Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7964119b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7964119b
编写于
11月 10, 2022
作者:
C
Charles-hit
提交者:
GitHub
11月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support pow_triple_grad op (#47799)
上级
658387b0
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
338 addition
and
5 deletion
+338
-5
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+39
-0
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+0
-1
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+12
-1
paddle/phi/kernels/activation_grad_kernel.h
paddle/phi/kernels/activation_grad_kernel.h
+12
-0
paddle/phi/kernels/cpu/activation_grad_kernel.cc
paddle/phi/kernels/cpu/activation_grad_kernel.cc
+8
-0
paddle/phi/kernels/gpu/activation_grad_kernel.cu
paddle/phi/kernels/gpu/activation_grad_kernel.cu
+10
-1
paddle/phi/kernels/impl/activation_grad_impl.h
paddle/phi/kernels/impl/activation_grad_impl.h
+147
-2
paddle/phi/ops/compat/activation_sig.cc
paddle/phi/ops/compat/activation_sig.cc
+17
-0
python/paddle/fluid/tests/unittests/test_activation_nn_grad.py
...n/paddle/fluid/tests/unittests/test_activation_nn_grad.py
+93
-0
未找到文件。
paddle/fluid/operators/activation_op.cc
浏览文件 @
7964119b
...
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/common_infer_shape_functions.h"
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
...
...
@@ -457,6 +458,26 @@ class PowDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
op
->
SetAttrMap
(
this
->
Attrs
());
}
};
template
<
typename
T
>
class
PowTripleGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"pow_triple_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"DOut"
,
this
->
Input
(
"DOut"
));
op
->
SetInput
(
"DDX"
,
this
->
Input
(
"DDX"
));
op
->
SetInput
(
"D_DX"
,
this
->
OutputGrad
(
"DX"
));
op
->
SetInput
(
"D_DDOut"
,
this
->
OutputGrad
(
"DDOut"
));
op
->
SetOutput
(
"D_X"
,
this
->
InputGrad
(
"X"
));
op
->
SetOutput
(
"D_DOut"
,
this
->
InputGrad
(
"DOut"
));
op
->
SetOutput
(
"D_DDX"
,
this
->
InputGrad
(
"DDX"
));
op
->
SetInput
(
"FactorTensor"
,
this
->
Input
(
"FactorTensor"
));
op
->
SetAttrMap
(
this
->
Attrs
());
}
};
class
PowOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -523,6 +544,16 @@ class PowOpDoubleGrad : public framework::OperatorWithKernel {
}
};
class
PowOpTripleGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
GetKernelType
(
ctx
,
*
this
,
"X"
);
}
};
DECLARE_INPLACE_OP_INFERER
(
ActFwdInplaceInferer
,
{
"X"
,
"Out"
});
}
// namespace operators
}
// namespace paddle
...
...
@@ -575,6 +606,9 @@ REGISTER_ACTIVATION_OP(swish, Swish, SwishFunctor, SwishGradFunctor);
DECLARE_INFER_SHAPE_FUNCTOR
(
pow_double_grad
,
PowDoubleGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
GeneralBinaryGradInferMeta
));
DECLARE_INFER_SHAPE_FUNCTOR
(
pow_triple_grad
,
PowTripleGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
GeneralTernaryGradInferMeta
));
REGISTER_OPERATOR
(
pow
,
...
...
@@ -594,7 +628,12 @@ REGISTER_OPERATOR(pow_grad,
REGISTER_OPERATOR
(
pow_double_grad
,
ops
::
PowOpDoubleGrad
,
ops
::
ActivationDoubleGradOpInplaceInferer
,
ops
::
PowTripleGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
PowTripleGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
PowDoubleGradInferShapeFunctor
);
REGISTER_OPERATOR
(
pow_triple_grad
,
ops
::
PowOpTripleGrad
,
PowTripleGradInferShapeFunctor
);
/* ========================================================================== */
/* ========================== register checkpoint ===========================*/
...
...
paddle/fluid/operators/activation_op.h
浏览文件 @
7964119b
...
...
@@ -27,7 +27,6 @@ limitations under the License. */
#include <type_traits>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/enforce.h"
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
7964119b
...
...
@@ -1330,9 +1330,10 @@
output
:
Tensor(x_grad), Tensor(grad_out_grad)
infer_meta
:
func
:
GeneralBinaryGradInferMeta
param
:
[
x
,
x
]
param
:
[
x
,
grad_out
]
kernel
:
func
:
pow_double_grad
backward
:
pow_triple_grad
inplace
:
(grad_x_grad -> x_grad)
-
backward_op
:
pow_grad
...
...
