未验证 提交 7a92e74b 编写于 作者: W Wen Sun 提交者: GitHub

Completes basic dtypes for collective api in eager mode (#45574)

上级 1137677a
......@@ -738,14 +738,23 @@ void* GetPointerByOffset(void* raw_pointer,
} else if (type == experimental::DataType::FLOAT64) {
return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
offset);
} else if (type == experimental::DataType::FLOAT16) {
return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
offset);
} else if (type == experimental::DataType::INT32) {
return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
offset);
} else if (type == experimental::DataType::INT64) {
return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
offset);
} else if (type == experimental::DataType::FLOAT16) {
return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
} else if (type == experimental::DataType::INT8) {
return reinterpret_cast<void*>(reinterpret_cast<int8_t*>(raw_pointer) +
offset);
} else if (type == experimental::DataType::UINT8) {
return reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(raw_pointer) +
offset);
} else if (type == experimental::DataType::BOOL) {
return reinterpret_cast<void*>(reinterpret_cast<bool*>(raw_pointer) +
offset);
} else {
PADDLE_THROW(platform::errors::Unimplemented(
......
......@@ -124,6 +124,8 @@ PD_REGISTER_KERNEL(concat,
int64_t,
int,
uint8_t,
int8_t,
phi::dtype::float16,
phi::dtype::bfloat16,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
......@@ -121,6 +121,7 @@ PD_REGISTER_KERNEL(concat,
int64_t,
int,
uint8_t,
int8_t,
phi::dtype::float16,
phi::dtype::bfloat16,
phi::dtype::complex<float>,
......
......@@ -60,21 +60,18 @@ class ReduceOp:
Examples:
.. code-block:: python
import numpy as np
# required: distributed
import paddle
from paddle.distributed import ReduceOp
from paddle.distributed import init_parallel_env
import paddle.distributed as dist
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
init_parallel_env()
if paddle.distributed.ParallelEnv().local_rank == 0:
np_data = np.array([[4, 5, 6], [4, 5, 6]])
dist.init_parallel_env()
if dist.get_rank() == 0:
data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
else:
np_data = np.array([[1, 2, 3], [1, 2, 3]])
data = paddle.to_tensor(np_data)
paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
out = data.numpy()
# [[5, 7, 9], [5, 7, 9]]
data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
dist.all_reduce(data, op=dist.ReduceOp.SUM)
print(data)
# [[5, 7, 9], [5, 7, 9]] (2 GPUs)
"""
SUM = 0
MAX = 1
......@@ -589,15 +586,16 @@ def destroy_process_group(group=None):
# required: distributed
import paddle
import paddle.distributed as dist
paddle.distributed.init_parallel_env()
group = paddle.distributed.new_group([0, 1])
dist.init_parallel_env()
group = dist.new_group([0, 1])
paddle.distributed.destroy_process_group(group)
print(paddle.distributed.is_initialized())
dist.destroy_process_group(group)
print(dist.is_initialized())
# True
paddle.distributed.destroy_process_group()
print(paddle.distributed.is_initialized())
dist.destroy_process_group()
print(dist.is_initialized())
# False
"""
......@@ -690,8 +688,8 @@ def broadcast(tensor, src, group=None, use_calc_stream=True):
"""
Broadcast a tensor from the source to all others.
As shown below, 4 GPUs each start 4 processes and GPU0 owns data 0. Through broadcast operator,
the data 0 will be sent to all GPUs from GPU0.
As shown below, one process is started with a GPU and GPU0 owns data 0. Through broadcast operator,
data 0 will be sent to all GPUs from GPU0.
.. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png
:width: 800
......@@ -699,8 +697,8 @@ def broadcast(tensor, src, group=None, use_calc_stream=True):
:align: center
Args:
tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
should be float16, float32, float64, int32 or int64.
tensor (Tensor): The Tensor to send if current rank is the source, or the Tensor to receive otherwise. Its data type
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
src (int): The source rank.
group (Group): The group instance return by new_group or None for global default group.
use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
......@@ -713,20 +711,17 @@ def broadcast(tensor, src, group=None, use_calc_stream=True):
.. code-block:: python
# required: distributed
import numpy as np
import paddle
from paddle.distributed import init_parallel_env
import paddle.distributed as dist
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
init_parallel_env()
if paddle.distributed.ParallelEnv().local_rank == 0:
np_data = np.array([[4, 5, 6], [4, 5, 6]])
dist.init_parallel_env()
if dist.get_rank() == 0:
data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
else:
np_data = np.array([[1, 2, 3], [1, 2, 3]])
data = paddle.to_tensor(np_data)
paddle.distributed.broadcast(data, 1)
out = data.numpy()
# [[1, 2, 3], [1, 2, 3]]
data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
dist.broadcast(data, src=1)
print(data)
# [[1, 2, 3], [1, 2, 3]] (2 GPUs)
"""
if group is not None and not group.is_member():
......@@ -756,9 +751,10 @@ def broadcast(tensor, src, group=None, use_calc_stream=True):
'ring_id', ring_id)
op_type = 'c_broadcast'
check_variable_and_dtype(
tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
'broadcast')
check_variable_and_dtype(tensor, 'tensor', [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
], 'broadcast')
helper = LayerHelper(op_type, **locals())
helper.append_op(type=op_type,
......@@ -800,15 +796,16 @@ def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
# required: distributed
import paddle
from paddle.distributed import init_parallel_env
import paddle.distributed as dist
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
init_parallel_env()
if paddle.distributed.ParallelEnv().local_rank == 0:
dist.init_parallel_env()
if dist.get_rank() == 0:
data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
else:
data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
paddle.distributed.all_reduce(data)
dist.all_reduce(data)
print(data)
# [[5, 7, 9], [5, 7, 9]] (2 GPUs)
"""
if group is not None and not group.is_member():
return
......@@ -871,8 +868,8 @@ def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
"""
Reduce a tensor to the destination from all others. As shown below, 4 GPUs each start 4 processes and the data on each GPU is respresnted
by the GPU number. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
Reduce a tensor to the destination from all others. As shown below, one process is started with a GPU and the data of this process is represented
by its group rank. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
the GPU0 will owns the sum of all data from all GPUs.
.. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png
......@@ -882,7 +879,7 @@ def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
Args:
tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
should be float16, float32, float64, int32 or int64.
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
dst (int): The destination rank id.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
group (Group): The group instance return by new_group or None for global default group.
......@@ -896,20 +893,18 @@ def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
.. code-block:: python
# required: distributed
import numpy as np
import paddle
from paddle.distributed import init_parallel_env
import paddle.distributed as dist
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
init_parallel_env()
if paddle.distributed.ParallelEnv().local_rank == 0:
np_data = np.array([[4, 5, 6], [4, 5, 6]])
dist.init_parallel_env()
if dist.get_rank() == 0:
data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
else:
np_data = np.array([[1, 2, 3], [1, 2, 3]])
data = paddle.to_tensor(np_data)
paddle.distributed.reduce(data, 0)
out = data.numpy()
# [[5, 7, 9], [5, 7, 9]]
data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
dist.reduce(data, dst=0)
print(data)
# [[5, 7, 9], [5, 7, 9]] (2 GPUs, out for rank 0)
# [[1, 2, 3], [1, 2, 3]] (2 GPUs, out for rank 1)
"""
if group is not None and not group.is_member():
return
......@@ -952,9 +947,10 @@ def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
raise ValueError("Unknown parameter: {}.".format(op))
op_type = 'c_reduce'
check_variable_and_dtype(
tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
'all_reduce')
check_variable_and_dtype(tensor, 'tensor', [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
], 'reduce')
if op == ReduceOp.SUM:
op_type = 'c_reduce_sum'
......@@ -980,8 +976,8 @@ def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
"""
Gather tensors from all participators and all get the result. As shown
below, 4 GPUs each starts 4 processes and the data on each GPU is represented
by the GPU number. Through the all_gather operator, each GPU will have data
below, one process is started with a GPU and the data of this process is represented
by its group rank. Through the all_gather operator, each GPU will have data
from all GPUs.
.. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png
......@@ -1006,17 +1002,17 @@ def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
# required: distributed
import paddle
from paddle.distributed import init_parallel_env
import paddle.distributed as dist
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
init_parallel_env()
dist.init_parallel_env()
tensor_list = []
if paddle.distributed.ParallelEnv().local_rank == 0:
data1 = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
paddle.distributed.all_gather(tensor_list, data1)
if dist.get_rank() == 0:
data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
else:
data2 = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
paddle.distributed.all_gather(tensor_list, data2)
data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
dist.all_gather(tensor_list, data)
print(tensor_list)
# [[[4, 5, 6], [4, 5, 6]], [[1, 2, 3], [1, 2, 3]]] (2 GPUs)
"""
if group is not None and not group.is_member():
return
......@@ -1126,15 +1122,15 @@ def all_gather_object(object_list, obj, group=None):
import paddle
import paddle.distributed as dist
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
dist.init_parallel_env()
object_list = []
if paddle.distributed.ParallelEnv().local_rank == 0:
if dist.get_rank() == 0:
obj = {"foo": [1, 2, 3]}
paddle.distributed.all_gather_object(object_list, obj)
else:
obj = {"bar": [4, 5, 6]}
paddle.distributed.all_gather_object(object_list, obj)
dist.all_gather_object(object_list, obj)
print(object_list)
# [{'foo': [1, 2, 3]}, {'bar': [4, 5, 6]}] (2 GPUs)
"""
assert in_dygraph_mode(
), "all_gather_object doesn't support static graph mode."
......@@ -1163,7 +1159,7 @@ def all_gather_object(object_list, obj, group=None):
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
"""
Scatter a tensor to all participators. As shown below, 4 GPUs each start 4 processes and the source of the scatter
Scatter a tensor to all participators. As shown below, one process is started with a GPU and the source of the scatter
is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.
.. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
......@@ -1173,9 +1169,9 @@ def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
Args:
tensor (Tensor): The output Tensor. Its data type
should be float16, float32, float64, int32 or int64.
