From 78f98294c22a189457b9ef85cf89025c1f570d8d Mon Sep 17 00:00:00 2001 From: Sylwester Fraczek Date: Wed, 19 Sep 2018 04:17:49 +0200 Subject: [PATCH] conv bn fuse pass review fix review from hshen14 fix test=develop fix error in broadcast and code cleanup rename bias -> eltwise and added macro to shorten code formatting --- paddle/fluid/framework/ir/CMakeLists.txt | 1 + .../fluid/framework/ir/conv_bn_fuse_pass.cc | 315 ++++++++++++++++++ paddle/fluid/framework/ir/conv_bn_fuse_pass.h | 49 +++ .../framework/ir/graph_pattern_detector.cc | 106 ++++++ .../framework/ir/graph_pattern_detector.h | 38 +++ paddle/fluid/inference/analysis/analyzer.h | 20 +- 6 files changed, 520 insertions(+), 9 deletions(-) create mode 100644 paddle/fluid/framework/ir/conv_bn_fuse_pass.cc create mode 100644 paddle/fluid/framework/ir/conv_bn_fuse_pass.h diff --git a/paddle/fluid/framework/ir/CMakeLists.txt b/paddle/fluid/framework/ir/CMakeLists.txt index 0076a8bece3..796ce1f91ce 100644 --- a/paddle/fluid/framework/ir/CMakeLists.txt +++ b/paddle/fluid/framework/ir/CMakeLists.txt @@ -38,6 +38,7 @@ pass_library(fc_lstm_fuse_pass inference) pass_library(embedding_fc_lstm_fuse_pass inference) pass_library(fc_gru_fuse_pass inference) pass_library(seq_concat_fc_fuse_pass inference) +pass_library(conv_bn_fuse_pass inference) cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector ) diff --git a/paddle/fluid/framework/ir/conv_bn_fuse_pass.cc b/paddle/fluid/framework/ir/conv_bn_fuse_pass.cc new file mode 100644 index 00000000000..3325a853df1 --- /dev/null +++ b/paddle/fluid/framework/ir/conv_bn_fuse_pass.cc @@ -0,0 +1,315 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h" +#include +#include +#include +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/operators/math/cpu_vec.h" +#include "paddle/fluid/platform/enforce.h" + +namespace paddle { +namespace framework { +namespace ir { + +#define GET_CONV_BN_NODES(pattern_name) \ + /* OPERATORS */ \ + GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name); \ + GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name); \ + /* CONV inputs */ \ + GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name); \ + /* CONV outputs */ \ + GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name); \ + /* BN inputs */ \ + GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name); \ + GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name); \ + GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name); \ + GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name); \ + /* BN outputs */ \ + GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */ \ + GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name); \ + GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \ + GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \ + GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name) + +LoDTensor tensor_apply(const LoDTensor& vec, float (*f)(float)) { + LoDTensor vec_y; + vec_y.Resize(vec.dims()); + const float* x = vec.data(); + float* y = vec_y.mutable_data(platform::CPUPlace()); + for (int64_t i = 0; i < vec.numel(); i++) { + y[i] = f(x[i]); + } + return vec_y; +} + +void tensor_apply_inplace(LoDTensor* vec, float (*f)(float)) { + float* data = vec->mutable_data(platform::CPUPlace()); + for (int64_t i = 0; i < vec->numel(); i++) { + data[i] = f(data[i]); + } +} + +template +LoDTensor tensor_apply_eltwise(const LoDTensor& vec_a, const LoDTensor& vec_b, + BinaryOperation f) { + PADDLE_ENFORCE_EQ(vec_a.dims(), vec_b.dims()); + LoDTensor vec_y; + vec_y.Resize(vec_a.dims()); + const float* a = vec_a.data(); + const float* b = vec_b.data(); + float* y = vec_y.mutable_data(platform::CPUPlace()); + for (int64_t i = 0; i < vec_a.numel(); i++) { + y[i] = f(a[i], b[i]); + } + return vec_y; +} + +template +LoDTensor tensor_apply_eltwise_broadcast(const LoDTensor& vec_a, + const LoDTensor& vec_b, + BinaryOperation f) { + PADDLE_ENFORCE_EQ(vec_a.dims().size(), 2); + PADDLE_ENFORCE_EQ(vec_b.dims().size(), 2); + PADDLE_ENFORCE_EQ(vec_a.dims()[0], vec_b.dims()[0]); + PADDLE_ENFORCE_EQ(vec_b.dims()[1], 1); + LoDTensor vec_y; + vec_y.Resize(vec_a.dims()); + const float* a = vec_a.data(); + const float* b = vec_b.data(); + float* y = vec_y.mutable_data(platform::CPUPlace()); + size_t a_height = vec_a.dims()[0]; + size_t a_width = vec_a.dims()[1]; + for (size_t h = 0; h < a_height; h++) { + for (size_t w = 0; w < a_width; ++w) { + *(y++) = f(*(a++), b[h]); + } + } + return vec_y; +} + +// reshape to two dimensions {A, B * C * ...} +void make_tensor_2d(LoDTensor* tensor_to_reshape) { + auto dims_count = tensor_to_reshape->dims().size(); + PADDLE_ENFORCE_GT(dims_count, 0); + + int size2 = 1; + for (int i = 1; i < dims_count; i++) { + size2 *= tensor_to_reshape->dims()[i]; + } + tensor_to_reshape->Resize(make_ddim({tensor_to_reshape->dims()[0], size2})); +} + +void recompute_conv_weights(LoDTensor* weights, LoDTensor* tmp) { + // remember the weights tensor shape {A, B, C, ...} + auto weights_shape = weights->dims(); + // reduce the weights to 2d {A, B * C * ...} + make_tensor_2d(weights); + // make tmp tensor 2d by adding 1 as second dim {A, 1} + make_tensor_2d(tmp); + + *weights = + tensor_apply_eltwise_broadcast(*weights, *tmp, std::multiplies()); + // reshape weights to the original dims {A, B, C, ...} + weights->Resize(weights_shape); +} + +void recompute_bias_and_weights(const Scope* scope, + ir::Node* conv_weight, // + const ir::Node& bn_scale, // + const LoDTensor& bn_bias_tensor, // + const ir::Node& bn_mean, // + const ir::Node& bn_variance, // + LoDTensor* eltwise_y_in_tensor) { + // Re-compute bias of conv2d from BN + PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(), bn_bias_tensor.dims()); + + auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable(); + auto* variance_tensor = + scope->FindVar(bn_variance.Name())->GetMutable(); + auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable(); + + auto std_tensor = LoDTensor(); + std_tensor.Resize(bn_bias_tensor.dims()); + std_tensor = + tensor_apply(*variance_tensor, [](float x) { return x + 1e-5f; }); + + tensor_apply_inplace(&std_tensor, std::sqrt); + auto tmp_tensor = + tensor_apply_eltwise(*scale_tensor, std_tensor, std::divides()); + auto tensor_minus = tensor_apply_eltwise(*eltwise_y_in_tensor, *mean_tensor, + std::minus()); + auto tensor_mul = + tensor_apply_eltwise(tensor_minus, tmp_tensor, std::multiplies()); + *eltwise_y_in_tensor = + tensor_apply_eltwise(tensor_mul, bn_bias_tensor, std::plus()); + + // Re-compute weight of conv2d from BN + auto* current_param = + scope->FindVar(conv_weight->Name())->GetMutable(); + recompute_conv_weights(current_param, &tmp_tensor); +} + +std::unique_ptr ConvBNFusePass::ApplyImpl( + std::unique_ptr graph) const { + PADDLE_ENFORCE(graph.get()); + FusePassBase::Init(name_scope_, graph.get()); + + auto* scope = param_scope(); + PADDLE_ENFORCE(scope); + + GraphPatternDetector gpd; + auto* conv_input = + gpd.mutable_pattern() + ->NewNode(patterns::PDNodeName(name_scope_, "conv_input")) + ->AsInput() + ->assert_is_op_input("conv2d", "Input"); + patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_); + conv_bn_pattern(conv_input, false /*with_eltwise_add*/); + + int found_conv_bn_count = 0; + auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, + Graph* g) { + VLOG(4) << "handle ConvBN fuse"; + + // conv, batch_norm, + // conv_weight, conv_out, + // bn_scale, bn_bias, bn_mean, bn_variance, + // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance + GET_CONV_BN_NODES(conv_bn_pattern); + + // Create