@@ -1347,6 +1348,16 @@
backward
:
pow_double_grad
inplace
:
(out_grad -> x_grad)
-
backward_op
:
pow_triple_grad
forward
:
pow_double_grad(Tensor x, Tensor grad_out, Tensor grad_grad_x, Scalar y) -> Tensor(grad_x), Tensor(grad_grad_out)
args
:
(Tensor x, Tensor grad_out, Tensor grad_grad_x, Tensor grad_x_grad, Tensor grad_grad_out_grad, Scalar y)
output
:
Tensor(x_grad), Tensor(grad_out_grad), Tensor(grad_grad_x_grad)
infer_meta
:
func
:
GeneralTernaryGradInferMeta
param
:
[
x
,
grad_out
,
grad_grad_x
]
kernel
:
func
:
pow_triple_grad
-
backward_op
:
prelu_grad
forward
:
prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out)
args
:
(Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode)
...
...
paddle/phi/kernels/activation_grad_kernel.h
浏览文件 @
7964119b
...
...
@@ -226,6 +226,18 @@ void PowDoubleGradKernel(const Context& dev_ctx,
const
Scalar
&
factor
,
DenseTensor
*
dx
,
DenseTensor
*
ddout
);
template
<
typename
T
,
typename
Context
>
void
PowTripleGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
dout
,
const
DenseTensor
&
ddx
,
const
DenseTensor
&
d_dx
,
const
DenseTensor
&
d_ddout
,
const
Scalar
&
factor
,
DenseTensor
*
out_d_x
,
DenseTensor
*
out_d_dout
,
DenseTensor
*
out_d_ddx
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Cos
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Tan
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Acos
);
...
...
paddle/phi/kernels/cpu/activation_grad_kernel.cc
浏览文件 @
7964119b
...
...
@@ -390,3 +390,11 @@ PD_REGISTER_KERNEL(pow_double_grad,
double
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
pow_triple_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
PowTripleGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/gpu/activation_grad_kernel.cu
浏览文件 @
7964119b
...
...
@@ -472,7 +472,6 @@ PD_REGISTER_KERNEL(pow_grad,
int64_t
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
pow_double_grad
,
GPU
,
ALL_LAYOUT
,
...
...
@@ -483,3 +482,13 @@ PD_REGISTER_KERNEL(pow_double_grad,
int64_t
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
pow_triple_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
PowTripleGradKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/impl/activation_grad_impl.h
浏览文件 @
7964119b
...
...
@@ -17,6 +17,7 @@
#include "paddle/fluid/platform/device_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/activation_kernel.h"
#include "paddle/phi/kernels/elementwise_add_kernel.h"
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/activation_functor.h"
...
...
@@ -347,10 +348,10 @@ void PowDoubleGradKernel(const Context& dev_ctx,
DenseTensor
*
dx
,
DenseTensor
*
ddout
)
{
PADDLE_ENFORCE_NOT_NULL
(
dx
,
errors
::
NotFound
(
"The output DenseTensor
dx
can not be nullptr"
));
dx
,
errors
::
NotFound
(
"The output DenseTensor
DX
can not be nullptr"
));
PADDLE_ENFORCE_NOT_NULL
(
ddout
,
errors
::
NotFound
(
"The output DenseTensor
ddo
ut can not be nullptr"
));
errors
::
NotFound
(
"The output DenseTensor
DDO
ut can not be nullptr"
));
float
exponent
=
factor
.
to
<
float
>
();
if
(
exponent
==
1
)
{
*
dx
=
phi
::
FullLike
<
T
,
Context
>
(
dev_ctx
,
x
,
static_cast
<
T
>
(
0
));
...
...
@@ -366,6 +367,150 @@ void PowDoubleGradKernel(const Context& dev_ctx,
*
ddout
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
ddout_tmp
,
exponent
,
0.0
,
true
);
}
template
<
typename
T
,
typename
Context
>
void
PowTripleGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
dout
,
const
DenseTensor
&
ddx
,
const
DenseTensor
&
d_dx
,
const
DenseTensor
&
d_ddout
,
const
Scalar
&
factor
,
DenseTensor
*
out_d_x
,
DenseTensor
*
out_d_dout
,
DenseTensor
*
out_d_ddx
)
{
PADDLE_ENFORCE_NOT_NULL
(
out_d_x
,
errors
::
NotFound
(
"The output DenseTensor D_X can not be nullptr"
));
PADDLE_ENFORCE_NOT_NULL
(
out_d_dout
,
errors
::
NotFound
(
"The output DenseTensor D_DOut can not be nullptr"
));
PADDLE_ENFORCE_NOT_NULL
(
out_d_ddx
,
errors
::
NotFound
(
"The output DenseTensor D_DDX can not be nullptr"
));
float
exponent
=
factor
.