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
should be float16, float32, float64, int32 or int64. Default value is None.
should be float16, float32, float64, int32, int64, int8, uint8 or bool. Default value is None.
src (int): The source rank id. Default value is 0.
group (Group): The group instance return by new_group or None for global default group.
use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
......@@ -1188,25 +1184,21 @@ def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
.. code-block:: python
# required: distributed
import numpy as np
import paddle
from paddle.distributed import init_parallel_env
import paddle.distributed as dist
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
init_parallel_env()
if paddle.distributed.ParallelEnv().local_rank == 0:
np_data1 = np.array([7, 8, 9])
np_data2 = np.array([10, 11, 12])
else:
np_data1 = np.array([1, 2, 3])
np_data2 = np.array([4, 5, 6])
data1 = paddle.to_tensor(np_data1)
data2 = paddle.to_tensor(np_data2)
if paddle.distributed.ParallelEnv().local_rank == 0:
paddle.distributed.scatter(data1, src=1)
dist.init_parallel_env()
if dist.get_rank() == 0:
data1 = paddle.to_tensor([7, 8, 9])
data2 = paddle.to_tensor([10, 11, 12])
dist.scatter(data1, src=1)
else:
paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
out = data1.numpy()
data1 = paddle.to_tensor([1, 2, 3])
data2 = paddle.to_tensor([4, 5, 6])
dist.scatter(data1, tensor_list=[data1, data2], src=1)
print(data1, data2)
# [1, 2, 3] [10, 11, 12] (2 GPUs, out for rank 0)
# [4, 5, 6] [4, 5, 6] (2 GPUs, out for rank 1)
"""
if group is not None and not group.is_member():
return
......@@ -1244,9 +1236,10 @@ def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
use_calc_stream, 'ring_id', ring_id,
'nranks', nranks, 'root', gsrc)
op_type = 'c_scatter'
check_variable_and_dtype(
tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
'scatter')
check_variable_and_dtype(tensor, 'tensor', [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
], 'scatter')
helper = LayerHelper(op_type, **locals())
helper.append_op(type=op_type,
inputs={'X': [temp]},
......@@ -2014,7 +2007,7 @@ def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
Args:
in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
should be float16, float32, float64, int32 or int64.
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
out_tensor_list (list): A list of output Tensors. The data type of its elements should be the same as the
data type of the input Tensors.
group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
......@@ -2027,29 +2020,29 @@ def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
.. code-block:: python
# required: distributed
import numpy as np
import paddle
from paddle.distributed import init_parallel_env
import paddle.distributed as dist
init_parallel_env()
dist.init_parallel_env()
out_tensor_list = []
if paddle.distributed.ParallelEnv().rank == 0:
np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
if dist.get_rank() == 0:
data1 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
data2 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]])
else:
np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
data1 = paddle.to_tensor(np_data1)
data2 = paddle.to_tensor(np_data2)
paddle.distributed.alltoall([data1, data2], out_tensor_list)
# out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
# out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
data1 = paddle.to_tensor([[13, 14, 15], [16, 17, 18]])
data2 = paddle.to_tensor([[19, 20, 21], [22, 23, 24]])
dist.alltoall([data1, data2], out_tensor_list)
print(out_tensor_list)
# [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]] (2 GPUs, out for rank 0)
# [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]] (2 GPUs, out for rank 1)
"""
if group is not None and not group.is_member():
return
if in_dygraph_mode():
group = _get_default_group() if group is None else group
backend = _group_map_backend[group]
assert backend != 'gloo', ("backend gloo is not supported yet")
else:
ring_id = 0 if group is None else group.id
......@@ -2114,7 +2107,7 @@ def alltoall_single(in_tensor,
``alltoall_single`` is only supported in eager mode.
Args:
in_tensor (Tensor): Input tensor. The data type should be float16, float32, float64, int32 or int64.
in_tensor (Tensor): Input tensor. The data type should be float16, float32, float64, int32, int64, int8, uint8 or bool.
out_tensor (Tensor): Output Tensor. The data type should be the same as the data type of the input Tensor.
in_split_sizes (list[int], optional): Split sizes of ``in_tensor`` for dim[0]. If not given, dim[0] of ``in_tensor``
must be divisible by group size and ``in_tensor`` will be scattered averagely to all participators. Default: None.
......@@ -2137,35 +2130,36 @@ def alltoall_single(in_tensor,
rank = dist.get_rank()
size = dist.get_world_size()
# case 1
input = paddle.arange(2, dtype='int64') + rank * 2
# input for rank 0: [0, 1]
# input for rank 1: [2, 3]
# case 1 (2 GPUs)
data = paddle.arange(2, dtype='int64') + rank * 2
# data for rank 0: [0, 1]
# data for rank 1: [2, 3]
output = paddle.empty([2], dtype='int64')
dist.alltoall_single(input, output)
dist.alltoall_single(data, output)
print(output)
# output for rank 0: [0, 2]
# output for rank 1: [1, 3]
# case 2
# case 2 (2 GPUs)
in_split_sizes = [i + 1 for i in range(size)]
# in_split_sizes for rank 0: [1, 2] and for rank 1: [1, 2]
# in_split_sizes for rank 0: [1, 2]
# in_split_sizes for rank 1: [1, 2]
out_split_sizes = [rank + 1 for i in range(size)]
