + core.VarDesc.VarType: the data type in Paddle. """ dtype = np.dtype(np_dtype) @@ -129,46 +132,44 @@ class Variable(object): and usages. Please reference the framework.proto for details. Most of a Variable's member variables can be setted to be None. It mean - it is not avaiable or will be specified later. + it is not available or will be specified later. - Notes: The constructor of Variable should not be invoked directly. Please - use `Block.create_var` to create a variable. - - .. code-block:: python - cur_program = Program() - cur_block = cur_program.current_block() - new_variable = cur_block.create_var( - name="X", shape=[-1, 23, 48], dtype='float32') - - Member variables: + Args: block(Block): The block that the variable belongs to. type(core.VarDesc.VarType): Variable type. Please reference the framework.proto for details. - name(str|None): The name of the variable. If setted None, it will be - generated automatically. - Default: None + name(str|None): The name of the variable. If setted None, it will be + generated automatically. Default: None shape(tuple|list|None): The shape of the variable. -1 means the batch size. Some kinds of variable do not contain shape, just set it to None. Default: None dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable. Default: None - lod_level(int|None): The level of lod tensor. 0 means it is not a time + lod_level (int|None): The level of lod tensor. 0 means it is not a time series data. Default: None - capacity(int|None): The capacity of Channel variable. Ignored - for other types. - Default: None - persistable(bool|None): True if the variable is persistable. A persistable - variable will not be deleted after an iteration ending. - Defaults: None. - error_clip(BaseErrorClipAttr|None): The error clip attributes of the - corresponding gradient variable. - Default: None - stop_gradient(bool): True if the variable will stop to calculate its - gradients when backward. - Default: False. - is_data(bool): True is the variable is an input data. - Default: False + capacity (int|None): The capacity of Channel variable. Ignored for other + types. Default: None + persistable (bool|None): True if the variable is persistable. A persistable + variable will not be deleted after an iteration ending. Defaults: None. + error_clip (BaseErrorClipAttr|None): The error clip attributes of the + corresponding gradient variable. Default: None + stop_gradient (bool): True if the variable will stop to calculate its + gradients when backward. Default: False. + is_data (bool): True if the variable is an input data. Default: False + + Notes: + The constructor of Variable should not be invoked directly. Please + use `Block.create_var` to create a variable. + + Examples: + .. code-block:: python + + cur_program = Program() + cur_block = cur_program.current_block() + new_variable = cur_block.create_var(name="X", + shape=[-1, 23, 48], + dtype='float32') """ def __init__(self, @@ -271,13 +272,14 @@ class Variable(object): Get debug string. Args: - throw_on_error(bool): True if raise an exception when self is not - intialized. + throw_on_error(bool): True if raise an exception when self is + not initialized. with_details(bool): more details about variables and parameters - (e.g. trainable, optimize_attr, ...) will be printed when with_details is True - - Returns(str): The debug string. + (e.g. trainable, optimize_attr, ...) will be printed when + with_details is True. Default False; + Returns: + str: The debug string. """ assert isinstance(throw_on_error, bool) and isinstance(with_details, bool) @@ -294,6 +296,15 @@ class Variable(object): __repr__ = __str__ def set_desc(self, input): + """ + Set the variable description. + + Args: + input(core.VarDesc): The new VarDesc. + + Returns: + None + """ self.desc = input @property @@ -330,6 +341,15 @@ class Variable(object): return self.desc.type() def set_error_clip(self, error_clip): + """ + Set the error_clip. + + Args: + error_clip(BaseErrorClipAttr) : The new error_clip. + + Returns: + None + """ self.error_clip = error_clip @@ -337,8 +357,8 @@ def get_all_op_protos(): """ Get all registered op proto from PaddlePaddle C++ end. - Returns(list): list of OpProto - + Returns: + list: list of OpProto. """ protostrs = core.get_all_op_protos() ret_values = [] @@ -391,9 +411,45 @@ class OpProtoHolder(object): class Operator(object): """ - Python Operator class. The operator represents the build in instructions in a - Block. Users can use the build in instructions to describe their neural - network. + In Fluid, all the operation are represented by Operator, and Operator + is regarded as a build in an instruction of a Block. Users can use the + build in instructions to describe their neural network. + + Args: + block(Block): The block has the current operator. + desc(core.OpDesc): The protobuf description of Operator. + type(str): The