to
<
float
>
();
if
(
exponent
!=
2
&&
exponent
!=
1
)
{
// case1: b != 2 and b != 1
// D_X = D_DX * DDX * DOut * b * (b-1) * (b-2) * X^(b-3)
// + D_DDOut * DDX * b * (b-1) * X^(b-2)
DenseTensor
out_d_x_tmp1
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_dx
,
ddx
);
DenseTensor
out_d_x_tmp2
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
phi
::
Pow
<
T
,
Context
>
(
dev_ctx
,
x
,
exponent
-
3
),
exponent
*
(
exponent
-
1
)
*
(
exponent
-
2
),
0.0
,
true
);
DenseTensor
out_d_x_part1
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
out_d_x_tmp1
,
dout
),
out_d_x_tmp2
);
DenseTensor
out_d_x_tmp3
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_ddout
,
ddx
);
DenseTensor
out_d_x_tmp4
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
phi
::
Pow
<
T
,
Context
>
(
dev_ctx
,
x
,
exponent
-
2
),
exponent
*
(
exponent
-
1
),
0.0
,
true
);
DenseTensor
out_d_x_part2
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
out_d_x_tmp3
,
out_d_x_tmp4
);
*
out_d_x
=
phi
::
Add
<
T
,
Context
>
(
dev_ctx
,
out_d_x_part1
,
out_d_x_part2
);
// D_DOut = D_DX * DDX * b * (b-1) * X^(b-2)
DenseTensor
out_d_dout_tmp
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
phi
::
Pow
<
T
,
Context
>
(
dev_ctx
,
x
,
exponent
-
2
),
exponent
*
(
exponent
-
1
),
0.0
,
true
);
*
out_d_dout
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
out_d_x_tmp1
,
out_d_dout_tmp
);
// D_DDX = D_DX * DOut * b * (b-1) * X^(b-2) + D_DDOut * b * X^(b-1)
DenseTensor
out_d_ddx_tmp1
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_dx
,
dout
);
DenseTensor
out_d_ddx_part1
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
out_d_ddx_tmp1
,
out_d_dout_tmp
);
DenseTensor
out_d_ddx_tmp2
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
phi
::
Pow
<
T
,
Context
>
(
dev_ctx
,
x
,
exponent
-
1
),
exponent
,
0.0
,
true
);
DenseTensor
out_d_ddx_part2
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_ddout
,
out_d_ddx_tmp2
);
*
out_d_ddx
=
phi
::
Add
<
T
,
Context
>
(
dev_ctx
,
out_d_ddx_part1
,
out_d_ddx_part2
);
}
else
if
(
exponent
==
2
)
{
// case2: b = 2
// D_X = D_DDOut * DDX * b * (b-1) * X^(b-2)
DenseTensor
out_d_x_tmp1
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_ddout
,
ddx
);
DenseTensor
out_d_x_tmp2
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
phi
::
Pow
<
T
,
Context
>
(
dev_ctx
,
x
,
exponent
-
2
),
exponent
*
(
exponent
-
1
),
0.0
,
true
);
*
out_d_x
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
out_d_x_tmp1
,
out_d_x_tmp2
);
// D_DOut = D_DX * DDX * b * (b-1) * X^(b-2)
DenseTensor
out_d_dout_tmp1
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_dx
,
ddx
);
DenseTensor
out_d_dout_tmp2
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
phi
::
Pow
<
T
,
Context
>
(
dev_ctx
,
x
,
exponent
-
2
),
exponent
*
(
exponent
-
1
),
0.0
,
true
);
*
out_d_dout
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
out_d_dout_tmp1
,
out_d_dout_tmp2
);
// D_DDX = D_DX * DOut * b * (b-1) * X^(b-2) + D_DDOut * b * X^(b-1)
DenseTensor
out_d_ddx_tmp1
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_dx
,
dout
);
DenseTensor
out_d_ddx_part1
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
out_d_ddx_tmp1
,
out_d_dout_tmp2
);
DenseTensor
out_d_ddx_tmp2
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
phi
::
Pow
<
T
,
Context
>
(
dev_ctx
,
x
,
exponent
-
1
),
exponent
,
0.0
,
true
);
DenseTensor
out_d_ddx_part2
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_ddout
,
out_d_ddx_tmp2
);
*
out_d_ddx
=
phi
::
Add
<
T
,
Context
>
(
dev_ctx
,
out_d_ddx_part1
,
out_d_ddx_part2
);
}
else
{
// case3: b = 1
// D_X = D_DX * DDX * DOut * b * (b-1) * (b-2) * X^(b-3)
DenseTensor
out_d_x_tmp1
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_dx
,
ddx
);
DenseTensor
out_d_x_tmp2
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
phi
::
Pow
<
T
,
Context
>
(
dev_ctx
,
x
,
exponent
-
3
),
exponent
*
(
exponent
-
1
)
*
(
exponent
-
2
),
0.0
,
true
);
*
out_d_x
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
out_d_x_tmp1
,
dout
),
out_d_x_tmp2
);
// D_DOut = 0
*
out_d_dout
=
phi
::
FullLike
<
T
,
Context
>
(
dev_ctx
,
dout
,
static_cast
<
T
>
(
0
));
// D_DDX = D_DDOut * b * X^(b-1)
DenseTensor
out_d_ddx_tmp
=
phi
::
Scale
<
T
,
Context
>
(
dev_ctx
,
phi
::
Pow
<
T
,
Context
>
(
dev_ctx
,
x
,
exponent
-
1
),
exponent
,
0.0
,
true
);
*
out_d_ddx
=
phi
::
Multiply
<
T
,
Context
>
(
dev_ctx
,
d_ddout
,
out_d_ddx_tmp
);
}
}
template
<
typename
T
,
typename
Context
>
void
SqrtDoubleGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
out
,
...