# out_split_sizes for rank 0: [1, 1] and for rank 1: [2, 2]
input = paddle.ones([sum(in_split_sizes), size], dtype='float32') * rank
# input for rank 0: [[0., 0.], [0., 0.], [0., 0.]]
# input for rank 1: [[1., 1.], [1., 1.], [1., 1.]]
# out_split_sizes for rank 0: [1, 1]
# out_split_sizes for rank 1: [2, 2]
data = paddle.ones([sum(in_split_sizes), size], dtype='float32') * rank
# data for rank 0: [[0., 0.], [0., 0.], [0., 0.]]
# data for rank 1: [[1., 1.], [1., 1.], [1., 1.]]
output = paddle.empty([(rank + 1) * size, size], dtype='float32')
group = dist.new_group([0, 1])
task = dist.alltoall_single(input,
task = dist.alltoall_single(data,
output,
in_split_sizes,
out_split_sizes,
use_calc_stream=False,
group=group)
task.wait()
print(output)
# output for rank 0: [[0., 0.], [1., 1.]]
# output for rank 1: [[0., 0.], [0., 0.], [1., 1.], [1., 1.]]
......@@ -2177,6 +2171,9 @@ def alltoall_single(in_tensor,
# _check_single_tensor
group = _get_default_group() if group is None else group
backend = _group_map_backend[group]
assert backend != 'gloo', ("backend gloo is not supported yet")
in_split_sizes = [] if in_split_sizes is None else in_split_sizes
out_split_sizes = [] if out_split_sizes is None else out_split_sizes
......@@ -2199,7 +2196,7 @@ def send(tensor, dst=0, group=None, use_calc_stream=True):
Args:
tensor (Tensor): The Tensor to send. Its data type
should be float16, float32, float64, int32 or int64.
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
dst (int): The destination rank id.
group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
......@@ -2212,22 +2209,25 @@ def send(tensor, dst=0, group=None, use_calc_stream=True):
# required: distributed
import paddle
from paddle.distributed import init_parallel_env
import paddle.distributed as dist
init_parallel_env()
if paddle.distributed.ParallelEnv().rank == 0:
dist.init_parallel_env()
if dist.get_rank() == 0:
data = paddle.to_tensor([7, 8, 9])
paddle.distributed.send(data, dst=1)
dist.send(data, dst=1)
else:
data = paddle.to_tensor([1,2,3])
paddle.distributed.recv(data, src=0)
out = data.numpy()
data = paddle.to_tensor([1, 2, 3])
dist.recv(data, src=0)
print(data)
# [7, 8, 9] (2 GPUs)
"""
if group is not None and not group.is_member():
return
dst = _get_group_rank(dst, group)
if in_dygraph_mode():
group = _get_default_group() if group is None else group
backend = _group_map_backend[group]
assert backend != 'gloo', ("backend gloo is not supported yet")
task = group.process_group.send(tensor, dst)
if use_calc_stream:
task.wait()
......@@ -2261,7 +2261,7 @@ def recv(tensor, src=0, group=None, use_calc_stream=True):
Args:
tensor (Tensor): The Tensor to receive. Its data type
should be float16, float32, float64, int32 or int64.
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
src (int): The source rank id.
group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
......@@ -2274,16 +2274,17 @@ def recv(tensor, src=0, group=None, use_calc_stream=True):
# required: distributed
import paddle
from paddle.distributed import init_parallel_env
import paddle.distributed as dist
init_parallel_env()
if paddle.distributed.ParallelEnv().rank == 0:
dist.init_parallel_env()
if dist.get_rank() == 0:
data = paddle.to_tensor([7, 8, 9])
paddle.distributed.send(data, dst=1)
dist.send(data, dst=1)
else:
data = paddle.to_tensor([1,2,3])
paddle.distributed.recv(data, src=0)
out = data.numpy()
data = paddle.to_tensor([1, 2, 3])
dist.recv(data, src=0)
print(data)
# [7, 8, 9] (2 GPUs)
"""
if group is not None and not group.is_member():
return
......@@ -2291,6 +2292,8 @@ def recv(tensor, src=0, group=None, use_calc_stream=True):
src = _get_group_rank(src, group)
if in_dygraph_mode():
group = _get_default_group() if group is None else group
backend = _group_map_backend[group]
assert backend != 'gloo', ("backend gloo is not supported yet")
task = group.process_group.recv(tensor, src)
if use_calc_stream:
task.wait()
......@@ -2340,7 +2343,7 @@ def isend(tensor, dst, group=None):
Args:
tensor (Tensor): The Tensor to send. Its data type
should be float16, float32, float64, int32 or int64.