type of operator. + inputs(dict): The input of this Operator. it is a dictionary, for every + element, key is the input parameter name, and value is a list of + variables. Default None. + outputs(dict): The output of this Operator. it is a dictionary, for + every element, key is the input parameter name, and value is a list + of variables. Default None. + attrs(dict): The attributes of this Operator. it is a dictionary, for + every element, key is attribute name, and value is the attribute value. + The attribute type should be as same as the type registered in C++ side. + Default None. + + Returns: + Operator: The initialized Operator. + + Raises: + ValueError: If the passed input, output and attrs doesn't match the + initializing Operator's that registered in C++ side. + + Notes: + The constructor of operator should not be invoked directly. Use + Block.append_op or Block.prepend_op instead. + + Examples: + .. code-block:: python + + cur_program = Program() + cur_block = cur_program.current_block() + # var1 += var2 + var3 + cur_block.append_op(type="sum", + inputs={"X": [var1, var2, var3]}, + outputs={"Out": [var1]}) """ OP_WITHOUT_KERNEL_SET = { 'feed', 'fetch', 'save', 'load', 'recurrent', 'go', @@ -403,38 +459,9 @@ class Operator(object): 'channel_recv', 'select', 'gen_nccl_id' } - def __init__(self, - block, - desc, - type=None, - inputs=None, - outputs=None, + def __init__(self, block, desc, type, inputs=None, outputs=None, attrs=None): - """ - Constructor. - - Notes: The constructor of operator should not be invoked directly. Use - Block.append_op or Block.prepend_op instead. - >>> cur_program = Program() - >>> cur_block = cur_program.current_block() - >>> # var1 += var2 + var3 - >>> cur_block.append_op(type="sum", - >>> inputs={"X": [var1, var2, var3]}, - >>> outputs={"Out": [var1]}) - - Args: - block(Block): The block has the current operator. - desc(core.OpDesc): The protobuf description. - type(str): The type of operator. - inputs(dict): The input dictionary. Key is the input parameter name. - Value is a list of variables. - outputs(dict): The output dictionary which has the same format with - inputs. - attrs(dict): The attributes dictionary. Key is attribute name. Value - is the attribute value. The attribute type should be as same as - the type registered in C++ - """ self.block = block self.desc = desc self.attrs = attrs @@ -457,9 +484,7 @@ class Operator(object): if len(self.desc.type()) != 0: return - if type is None: - raise ValueError( - "`type` to initilized an Operator can not be None.") + self.desc.set_type(type) proto = OpProtoHolder.instance().get_op_proto(type) @@ -547,12 +572,14 @@ class Operator(object): def to_string(self, throw_on_error): """ - To debug string. + Get debug string. + Args: - throw_on_error(bool): raise exception when self is not initialized - when throw_on_error is True + throw_on_error(bool): Whether to raise exception if self is not + initialized. - Returns(str): The debug string. + Returns: + str: The debug string. """ protostr = self.desc.serialize_to_string() @@ -570,29 +597,45 @@ class Operator(object): def input(self, name): """ - Get input arguments by the input parameter name - Args: - name(str): The input parameter name + Get the input arguments according to the input parameter name. - Returns(list): return the list of argument names associated with the - specific parameter name. + Args: + name(str): The input parameter name. + Returns: + list: return the list of argument names that associated with \ + the specific parameter name. """ return self.desc.input(name) def rename_input(self, old_name, new_name): + """ + Rename the `old_name` to `new_name`. + + Args: + old_name(str): The old name of the Operator's input. + new_name(str): The new name of the Operator's input. + + Returns: + None + """ self.desc.rename_input(old_name, new_name) def rename_output(self, old_name, new_name): + """ + Rename the `old_name` to `new_name`. + + Args: + old_name(str): The old name of the Operator's output. + new_name(str): The new name of the Operator's output. + + Returns: + None + """ self.desc.rename_output(old_name, new_name) @property def input_names(self): - """ - Get all input parameter names - Returns(list): return a list of input parameter names - - """ return self.desc.input_names() @property @@ -605,33 +648,23 @@ class Operator(object): def output(self, name): """ - Get output arguments by the output parameter name - Args: - name(str): The output parameter name + Get output arguments by the output parameter name. - Returns(list): return the list of argument names associated with the - specific parameter name. + Args: + name(str): The output parameter name. + Returns: + list: return the list of argument names associated with \ + the specific parameter name. """ return self.desc.output(name) @property def output_names(self): - """ - Get all output parameter names - Returns(list): return a list of output parameter names - - """ return self.desc.output_names() @property def idx(self): - """ - Return the array index of current operator. - Returns(int): The array index in block.ops array - Raises: - ValueError: when the operator is not found. - """ for i, op in enumerate(self.block.ops): if op == self: return i @@ -640,66 +673,78 @@ class Operator(object): def has_attr(self, name): """ - operator has the attribute with name or not. + Whether this Operator has the attribute with name or not. + Args: - name(str): the attribute name + name(str): the attribute name. - Returns(bool): True if has this attribute. + Returns: + bool: True if has this attribute. """ return self.desc.has_attr(name) def attr_type(self, name): """ - Get the type of attribute by attribute name - Args: - name(str): the attribute name + Get the type of attribute by attribute's name. - Returns(core.AttrType): the attribute type + Args: + name(str): the attribute name. + Returns: + core.AttrType: the attribute type. """ return self.desc.attr_type(name) def set_attr(self, name, val): + """ + Set the value of attribute by attribute's name. + + Args: + name(str): the attribute name. + val(bool|int|str|float|list): the value of the attribute. + + Raises: + ValueError: If the type of value doesn't match with desc.attr_type(name). + """ self.attrs[name] = val self.desc.set_attr(name, val) @property def attr_names(self): - """ - Get all attribute names - Returns(list): The list of attribute name - - """ return self.desc.attr_names() def attr(self, name): """ - Get attribute by name + Get the attribute by name. + Args: - name(str): the attribute name + name(str): the attribute name. - Returns(bool|int|str|float|list): The attribute value. The return value + Returns: + bool|int|str|float|list: The attribute value. The return value can be any valid attribute type. - """ return self.desc.attr(name) def block_attr(self, name): """ - Get the block attribute by name - Args: - name(str): the attribute name + Get the block attribute by name. - Returns(int): the block index + Args: + name(str): the attribute name. + Returns: + int: the block index. """ return self.desc.block_attr(name) def all_attrs(self): """ - Get the attribute dict - Returns(dict): The Operator's attribute dict + Get the attribute dict. + + Returns: + dict: The Operator's attribute dict. """ attr_names = self.attr_names attr_map = {} @@ -712,6 +757,35 @@ class Operator(object): class Block(object): + """ + In Fluid, a Program is consistence of multi-Block, and Block stores + VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name. + One block could have some child blocks, and child block's name scopes + should inherit the parent's so that OpDesc in child block can reference + a VarDesc that is stored in the parent block. + Please reference the framework.proto for details. + + Args: + program(Program): The Program that the Block belongs to. + idx(int): The block's id in the Program. + + Notes: + The constructor of Block should not be invoked directly. Please + use `Program.create_block()` to create a block. + + Examples: + .. code-block:: python + + cur_program = Program() + cur_block = cur_program.current_block() + var = cur_block.create_var(name="X", + shape=[-1, 23, 48], + dtype='float32') + cur_block.append_op(type="abs", + inputs={"X": [var]}, + outputs={"Out": [var]}) + """ + def __init__(self, program, idx): self.desc = program.desc.block(idx) self.vars = collections.OrderedDict() # var_name --> var @@ -724,15 +798,17 @@ class Block(object): def to_string(self, throw_on_error, with_details=False): """ - To debug string. + Get debug string. + Args: throw_on_error(bool): raise exception when self is not initialized - when throw_on_error is True + when throw_on_error is True. with_details(bool): more details about variables and parameters - (e.g. trainable, optimize_attr, ...) will be printed when with_details is True - - Returns(str): The debug string. + (e.g. trainable, optimize_attr, ...) will be printed when + with_details is True. Default False. + Returns: + str: The debug string. """ assert isinstance(throw_on_error, bool) and isinstance(with_details, bool) @@ -764,6 +840,15 @@ class Block(object): return self.desc.get_forward_block_idx() def set_forward_block_idx(self, idx): + """ + Set the forward block Idx. + + Args: + idx(int): the block index. + + Returns: + None + """ self.desc.set_forward_block_idx(idx) @property @@ -771,6 +856,19 @@ class Block(object): return self.desc.id def var(self, name): + """ + Get a Variable by name from this block. + + Args: + name(str): the Variable's name. + + Raises: + ValueError: The If input's type is not str, or this block + doesn't have a Variable with the giving name. + + Returns: + Variable: the Variable with the giving name. + """ if not