Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7af5cb9b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
7af5cb9b
编写于
8月 26, 2020
作者:
Z
Zhou Wei
提交者:
GitHub
8月 26, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix english doc of all lr_scheduler (#26619)
* fix doc of lr_scheduler * fix doc
上级
286eca2d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
94 addition
and
106 deletion
+94
-106
python/paddle/optimizer/lr_scheduler.py
python/paddle/optimizer/lr_scheduler.py
+94
-106
未找到文件。
python/paddle/optimizer/lr_scheduler.py
浏览文件 @
7af5cb9b
...
...
@@ -153,7 +153,7 @@ class NoamLR(_LRScheduler):
warmup_steps(int): The number of warmup steps. A super parameter. It is a python int number
learning_rate (float): The initial learning rate. It is a python float number. Default: 1.0.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``NoamLR`` instance to schedule learning rate.
...
...
@@ -168,14 +168,14 @@ class NoamLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.NoamLR(d_model=0.01, warmup_steps=100, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
NoamLR(d_model=0.01, warmup_steps=100, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
...
...
@@ -185,14 +185,13 @@ class NoamLR(_LRScheduler):
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.NoamLR(d_model=0.01, warmup_steps=100, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
NoamLR(d_model=0.01, warmup_steps=100, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -204,7 +203,7 @@ class NoamLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -251,7 +250,7 @@ class PiecewiseLR(_LRScheduler):
values(list): A list of learning rate values that will be picked during different epoch boundaries.
The type of element in the list is python float.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``PiecewiseLR`` instance to schedule learning rate.
...
...
@@ -267,14 +266,14 @@ class PiecewiseLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.PiecewiseLR(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
PiecewiseLR(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
...
...
@@ -284,14 +283,13 @@ class PiecewiseLR(_LRScheduler):
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.PiecewiseLR(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
PiecewiseLR(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -303,7 +301,7 @@ class PiecewiseLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -336,7 +334,7 @@ class NaturalExpLR(_LRScheduler):
learning_rate (float): The initial learning rate. It is a python float number.
gamma (float, optional): A Ratio to update the learning rate. Default: 0.1.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``NaturalExpLR`` instance to schedule learning rate.
...
...
@@ -352,14 +350,14 @@ class NaturalExpLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.NaturalExpLR(learning_rate=0.5, gamma=0.1, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
NaturalExpLR(learning_rate=0.5, gamma=0.1, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
...
...
@@ -369,14 +367,13 @@ class NaturalExpLR(_LRScheduler):
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.NaturalExpLR(learning_rate=0.5, gamma=0.1, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
NaturalExpLR(learning_rate=0.5, gamma=0.1, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -388,7 +385,7 @@ class NaturalExpLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -416,7 +413,7 @@ class InverseTimeLR(_LRScheduler):
gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
It should be less than 1.0. Default: 0.1.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``InverseTimeLR`` instance to schedule learning rate.
...
...
@@ -432,14 +429,14 @@ class InverseTimeLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.InverseTimeLR(learning_rate=0.5, gamma=0.1, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
InverseTimeLR(learning_rate=0.5, gamma=0.1, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
...
...
@@ -449,14 +446,13 @@ class InverseTimeLR(_LRScheduler):
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.InverseTimeLR(learning_rate=0.5, gamma=0.1, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
InverseTimeLR(learning_rate=0.5, gamma=0.1, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -468,7 +464,7 @@ class InverseTimeLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -513,7 +509,7 @@ class PolynomialLR(_LRScheduler):
cycle(bool, optional): Whether the learning rate rises again. If True, then the learning rate will rise when it decrease
to ``end_lr`` . If False, the learning rate is monotone decreasing. Default: False.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``PolynomialLR`` instance to schedule learning rate.
...
...
@@ -529,31 +525,30 @@ class PolynomialLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.PolynomialLR(learning_rate=0.5, decay_steps=20, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
PolynomialLR(learning_rate=0.5, decay_steps=20, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
# train on static
h
mode
# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.PolynomialLR(learning_rate=0.5, decay_steps=20, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
PolynomialLR(learning_rate=0.5, decay_steps=20, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -565,7 +560,7 @@ class PolynomialLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -629,7 +624,7 @@ class LinearLrWarmup(_LRScheduler):
start_lr (float): Initial learning rate of warm up.
end_lr (float): Final learning rate of warm up.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``LinearLrWarmup`` instance to schedule learning rate.
...
...