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
dst (int): The destination rank.
group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
......@@ -2358,21 +2361,15 @@ def isend(tensor, dst, group=None):
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
world_size = dist.get_world_size()
if rank == 0:
if dist.get_rank() == 0:
data = paddle.to_tensor([7, 8, 9])
task = paddle.distributed.isend(data, dst=1)
task = dist.isend(data, dst=1)
else:
data = paddle.to_tensor([1, 2, 3])
task = paddle.distributed.irecv(data, src=0)
task = dist.irecv(data, src=0)
task.wait()
print(data)
# paddle.tensor([7, 8, 9]) # Rank-0
# paddle.tensor([7, 8, 9]) # Rank-1
# [7, 8, 9] (2 GPUs)
"""
_check_single_tensor(tensor, "tensor")
......@@ -2381,6 +2378,8 @@ def isend(tensor, dst, group=None):
if in_dygraph_mode():
group = _get_default_group() if group is None else group
backend = _group_map_backend[group]
assert backend != 'gloo', ("backend gloo is not supported yet")
group_dst_rank = group.get_group_rank(dst)
assert group_dst_rank >= 0, ("dst rank out of group, need global rank")
return group.process_group.send(tensor, group_dst_rank)
......@@ -2394,7 +2393,7 @@ def irecv(tensor, src=None, group=None):
Args:
tensor (Tensor): The Tensor to receive. Its data type
should be float16, float32, float64, int32 or int64.
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
src (int): The source rank id.
group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
......@@ -2412,21 +2411,15 @@ def irecv(tensor, src=None, group=None):
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
world_size = dist.get_world_size()
if rank == 0:
if dist.get_rank() == 0:
data = paddle.to_tensor([7, 8, 9])
task = paddle.distributed.isend(data, dst=1)
task = dist.isend(data, dst=1)
else:
data = paddle.to_tensor([1, 2, 3])
task = paddle.distributed.irecv(data, src=0)
task = dist.irecv(data, src=0)
task.wait()
print(data)
# paddle.tensor([7, 8, 9]) # Rank-0
# paddle.tensor([7, 8, 9]) # Rank-1
# [7, 8, 9] (2 GPUs)
"""
_check_single_tensor(tensor, "tensor")
if group is not None and not group.is_member():
......@@ -2434,6 +2427,8 @@ def irecv(tensor, src=None, group=None):
if in_dygraph_mode():
group = _get_default_group() if group is None else group
backend = _group_map_backend[group]
assert backend != 'gloo', ("backend gloo is not supported yet")
group_src_rank = group.get_group_rank(src)
assert group_src_rank >= 0, ("src rank out of group, need global rank")
return group.process_group.recv(tensor, group_src_rank)
......@@ -2581,8 +2576,9 @@ def reduce_scatter(tensor,
Reduces, then scatters a list of tensors to all processes in a group
Args:
tensor (Tensor): Output tensor.
tensor_list (list[Tensor]): List of tensors to reduce and scatter.
tensor (Tensor): Output tensor. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool.
tensor_list (list[Tensor]): List of tensors to reduce and scatter. Every element in the list must be a Tensor whose data type
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD): Optional. The operation used. Default: ReduceOp.SUM.
group (Group, optional): The group instance return by new_group or None for global
default group. Default: None.
......@@ -2604,24 +2600,16 @@ def reduce_scatter(tensor,
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
world_size = dist.get_world_size()
if rank == 0:
t1 = paddle.to_tensor([0, 1])
t2 = paddle.to_tensor([2, 3])
if dist.get_rank() == 0:
data1 = paddle.to_tensor([0, 1])
data2 = paddle.to_tensor([2, 3])
else:
t1 = paddle.to_tensor([4, 5])
t2 = paddle.to_tensor([6, 7])
tensor_list = [t1, t2]
output = paddle.empty(shape=[2], dtype=tensor_list[0].dtype)
dist.reduce_scatter(output, tensor_list)
print(output)
# [4, 6] # Rank-0
# [8, 10] # Rank-1
data1 = paddle.to_tensor([4, 5])
data2 = paddle.to_tensor([6, 7])
dist.reduce_scatter(data1, [data1, data2])
print(data1)
# [4, 6] (2 GPUs, out for rank 0)
# [8, 10] (2 GPUs, out for rank 1)
"""
_check_single_tensor(tensor, "tensor")
......@@ -2633,6 +2621,8 @@ def reduce_scatter(tensor,
if in_dygraph_mode():
op_type = _get_reduce_op(op, "reduce_scatter")
group = _get_default_group() if group is None else group
backend = _group_map_backend[group]
assert backend != 'gloo', ("backend gloo is not supported yet")
temp = paddle.concat(tensor_list, axis=0)
task = group.process_group._reduce_scatter_base(tensor, temp, op_type)
......@@ -2654,8 +2644,9 @@ def _reduce_scatter_base(output,
Reduces, then scatters a flattened tensor to all processes in a group.
Args:
output (Tensor): Output tensor.
input (Tensor): Input tensor that is of size output tensor size times world size
output (Tensor): Output tensor. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool.
input (Tensor): Input tensor that is of size output tensor size times world size. Its data type
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD): Optional. The operation used. Default: ReduceOp.SUM.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used.