isinstance(name, basestring): raise TypeError( "var require string as parameter, but get %s instead." % @@ -781,6 +879,19 @@ class Block(object): return v def var_recursive(self, name): + """ + Get a Variable by name from this block recursively. + + Args: + name(str): the Variable's name. + + Raises: + ValueError: this block and this parent block doesn't + have a Variable with the giving name. + + Returns: + Variable: the Variable with the giving name. + """ frontier = list() visited = set() @@ -827,6 +938,18 @@ class Block(object): def rename_var(self, name, new_name): """ Rename variable in vars and ops' inputs and outputs + + Args: + name(str): the name that need to be renamed. + new_name(str): the name that need to rename to. + + Raises: + ValueError: If this block doesn't have this the giving name, + or the type of the var with the giving name is not Parameter + or Variable. + + Returns: + Variable: the Variable with the giving name. """ if not self.has_var(name): raise ValueError("var %s is not in current block" % name) @@ -890,12 +1013,27 @@ class Block(object): return param def append_op(self, *args, **kwargs): + """ + Appends a new Operator according to the giving arguments. + + Returns: + Operator: the append Operator. + """ op_desc = self.desc.append_op() op = Operator(block=self, desc=op_desc, *args, **kwargs) self.ops.append(op) return op def insert_op(self, index, *args, **kwargs): + """ + Insert a Operator according to the giving arguments. + + Args: + index(int): the place that the operator to insert. + + Returns: + Operator: the insert Operator. + """ self.sync_with_cpp() op_desc = self.desc.insert_op(index) op = Operator(block=self, desc=op_desc, *args, **kwargs) @@ -903,11 +1041,30 @@ class Block(object): return op def remove_op(self, index): + """ + Remove the specific position operator. + + Args: + index(int): the position that the operator to insert. + + Returns: + None + """ self.sync_with_cpp() self.desc.remove_op(index, index + 1) del self.ops[index] def slice_ops(self, start, end): + """ + Return the Operator between start and end. + + Args: + start(int): the start position. + end(int): the end position. + + Returns: + list: the Operators between start and end. + """ return self.ops[start:end] def prepend_op(self, *args, **kwargs): @@ -918,9 +1075,8 @@ class Block(object): def sync_with_cpp(self): """ - Sync from the desc on the c++ end. - - This method is used to synchronize the c++ desc instance generated by backward. + Sync from the desc on the c++ end. This method is used to synchronize + the c++ desc instance generated by backward. """ # sync variables from cpp for var in self.desc.all_vars(): @@ -985,9 +1141,14 @@ class Block(object): def copy_param_info_from(self, other): """ - Copy the information of parameters from the other block + Copy the information of parameters from the other block. + Args: - other(Block): the other block + other(Block): the other block. + + Raises: + ValueError: If type of input is not Block, or the `other` and this + block is not in the same topology. Returns: None @@ -1019,11 +1180,12 @@ class Block(object): def clone_variable(self, var): """ Clone a variable into current block. + Args: var: the variable to be cloned. Returns: - The new variable cloned from 'var' in current block. + Variable: the new variable cloned from 'var' in current block. """ assert isinstance(var, Variable) ret_var = None @@ -1330,22 +1492,21 @@ class Parameter(Variable): The training of a neural network is essentially the updating of its parameters. - Relative to a general Vriable, a Parameter has several its own + Relative to a general Variable, a Parameter has several its own member variables: - trainable(bool): True if the parameter need to be updated after - iterations. - optimize_attr(map): Parameter attributes related with optimizing. - Currently, it only contains 'learning_rate'. - Default: {'learning_rate': 1.0} - regularizer(WeightDecayRegularizer): The Regularizer which will - be applied on the parameter. - Default: None - gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy - which will be applied on the parameter. - Default: None - do_model_average(bool): True if the model average strategy will - be applied on this parameter. + Args: + trainable(bool): True if the parameter need to be updated after + iterations. + optimize_attr(map): Parameter attributes related with optimizing. + Currently, it only contains 'learning_rate'. + Default: {'learning_rate': 1.0} + regularizer(WeightDecayRegularizer): The Regularizer which will + be applied on the parameter. Default: None + gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy + which will be applied on the parameter. Default: None + do_model_average(bool): True if the model average strategy will + be applied on this parameter. """ def __init__(self, block, shape, dtype, **kwargs):