Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7879477f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7879477f
编写于
4月 23, 2021
作者:
R
ronnywang
提交者:
GitHub
4月 23, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[ROCM] add cuda kenrel for batch_norm_op (#32393)
上级
49773f36
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
409 addition
and
140 deletion
+409
-140
paddle/fluid/operators/batch_norm_op.cu
paddle/fluid/operators/batch_norm_op.cu
+386
-120
paddle/fluid/operators/norm_utils.cu.h
paddle/fluid/operators/norm_utils.cu.h
+23
-20
未找到文件。
paddle/fluid/operators/batch_norm_op.cu
浏览文件 @
7879477f
...
...
@@ -41,6 +41,83 @@ using CudnnDataType = platform::CudnnDataType<T>;
template
<
typename
T
>
using
BatchNormParamType
=
typename
CudnnDataType
<
T
>::
BatchNormParamType
;
template
<
typename
T
,
framework
::
DataLayout
layout
>
static
__global__
void
BNForwardInference
(
const
T
*
x
,
const
BatchNormParamType
<
T
>
*
mean
,
const
BatchNormParamType
<
T
>
*
variance
,
const
BatchNormParamType
<
T
>
*
scale
,
const
BatchNormParamType
<
T
>
*
bias
,
const
int
C
,
const
int
N
,
const
int
HxW
,
const
double
epsilon
,
T
*
y
)
{
int
gid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
num
=
N
*
C
*
HxW
;
for
(
int
i
=
gid
;
i
<
num
;
i
+=
stride
)
{
const
int
c
=
layout
==
framework
::
DataLayout
::
kNCHW
?
i
/
HxW
%
C
:
i
%
C
;
BatchNormParamType
<
T
>
x_sub_mean
=
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
i
])
-
mean
[
c
];
BatchNormParamType
<
T
>
inv_var
=
1
/
sqrt
(
variance
[
c
]
+
epsilon
);
y
[
i
]
=
static_cast
<
T
>
(
scale
[
c
]
*
x_sub_mean
*
inv_var
+
bias
[
c
]);
}
}
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
static
__global__
LAUNCH_BOUNDS
(
BlockDim
)
void
BNForwardTraining
(
const
T
*
x
,
const
BatchNormParamType
<
T
>
*
scale
,
const
BatchNormParamType
<
T
>
*
bias
,
const
int
C
,
const
int
N
,
const
int
HxW
,
const
double
epsilon
,
double
exponentialAverageFactor
,
T
*
y
,
BatchNormParamType
<
T
>
*
mean
,
BatchNormParamType
<
T
>
*
variance
,
BatchNormParamType
<
T
>
*
save_mean
,
BatchNormParamType
<
T
>
*
save_inv_variance
)
{
int
outer_size
=
C
;
int
inner_size
=
N
*
HxW
;
typedef
cub
::
BlockReduce
<
BatchNormParamType
<
T
>
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
mean_storage
;
__shared__
typename
BlockReduce
::
TempStorage
variance_storeage
;
__shared__
BatchNormParamType
<
T
>
mean_val
;
__shared__
BatchNormParamType
<
T
>
variance_val
;
__shared__
BatchNormParamType
<
T
>
inv_var_val
;
for
(
int
i
=
blockIdx
.
x
;
i
<
outer_size
;
i
+=
gridDim
.
x
)
{
BatchNormParamType
<
T
>
x_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
BatchNormParamType
<
T
>
x_square_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
for
(
int
j
=
threadIdx
.
x
;
j
<
inner_size
;
j
+=
blockDim
.
x
)
{
const
int
index
=
layout
==
framework
::
DataLayout
::
kNCHW
?
(
j
/
HxW
*
C
+
i
)
*
HxW
+
j
%
HxW
:
j
*
outer_size
+
i
;
BatchNormParamType
<
T
>
x_i
=
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
index
]);
x_sum
+=
x_i
;
x_square_sum
+=
x_i
*
x_i
;
}
x_sum
=
BlockReduce
(
mean_storage
).
Reduce
(
x_sum
,
cub
::
Sum
());
x_square_sum
=
BlockReduce
(
variance_storeage
).