......@@ -2669,23 +2660,19 @@ def _reduce_scatter_base(output,
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
world_size = dist.get_world_size()
input = paddle.arange(4) + rank
# [0, 1, 2, 3] # Rank-0
# [1, 2, 3, 4] # Rank-1
output = paddle.empty(shape=[2], dtype=input.dtype)
paddle.distributed.collective._reduce_scatter_base(output, input)
data = paddle.arange(4) + rank
# [0, 1, 2, 3] (2 GPUs, for rank 0)
# [1, 2, 3, 4] (2 GPUs, for rank 1)
output = paddle.empty(shape=[2], dtype=data.dtype)
dist.collective._reduce_scatter_base(output, data)
print(output)
# [1, 3] # Rank-0
# [5, 7] # Rank-1
# [1, 3] (2 GPUs, out for rank 0)
# [5, 7] (2 GPUs, out for rank 1)
"""
_check_single_tensor(output, "output")
......
......@@ -78,7 +78,7 @@ if((WITH_GPU OR WITH_ROCM) AND (LINUX))
test_collective_alltoall_api MODULES test_collective_alltoall_api ENVS
"http_proxy=;https_proxy=;PYTHONPATH=..:${PADDLE_BINARY_DIR}/python")
set_tests_properties(test_collective_alltoall_api
PROPERTIES TIMEOUT "120" LABELS "RUN_TYPE=DIST")
PROPERTIES TIMEOUT "300" LABELS "RUN_TYPE=DIST")
endif()
if((WITH_GPU OR WITH_ROCM) AND (LINUX))
bash_test_modules(
......@@ -92,6 +92,14 @@ if((WITH_GPU OR WITH_ROCM) AND (LINUX))
)
set_tests_properties(test_collective_alltoall_single PROPERTIES TIMEOUT "350")
endif()
if((WITH_GPU OR WITH_ROCM) AND (LINUX))
py_test_modules(
test_collective_alltoall_single_api MODULES
test_collective_alltoall_single_api ENVS
"http_proxy=;https_proxy=;PYTHONPATH=..:${PADDLE_BINARY_DIR}/python")
set_tests_properties(test_collective_alltoall_single_api
PROPERTIES TIMEOUT "300" LABELS "RUN_TYPE=DIST")
endif()
if((WITH_GPU OR WITH_ROCM) AND (LINUX))
py_test_modules(
test_collective_barrier_api MODULES test_collective_barrier_api ENVS
......@@ -117,7 +125,7 @@ if((WITH_GPU OR WITH_ROCM) AND (LINUX))
test_collective_broadcast_api MODULES test_collective_broadcast_api ENVS
"http_proxy=;https_proxy=;PYTHONPATH=..:${PADDLE_BINARY_DIR}/python")
set_tests_properties(test_collective_broadcast_api
PROPERTIES TIMEOUT "120" LABELS "RUN_TYPE=DIST")
PROPERTIES TIMEOUT "300" LABELS "RUN_TYPE=DIST")
endif()
if((WITH_GPU OR WITH_ROCM) AND (LINUX))
py_test_modules(
......@@ -141,6 +149,13 @@ if((WITH_GPU OR WITH_ROCM) AND (LINUX))
set_tests_properties(test_collective_global_scatter
PROPERTIES TIMEOUT "200" LABELS "RUN_TYPE=DIST")
endif()
if((WITH_GPU OR WITH_ROCM) AND (LINUX))
py_test_modules(
test_collective_isend_irecv_api MODULES test_collective_isend_irecv_api
ENVS "http_proxy=;https_proxy=;PYTHONPATH=..:${PADDLE_BINARY_DIR}/python")
set_tests_properties(test_collective_isend_irecv_api
PROPERTIES TIMEOUT "300" LABELS "RUN_TYPE=DIST")
endif()
if((WITH_GPU OR WITH_ROCM) AND (LINUX))
py_test_modules(
test_collective_optimizer MODULES test_collective_optimizer ENVS
......@@ -186,6 +201,14 @@ if((WITH_GPU OR WITH_ROCM) AND (LINUX))
)
set_tests_properties(test_collective_reduce_scatter PROPERTIES TIMEOUT "350")
endif()
if((WITH_GPU OR WITH_ROCM) AND (LINUX))
py_test_modules(
test_collective_reduce_scatter_api MODULES
test_collective_reduce_scatter_api ENVS
"http_proxy=;https_proxy=;PYTHONPATH=..:${PADDLE_BINARY_DIR}/python")
set_tests_properties(test_collective_reduce_scatter_api
PROPERTIES TIMEOUT "300" LABELS "RUN_TYPE=DIST")
endif()
if((WITH_GPU OR WITH_ROCM) AND (LINUX))
py_test_modules(
test_collective_scatter MODULES test_collective_scatter ENVS
......@@ -212,7 +235,7 @@ if((WITH_GPU OR WITH_ROCM) AND (LINUX))
test_collective_sendrecv_api MODULES test_collective_sendrecv_api ENVS
"http_proxy=;https_proxy=;PYTHONPATH=..:${PADDLE_BINARY_DIR}/python")
set_tests_properties(test_collective_sendrecv_api
PROPERTIES TIMEOUT "120" LABELS "RUN_TYPE=DIST")
PROPERTIES TIMEOUT "300" LABELS "RUN_TYPE=DIST")
endif()
if((WITH_GPU OR WITH_ROCM) AND (LINUX))
py_test_modules(
......