...
paddle/phi/ops/compat/activation_sig.cc
浏览文件 @
7964119b
...
...
@@ -83,6 +83,21 @@ KernelSignature PowDoubleGradOpArgumentMapping(
"pow_double_grad"
,
{
"X"
,
"DOut"
,
"DDX"
},
{
"factor"
},
{
"DX"
,
"DDOut"
});
}
}
KernelSignature
PowTripleGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
HasInput
(
"FactorTensor"
))
{
return
KernelSignature
(
"pow_triple_grad"
,
{
"X"
,
"DOut"
,
"DDX"
,
"D_DX"
,
"D_DDOut"
},
{
"FactorTensor"
},
{
"D_X"
,
"D_DOut"
,
"D_DDX"
});
}
else
{
return
KernelSignature
(
"pow_triple_grad"
,
{
"X"
,
"DOut"
,
"DDX"
,
"D_DX"
,
"D_DDOut"
},
{
"factor"
},
{
"D_X"
,
"D_DOut"
,
"D_DDX"
});
}
}
}
// namespace phi
PD_REGISTER_BASE_KERNEL_NAME
(
brelu
,
hard_tanh
);
...
...
@@ -100,4 +115,6 @@ PD_REGISTER_ARG_MAPPING_FN(swish_grad, phi::SwishGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN
(
pow_grad
,
phi
::
PowGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
pow_double_grad
,
phi
::
PowDoubleGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
pow_triple_grad
,
phi
::
PowTripleGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
pow
,
phi
::
PowOpArgumentMapping
);
python/paddle/fluid/tests/unittests/test_activation_nn_grad.py
浏览文件 @
7964119b
...
...
@@ -597,5 +597,98 @@ class TestSinTripleGradCheck(unittest.TestCase):
self
.
func
(
p
)
class
TestPowTripleGradCheck1
(
unittest
.
TestCase
):
def
pow_wrapper
(
self
,
x
):
return
paddle
.
pow
(
x
[
0
],
1
)
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
7
,
9
]
eps
=
1e-6
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
=
dtype
)
x
.
persistable
=
True
y
=
paddle
.
pow
(
x
,
1
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
triple_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
True
})
gradient_checker
.
triple_grad_check_for_dygraph
(
self
.
pow_wrapper
,
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
)
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
False
})
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestPowTripleGradCheck2
(
unittest
.
TestCase
):
def
pow_wrapper
(
self
,
x
):
return
paddle
.
pow
(
x
[
0
],
2
)
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
7
,
9
]
eps
=
1e-6
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
=
dtype
)
x
.
persistable
=
True
y
=
paddle
.
pow
(
x
,
2
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
triple_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
True
})
gradient_checker
.
triple_grad_check_for_dygraph
(
self
.
pow_wrapper
,
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
)
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
False
})
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestPowTripleGradCheck3
(
unittest
.
TestCase
):
def
pow_wrapper
(
self
,
x
):
return
paddle
.
pow
(
x
[
0
],
4
)
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
7
,
9
]
eps
=
1e-6
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
=
dtype
)
x
.
persistable
=
True
y
=
paddle
.
pow
(
x
,
4
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
triple_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
True
})
gradient_checker
.
triple_grad_check_for_dygraph
(
self
.
pow_wrapper
,
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
)
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
False
})
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录