@@ -653,25 +648,24 @@ class LinearLrWarmup(_LRScheduler):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
# train on static
h
mode
# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.LinearLrWarmup(
scheduler = paddle.optimizer.
lr_scheduler.
LinearLrWarmup(
learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -683,7 +677,7 @@ class LinearLrWarmup(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -733,10 +727,10 @@ class ExponentialLR(_LRScheduler):
Args:
learning_rate (float): The initial learning rate. It is a python float number.
gamma (float
, optional
): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
It should be less than 1.0.
Default: 0.1.
gamma (float): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
It should be less than 1.0.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``ExponentialLR`` instance to schedule learning rate.
...
...
@@ -752,31 +746,30 @@ class ExponentialLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.ExponentialLR(learning_rate=0.5, gamma=0.9, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
ExponentialLR(learning_rate=0.5, gamma=0.9, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
# train on static
h
mode
# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.ExponentialLR(learning_rate=0.5, gamma=0.9, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
ExponentialLR(learning_rate=0.5, gamma=0.9, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -788,7 +781,7 @@ class ExponentialLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -824,7 +817,7 @@ class MultiStepLR(_LRScheduler):
gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
It should be less than 1.0. Default: 0.1.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
...
...
@@ -841,31 +834,30 @@ class MultiStepLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.MultiStepLR(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
MultiStepLR(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
# train on static
h
mode
# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.MultiStepLR(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
MultiStepLR(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -877,7 +869,7 @@ class MultiStepLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -934,7 +926,7 @@ class StepLR(_LRScheduler):
gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
It should be less than 1.0. Default: 0.1.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``StepLR`` instance to schedule learning rate.
...
...
@@ -951,31 +943,30 @@ class StepLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.StepLR(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
StepLR(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
# train on static
h
mode
# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.StepLR(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
StepLR(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -987,7 +978,7 @@ class StepLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -1032,7 +1023,7 @@ class LambdaLR(_LRScheduler):
learning_rate (float): The initial learning rate. It is a python float number.
lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the initial learning rate by this factor.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``LambdaLR`` instance to schedule learning rate.
...
...
@@ -1048,31 +1039,30 @@ class LambdaLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.LambdaLR(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
LambdaLR(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
# train on static
h
mode
# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.LambdaLR(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
LambdaLR(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -1084,7 +1074,7 @@ class LambdaLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
@@ -1130,8 +1120,8 @@ class ReduceLROnPlateau(_LRScheduler):
change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
epsilon (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps
, the update is
ignored. Default: 1e-8.
epsilon (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps
ilon,
the update is
ignored. Default: 1e-8.
verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
...
...
@@ -1149,31 +1139,30 @@ class ReduceLROnPlateau(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.ReduceLROnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
ReduceLROnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step(loss)
# train on static
h
mode
# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.ReduceLROnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
ReduceLROnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -1185,7 +1174,7 @@ class ReduceLROnPlateau(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step(out[0])
"""
...
...
@@ -1351,7 +1340,7 @@ class CosineAnnealingLR(_LRScheduler):
T_max (int): Maximum number of iterations. It is half of the decay cycle of learning rate.
eta_min (float|int, optional): Minimum learning rate, that is :math:`\eta_{min}` . Default: 0.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False`` .
verbose (bool
, optional
): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``CosineAnnealingLR`` instance to schedule learning rate.
...
...
@@ -1367,31 +1356,30 @@ class CosineAnnealingLR(_LRScheduler):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.CosineAnnealingLR(learning_rate=0.5, T_max=10, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
CosineAnnealingLR(learning_rate=0.5, T_max=10, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.to_tensor(x)
out = linear(x)
loss = paddle.reduce_mean(out)
out
.backward()
loss
.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step()
# train on static
h
mode
# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[
-1
, 4, 5])
y = paddle.static.data(name='y', shape=[
-1
, 4, 5])
x = paddle.static.data(name='x', shape=[
None
, 4, 5])
y = paddle.static.data(name='y', shape=[
None
, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.CosineAnnealingLR(learning_rate=0.5, T_max=10, verbose=True)
scheduler = paddle.optimizer.
lr_scheduler.
CosineAnnealingLR(learning_rate=0.5, T_max=10, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
lr_var = sgd._global_learning_rate()
exe = paddle.static.Executor()
exe.run(start_prog)
...
...
@@ -1403,7 +1391,7 @@ class CosineAnnealingLR(_LRScheduler):
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=l
r_var
.name)
fetch_list=l
oss
.name)
scheduler.step()
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录