......@@ -45,12 +45,9 @@ class TestCollectiveAllToAllAPI(TestCollectiveAPIRunnerBase):
with fluid.program_guard(main_prog, startup_program):
tindata = paddle.to_tensor(indata)
tindata = paddle.split(tindata, 2, axis=0)
tout_data = []
paddle.distributed.alltoall(tindata, tout_data)
output_data = []
for data in tout_data:
output_data.append(data.numpy())
return output_data
toutdata = []
paddle.distributed.alltoall(tindata, toutdata)
return [data.numpy() for data in toutdata]
if __name__ == "__main__":
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import test_collective_api_base as test_base
class TestCollectiveAllToAllSingleAPI(test_base.TestCollectiveAPIRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program, rank, indata=None):
with fluid.program_guard(main_prog, startup_program):
tindata = paddle.to_tensor(indata)
toutdata = paddle.to_tensor(indata)
paddle.distributed.alltoall_single(tindata, toutdata)
return [toutdata.numpy()]
if __name__ == "__main__":
test_base.runtime_main(TestCollectiveAllToAllSingleAPI, "alltoall")
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import unittest
import test_collective_api_base as test_base
class TestCollectiveBroadcastAPI(test_base.TestCollectiveAPIRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program, rank, indata=None):
with fluid.program_guard(main_prog, startup_program):
tindata = paddle.to_tensor(indata)
paddle.distributed.broadcast(tindata, src=1)
return [tindata.numpy()]
if __name__ == "__main__":
test_base.runtime_main(TestCollectiveBroadcastAPI, "broadcast")
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import unittest
import test_collective_api_base as test_base
class TestCollectiveIsendIrecvAPI(test_base.TestCollectiveAPIRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program, rank, indata=None):
with fluid.program_guard(main_prog, startup_program):
tindata = paddle.to_tensor(indata)
if rank == 0:
task = paddle.distributed.isend(tindata, dst=1)
else:
task = paddle.distributed.irecv(tindata, src=0)
task.wait()
return [tindata.numpy()]
if __name__ == "__main__":
test_base.runtime_main(TestCollectiveIsendIrecvAPI, "sendrecv")
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import unittest
import test_collective_api_base as test_base
class TestCollectiveReduceAPI(test_base.TestCollectiveAPIRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program, rank, indata=None):
with fluid.program_guard(main_prog, startup_program):
tindata = paddle.to_tensor(indata)
paddle.distributed.reduce(tindata, dst=0)
return [tindata.numpy()]
if __name__ == "__main__":
test_base.runtime_main(TestCollectiveReduceAPI, "reduce")
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import unittest
import test_collective_api_base as test_base
class TestCollectiveReduceScatterAPI(test_base.TestCollectiveAPIRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program, rank, indata=None):
with fluid.program_guard(main_prog, startup_program):
tindata = paddle.to_tensor(indata)
subdata1, subdata2 = paddle.split(tindata, 2, axis=0)
paddle.distributed.reduce_scatter(subdata1, [subdata1, subdata2])
return [subdata1.numpy()]
if __name__ == "__main__":
test_base.runtime_main(TestCollectiveReduceScatterAPI, "reduce_scatter")
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import unittest
import test_collective_api_base as test_base
class TestCollectiveScatterAPI(test_base.TestCollectiveAPIRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program, rank, indata=None):
with fluid.program_guard(main_prog, startup_program):
tindata = paddle.to_tensor(indata)
subdata1, subdata2 = paddle.split(tindata, 2, axis=0)
if rank == 0:
paddle.distributed.scatter(subdata1, src=1)
else:
paddle.distributed.scatter(subdata1,
tensor_list=[subdata1, subdata2],
src=1)
return [subdata1.numpy()]
if __name__ == "__main__":
test_base.runtime_main(TestCollectiveScatterAPI, "scatter")
......@@ -31,10 +31,16 @@ class TestCollectiveAllToAllAPI(TestDistBase):
self.check_with_place("collective_alltoall_api.py", "alltoall", "nccl")
def test_alltoall_nccl_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_alltoall_api_dygraph.py",
"alltoall",
"nccl",
static_mode="0")
static_mode="0",
dtype=dtype)
if __name__ == '__main__':
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import test_collective_api_base as test_base
class TestCollectiveAllToAllSingleAPI(test_base.TestDistBase):
def _setup_config(self):
pass
def test_alltooall_single_nccl_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_alltoall_single_api_dygraph.py",
"alltoall",
"nccl",
static_mode="0",
dtype=dtype)
if __name__ == '__main__':
unittest.main()
......@@ -35,6 +35,31 @@ class TestCollectiveBroadcastAPI(TestDistBase):
self.check_with_place("collective_broadcast_api.py", "broadcast",
"gloo", "0")
def test_broadcast_nccl_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_broadcast_api_dygraph.py",
"broadcast",
"nccl",
static_mode="0",
dtype=dtype)
def test_broadcast_gloo_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_broadcast_api_dygraph.py",
"broadcast",
"gloo",
"0",
static_mode="0",
dtype=dtype)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import test_collective_api_base as test_base
class TestCollectiveIsendIrecvAPI(test_base.TestDistBase):
def _setup_config(self):
pass
def test_isend_irecv_nccl_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_isend_irecv_api_dygraph.py",
"sendrecv",
"nccl",
static_mode="0",
dtype=dtype)
if __name__ == '__main__':
unittest.main()
......@@ -38,6 +38,31 @@ class TestCollectiveReduceAPI(TestDistBase):
def test_reduce_gloo(self):
self.check_with_place("collective_reduce_api.py", "reduce", "gloo", "1")