Reduce
(
x_square_sum
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
mean_val
=
x_sum
/
inner_size
;
variance_val
=
x_square_sum
/
inner_size
-
mean_val
*
mean_val
;
inv_var_val
=
1
/
sqrt
(
variance_val
+
epsilon
);
if
(
save_mean
&&
save_inv_variance
)
{
save_mean
[
i
]
=
mean_val
;
save_inv_variance
[
i
]
=
inv_var_val
;
}
mean
[
i
]
=
(
1
-
exponentialAverageFactor
)
*
mean_val
+
exponentialAverageFactor
*
mean
[
i
];
variance
[
i
]
=
(
1
-
exponentialAverageFactor
)
*
variance_val
+
exponentialAverageFactor
*
variance
[
i
];
}
__syncthreads
();
for
(
int
j
=
threadIdx
.
x
;
j
<
inner_size
;
j
+=
blockDim
.
x
)
{
const
int
index
=
layout
==
framework
::
DataLayout
::
kNCHW
?
(
j
/
HxW
*
C
+
i
)
*
HxW
+
j
%
HxW
:
j
*
outer_size
+
i
;
BatchNormParamType
<
T
>
x_sub_mean
=
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
index
])
-
mean_val
;
y
[
index
]
=
scale
[
i
]
*
x_sub_mean
*
inv_var_val
+
bias
[
i
];
}
}
}
template
<
typename
T
>
class
BatchNormKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -80,8 +157,12 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
auto
dtype
=
platform
::
CudnnDataType
<
T
>::
type
;
#ifdef PADDLE_WITH_HIP
// HIP do not support compute format of NHWC
auto
compute_format
=
DataLayout
::
kNCHW
;
auto
compute_format
=
data_layout
==
DataLayout
::
kNHWC
?
DataLayout
::
kNHWC
:
DataLayout
::
kNCHW
;
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// HIP do not support compute format of NHWC
// auto compute_format = DataLayout::kNCHW;
#else
const
bool
fast_nhwc_batch_norm
=
test_mode
||
...
...
@@ -111,14 +192,15 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
miopenTensorDescriptor_t
data_desc_
;
miopenTensorDescriptor_t
bn_param_desc_
;
miopenBatchNormMode_t
mode_
;
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenCreateTensorDescriptor
(
&
data_desc_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenCreateTensorDescriptor
(
&
bn_param_desc_
));
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// miopenTensorDescriptor_t data_desc_;
// miopenTensorDescriptor_t bn_param_desc_;
// miopenBatchNormMode_t mode_;
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
#else
cudnnTensorDescriptor_t
data_desc_
;
cudnnTensorDescriptor_t
bn_param_desc_
;
...
...
@@ -138,7 +220,8 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
epsilon
=
std
::
max
(
epsilon
,
CUDNN_BN_MIN_EPSILON
);
#ifdef PADDLE_WITH_HIP
mode_
=
miopenBNSpatial
;
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// mode_ = miopenBNSpatial;
#elif CUDNN_VERSION_MIN(7, 0, 1)
if
(
FLAGS_cudnn_batchnorm_spatial_persistent
)
{
mode_
=
CUDNN_BATCHNORM_SPATIAL_PERSISTENT
;
...
...
@@ -161,14 +244,15 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
}
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenSetTensorDescriptor
(
data_desc_
,
CudnnDataType
<
T
>::
type
,
x_dims
.
size
()
>
3
?
x_dims
.
size
()
:
4
,
const_cast
<
int
*>
(
dims
.
data
()),
const_cast
<
int
*>
(
strides
.
data
())));
// Note: PERSISTENT not implemented for inference
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenDeriveBNTensorDescriptor
(
bn_param_desc_
,
data_desc_
,
test_mode
?
miopenBNSpatial
:
mode_
));
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
// data_desc_, CudnnDataType<T>::type,
// x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
// const_cast<int *>(strides.data())));
// Note: PERSISTENT not implemented for inference
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenDeriveBNTensorDescriptor(
// bn_param_desc_, data_desc_, test_mode ? miopenBNSpatial : mode_));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
data_desc_
,
CudnnDataType
<
T
>::
type
,
...
...