eltwise_y (conv bias) variable + VarDesc eltwise_y_in_desc( + patterns::PDNodeName(name_scope_, "eltwise_y_in")); + auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc); + auto* eltwise_y_in_tensor = + scope->Var(eltwise_y_in_node->Name())->GetMutable(); + + // Get batch norm bias + auto* bn_bias_tensor = + scope->FindVar(bn_bias->Name())->GetMutable(); + + // Initialize eltwise_y + eltwise_y_in_tensor->Resize(bn_bias_tensor->dims()); + std::fill_n(eltwise_y_in_tensor->mutable_data(platform::CPUPlace()), + eltwise_y_in_tensor->numel(), 0.0f); + + // update weights and biases + recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor, + *bn_mean, *bn_variance, eltwise_y_in_tensor); + + // Create an elementwise add node + OpDesc desc; + desc.SetInput("X", std::vector({conv_out->Name()})); + desc.SetInput("Y", std::vector({eltwise_y_in_node->Name()})); + desc.SetOutput("Out", std::vector({bn_out->Name()})); + desc.SetType("elementwise_add"); + desc.SetAttr("axis", 1); + bool a = boost::get(conv->Op()->GetAttr("use_mkldnn")); + desc.SetAttr("use_mkldnn", a); + auto eltwise_op = g->CreateOpNode(&desc); // OpDesc will be copied. + + GraphSafeRemoveNodes(graph.get(), {bn_scale, bn_bias, bn_mean, bn_variance, + batch_norm, bn_mean_out, bn_variance_out, + bn_saved_mean, bn_saved_variance}); + + PADDLE_ENFORCE(subgraph.count(conv_input)); + IR_NODE_LINK_TO(conv_out, eltwise_op); + IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op); + IR_NODE_LINK_TO(eltwise_op, bn_out); + + found_conv_bn_count++; + }; + + gpd(graph.get(), handler); + + AddStatis(found_conv_bn_count); + return graph; +} + +std::unique_ptr ConvEltwiseAddBNFusePass::ApplyImpl( + std::unique_ptr graph) const { + PADDLE_ENFORCE(graph.get()); + FusePassBase::Init(name_scope_, graph.get()); + + auto* scope = param_scope(); + PADDLE_ENFORCE(scope); + + GraphPatternDetector gpd; + auto* conv_input = + gpd.mutable_pattern() + ->NewNode(patterns::PDNodeName(name_scope_, "conv_input")) + ->AsInput() + ->assert_is_op_input("conv2d", "Input"); + patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_); + conv_bn_pattern(conv_input, true /*with_eltwise_add*/); + + int found_conv_bn_count = 0; + auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, + Graph* g) { + VLOG(4) << "handle ConvBN fuse"; + + // conv, batch_norm, + // conv_weight, conv_out, + // bn_scale, bn_bias, bn_mean, bn_variance, + // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance + GET_CONV_BN_NODES(conv_bn_pattern); + // OPERATORS + GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern); + // BIAS inputs + GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern); + // BIAS outputs + GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern); + + // Get eltwise_y (conv bias) variable + auto* eltwise_y_in_tensor = + scope->FindVar(eltwise_y_in->Name())->GetMutable(); + + // Get batch norm bias + auto* bn_bias_tensor = + scope->FindVar(bn_bias->Name())->GetMutable(); + + // update weights and biases + recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor, + *bn_mean, *bn_variance, eltwise_y_in_tensor); + + // Update the elementwise_add node + eltwise->Op()->SetAttr("axis", 1); + eltwise->Op()->SetOutput("Out", std::vector({bn_out->Name()})); + + GraphSafeRemoveNodes( + graph.get(), + {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out, + bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out}); + + PADDLE_ENFORCE(subgraph.count(conv_input)); + IR_NODE_LINK_TO(eltwise, bn_out); + + found_conv_bn_count++; + }; + + gpd(graph.get(), handler); + + AddStatis(found_conv_bn_count); + return graph; +} + +} // namespace ir +} // namespace framework +} // namespace paddle + +REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass); +REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass, + paddle::framework::ir::ConvEltwiseAddBNFusePass); diff --git a/paddle/fluid/framework/ir/conv_bn_fuse_pass.h b/paddle/fluid/framework/ir/conv_bn_fuse_pass.h new file mode 100644 index 00000000000..2c9eb574fe8 --- /dev/null +++ b/paddle/fluid/framework/ir/conv_bn_fuse_pass.h @@ -0,0 +1,49 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include "paddle/fluid/framework/ir/fuse_pass_base.h" +#include "paddle/fluid/framework/ir/graph.h" +#include "paddle/fluid/framework/ir/graph_pattern_detector.h" + +namespace paddle { +namespace framework { +namespace ir { + +/* + * Fuse the Conv and BatchNorm to a ConvBNMKLDNNOp. + */ +class ConvBNFusePass : public FusePassBase { + public: + virtual ~ConvBNFusePass() {} + + protected: + std::unique_ptr ApplyImpl(std::unique_ptr graph) const; + const std::string name_scope_{"conv_bn_fuse"}; +}; + +class ConvEltwiseAddBNFusePass : public FusePassBase { + public: + virtual ~ConvEltwiseAddBNFusePass() {} + + protected: + std::unique_ptr ApplyImpl(std::unique_ptr graph) const; + const std::string name_scope_{"conv_eltwiseadd_bn_fuse"}; +}; + +} // namespace ir +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/ir/graph_pattern_detector.cc b/paddle/fluid/framework/ir/graph_pattern_detector.cc index 46c6a52c09e..8625b562e7d 100644 --- a/paddle/fluid/framework/ir/graph_pattern_detector.cc +++ b/paddle/fluid/framework/ir/graph_pattern_detector.cc @@ -626,6 +626,112 @@ bool VarLinksFromOp(Node *node, const std::string &op_type) { return false; } +PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input, + bool with_eltwise_add) { + // Create Operators + conv_input->assert_is_op_input("conv2d", "Input"); + auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d"); + + PDNode *eltwise_op = nullptr; + if (with_eltwise_add) { + eltwise_op = + pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add"); + } + auto *batch_norm_op = + pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm"); + // Create variables + // Conv Filter + auto *conv_weight_var = pattern->NewNode(conv_weight_repr()) + ->AsInput() + ->assert_is_persistable_var() + ->assert_is_op_input("conv2d", "Filter"); + + auto *conv_out_var = pattern->NewNode(conv_out_repr()) + ->AsIntermediate() + ->assert_is_only_output_of_op("conv2d"); + + PDNode *eltwise_y_in_var = nullptr; + PDNode *eltwise_out_var = nullptr; + if (with_eltwise_add) { + // Conv output as Bias input + conv_out_var->assert_is_op_input("elementwise_add", "X"); + // Bias + eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr()) + ->assert_is_op_input("elementwise_add", "Y") + ->AsInput(); + eltwise_out_var = pattern->NewNode(eltwise_out_repr()) + ->AsIntermediate() + ->assert_is_only_output_of_op("elementwise_add"); + } else { + // Conv output as BN input + conv_out_var->assert_is_op_input("batch_norm", "X"); + } + + // BN Scale + auto *bn_scale_var = pattern->NewNode(bn_scale_repr()) + ->AsInput() + ->assert_is_persistable_var() + ->assert_is_op_input("batch_norm", "Scale"); + // BN Bias + auto *bn_bias_var = pattern->NewNode(bn_bias_repr()) + ->AsInput() + ->assert_is_persistable_var() + ->assert_is_op_input("batch_norm", "Bias"); + // BN Mean + auto *bn_mean_var = pattern->NewNode(bn_mean_repr()) + ->AsInput() + ->assert_is_persistable_var() + ->assert_is_op_input("batch_norm", "Mean"); + // BN Variance + auto *bn_variance_var = pattern->NewNode(bn_variance_repr()) + ->AsInput() + ->assert_is_persistable_var() + ->assert_is_op_input("batch_norm", "Variance"); + + // BN output + auto *bn_out_var = pattern->NewNode(bn_out_repr()) + ->AsOutput() + ->assert_is_op_output("batch_norm"); + + auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr()) + ->AsOutput() + ->assert_is_op_output("batch_norm", "MeanOut"); + + auto *bn_variance_out_var = + pattern->NewNode(bn_variance_out_repr()) + ->AsOutput() + ->assert_is_op_output("batch_norm", "VarianceOut"); + + auto *bn_saved_mean_var = + pattern->NewNode(bn_saved_mean_repr()) + ->AsOutput() + ->assert_is_op_output("batch_norm", "SavedMean"); + + auto *bn_saved_variance_var = + pattern->NewNode(bn_saved_variance_repr()) + ->AsOutput() + ->assert_is_op_output("batch_norm", "SavedVariance"); + + conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var}); + + if (with_eltwise_add) { + eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var}) + .LinksTo({eltwise_out_var}); + batch_norm_op + ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var, + bn_variance_var}) + .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var, + bn_saved_mean_var, bn_saved_variance_var}); + } else { + batch_norm_op + ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var, + bn_variance_var}) + .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var, + bn_saved_mean_var, bn_saved_variance_var}); + } + return bn_out_var; +} + PDNode *patterns::ConvReLU::operator()( paddle::framework::ir::PDNode *conv_input) { // Create Operators diff --git a/paddle/fluid/framework/ir/graph_pattern_detector.h b/paddle/fluid/framework/ir/graph_pattern_detector.h index 508113bf4fc..cdd6413d968 100644 --- a/paddle/fluid/framework/ir/graph_pattern_detector.h +++ b/paddle/fluid/framework/ir/graph_pattern_detector.h @@ -375,6 +375,44 @@ struct PatternBase { size_t id_; }; +// Conv with batch norm +// op: conv + (elementwise_add +) batch_norm +// named nodes: +// conv_weight, conv_out, conv, +// bn_x, bn_scale, bn_bias, bn_mean, bn_variance, +// bn_batch_norm, bn_y, bn_mean_out, bn_variance_out, +// bn_saved_mean, bn_saved_variance +struct ConvBN : public PatternBase { + ConvBN(PDPattern* pattern, const std::string& name_scope) + : PatternBase(pattern, name_scope, "conv_bn") {} + + PDNode* operator()(PDNode* conv_input, bool with_eltwise_add); + + // declare operator node's name + PATTERN_DECL_NODE(conv); + PATTERN_DECL_NODE(batch_norm); + PATTERN_DECL_NODE(eltwise); // ELEMENTWISE_ADD + // CONV inputs + PATTERN_DECL_NODE(conv_weight); // Filter + // CONV outputs + PATTERN_DECL_NODE(conv_out); // tmp + // ELTWISE inputs + PATTERN_DECL_NODE(eltwise_y_in); + // ELTWISE outputs + PATTERN_DECL_NODE(eltwise_out); // tmp + // BN inputs + PATTERN_DECL_NODE(bn_scale); + PATTERN_DECL_NODE(bn_bias); + PATTERN_DECL_NODE(bn_mean); + PATTERN_DECL_NODE(bn_variance); + // BN outputs + PATTERN_DECL_NODE(bn_out); // Out + PATTERN_DECL_NODE(bn_mean_out); + PATTERN_DECL_NODE(bn_variance_out); + PATTERN_DECL_NODE(bn_saved_mean); + PATTERN_DECL_NODE(bn_saved_variance); +}; + // CONV with ReLU // op: conv + relu // named nodes: diff --git a/paddle/fluid/inference/analysis/analyzer.h b/paddle/fluid/inference/analysis/analyzer.h index 0aa9367bf56..765145cb7da 100644 --- a/paddle/fluid/inference/analysis/analyzer.h +++ b/paddle/fluid/inference/analysis/analyzer.h @@ -64,15 +64,17 @@ class Analyzer : public OrderedRegistry { // larger fusion. const std::vector all_ir_passes_{{ // Manual update the passes here. - "infer_clean_graph_pass", // - "attention_lstm_fuse_pass", // - "embedding_fc_lstm_fuse_pass", // - "fc_lstm_fuse_pass", // - "mul_lstm_fuse_pass", // - "fc_gru_fuse_pass", // - "mul_gru_fuse_pass", // - "seq_concat_fc_fuse_pass", // - "fc_fuse_pass", // + "infer_clean_graph_pass", // + "attention_lstm_fuse_pass", // + "embedding_fc_lstm_fuse_pass", // + "fc_lstm_fuse_pass", // + "mul_lstm_fuse_pass", // + "fc_gru_fuse_pass", // + "mul_gru_fuse_pass", // + "seq_concat_fc_fuse_pass", // + "fc_fuse_pass", // + "conv_bn_fuse_pass", // + "conv_eltwiseadd_bn_fuse_pass", // #ifdef PADDLE_WITH_MKLDNN "conv_relu_mkldnn_fuse_pass", // #endif -- GitLab