def test_reduce_nccl_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_reduce_api_dygraph.py",
"reduce",
"nccl",
static_mode="0",
dtype=dtype)
def test_reduce_gloo_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_reduce_api_dygraph.py",
"reduce",
"gloo",
"1",
static_mode="0",
dtype=dtype)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import test_collective_api_base as test_base
class TestCollectiveReduceScatterAPI(test_base.TestDistBase):
def _setup_config(self):
pass
def test_reduce_scatter_nccl_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_reduce_scatter_api_dygraph.py",
"reduce_scatter",
"nccl",
static_mode="0",
dtype=dtype)
if __name__ == '__main__':
unittest.main()
......@@ -34,6 +34,31 @@ class TestCollectiveScatterAPI(TestDistBase):
def test_scatter_nccl(self):
self.check_with_place("collective_scatter_api.py", "scatter", "nccl")
def test_scatter_nccl_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_scatter_api_dygraph.py",
"scatter",
"nccl",
static_mode="0",
dtype=dtype)
def test_scatter_gloo_dygraph(self):
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_scatter_api_dygraph.py",
"scatter",
"gloo",
"4",
static_mode="0",
dtype=dtype)
if __name__ == '__main__':
unittest.main()
......@@ -33,11 +33,16 @@ class TestCollectiveSendRecvAPI(TestDistBase):
# "nccl")
def test_sendrecv_nccl_dygraph(self):
if paddle.fluid.core.is_compiled_with_cuda():
dtypes_to_test = [
'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8',
'bool'
]
for dtype in dtypes_to_test:
self.check_with_place("collective_sendrecv_api_dygraph.py",
"sendrecv",
"nccl",
static_mode='0')
static_mode="0",
dtype=dtype)
if __name__ == '__main__':
......
......@@ -8,23 +8,26 @@ test_collective_split_embedding,linux,rocm;gpu,300,DIST,../dist_test.sh,2,,PYTHO
test_collective_allgather_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_allgather_object_api,linux,gpu;rocm,120,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_allreduce_api,linux,gpu;rocm,120,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_alltoall_api,linux,gpu;rocm,120,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_alltoall_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_alltoall_single,linux,gpu;rocm,350,DIST,../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_alltoall_single_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_barrier_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_batch_isend_irecv,linux,gpu;rocm,350,DIST,../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_broadcast_api,linux,gpu;rocm,120,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_broadcast_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_cpu_barrier_with_gloo,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_global_gather,linux,gpu;rocm,200,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_global_scatter,linux,gpu;rocm,200,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_isend_irecv_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_optimizer,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_process_group,linux,gpu;rocm,350,DIST,../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_reduce,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_reduce_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_reduce_scatter,linux,gpu;rocm,350,DIST,../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_reduce_scatter_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_scatter,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_scatter_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_sendrecv,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_sendrecv_api,linux,gpu;rocm,120,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_sendrecv_api,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_split_col_linear,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_split_embedding_none_divisible,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_split_row_linear,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
......
......@@ -335,6 +335,12 @@ class TestDistBase(unittest.TestCase):
need_result2 = need_result[need_result.shape[0] // 2:]
np.testing.assert_allclose(tr0_out[0], need_result1, rtol=1e-05)
np.testing.assert_allclose(tr1_out[0], need_result2, rtol=1e-05)
elif col_type == "reduce_scatter":
need_result = input1 + input2
need_result1 = need_result[0:need_result.shape[0] // 2]
need_result2 = need_result[need_result.shape[0] // 2:]
np.testing.assert_allclose(tr0_out[0], need_result1, rtol=1e-05)
np.testing.assert_allclose(tr1_out[0], need_result2, rtol=1e-05)
elif col_type == "allreduce":
need_result = input1 + input2
np.testing.assert_allclose(tr0_out[0],
......
......@@ -1015,7 +1015,7 @@ def concat(x, axis=0, name=None):
Args:
x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
float32, float64, int32, int64, uint8. All the Tensors in ``x`` must have same data type.
float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
It's a scalar with data type int or a Tensor with shape [1] and data type int32
or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
......@@ -1073,10 +1073,10 @@ def concat(x, axis=0, name=None):
check_type(input, 'input', (list, tuple, Variable), 'concat')
if not isinstance(input, Variable):
for id, x in enumerate(input):
check_variable_and_dtype(
x, 'input[' + str(id) + ']',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'concat')
check_variable_and_dtype(x, 'input[' + str(id) + ']', [
'bool', 'float16', 'float32', 'float64', 'int32', 'int64',
'int8', 'unit8'
], 'concat')
if x.dtype != input[0].dtype:
raise TypeError(
"All the Tensors in the input must have the same data type."
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册