@@ -226,28 +310,53 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
C
,
est_var
->
dims
()[
0
],
est_var
->
dims
()));
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenBatchNormalizationForwardInference
(
handle
,
miopenBNSpatial
,
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
CudnnDataType
<
T
>::
kOne
())),
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
CudnnDataType
<
T
>::
kZero
())),
data_desc_
,
static_cast
<
const
void
*>
(
transformed_x
.
template
data
<
T
>()),
data_desc_
,
static_cast
<
void
*>
(
transformed_y
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
())),
bn_param_desc_
,
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
scale
->
template
data
<
BatchNormParamType
<
T
>
>
())),
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
bias
->
template
data
<
BatchNormParamType
<
T
>
>
())),
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
est_mean
->
template
data
<
BatchNormParamType
<
T
>
>
())),
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
est_var
->
template
data
<
BatchNormParamType
<
T
>
>
())),
epsilon
));
const
int
block_size
=
256
;
const
int
grid_size
=
(
N
*
C
*
H
*
W
*
D
+
block_size
-
1
)
/
block_size
;
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
BNForwardInference
<
T
,
DataLayout
::
kNCHW
><<<
grid_size
,
block_size
,
0
,
dev_ctx
.
stream
()
>>>
(
transformed_x
.
template
data
<
T
>(),
est_mean
->
template
data
<
BatchNormParamType
<
T
>
>
(),
est_var
->
template
data
<
BatchNormParamType
<
T
>
>
(),
scale
->
template
data
<
BatchNormParamType
<
T
>
>
(),
bias
->
template
data
<
BatchNormParamType
<
T
>
>
(),
C
,
N
,
H
*
W
*
D
,
epsilon
,
transformed_y
.
template
data
<
T
>());
}
else
{
BNForwardInference
<
T
,
DataLayout
::
kNHWC
><<<
grid_size
,
block_size
,
0
,
dev_ctx
.
stream
()
>>>
(
transformed_x
.
template
data
<
T
>(),
est_mean
->
template
data
<
BatchNormParamType
<
T
>
>
(),
est_var
->
template
data
<
BatchNormParamType
<
T
>
>
(),
scale
->
template
data
<
BatchNormParamType
<
T
>
>
(),
bias
->
template
data
<
BatchNormParamType
<
T
>
>
(),
C
,
N
,
H
*
W
*
D
,
epsilon
,
transformed_y
.
template
data
<
T
>());
}
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenBatchNormalizationForwardInference(
// handle, miopenBNSpatial,
// const_cast<void *>(
// static_cast<const void *>(CudnnDataType<T>::kOne())),
// const_cast<void *>(
// static_cast<const void *>(CudnnDataType<T>::kZero())),
// data_desc_,
// static_cast<const void *>(transformed_x.template data<T>()),
// data_desc_,
// static_cast<void *>(
// transformed_y.template mutable_data<T>(ctx.GetPlace())),
// bn_param_desc_,
// const_cast<void *>(static_cast<const void *>(
// scale->template data<BatchNormParamType<T>>())),
// const_cast<void *>(static_cast<const void *>(
// bias->template data<BatchNormParamType<T>>())),
// const_cast<void *>(static_cast<const void *>(
// est_mean->template data<BatchNormParamType<T>>())),
// const_cast<void *>(static_cast<const void *>(
// est_var->template data<BatchNormParamType<T>>())),
// epsilon));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnBatchNormalizationForwardInference
(
...
...
@@ -365,34 +474,66 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
#endif // CUDNN_VERSION_MIN(7, 4, 1)
if
(
!
called
)
{
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenBatchNormalizationForwardTraining
(
handle
,
mode_
,
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
CudnnDataType
<
T
>::
kOne
())),
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
CudnnDataType
<
T
>::
kZero
())),
data_desc_
,
static_cast
<
const
void
*>
(
transformed_x
.
template
data
<
T
>()),
data_desc_
,
static_cast
<
void
*>
(
transformed_y
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
())),
bn_param_desc_
,
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
scale
->
template
data
<
BatchNormParamType
<
T
>
>
())),
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
bias
->
template
data
<
BatchNormParamType
<
T
>
>
())),
this_factor
,
static_cast
<
void
*>
(
mean_out
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
())),
static_cast
<
void
*>
(
variance_out
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
())),
epsilon
,
static_cast
<
void
*>
(
saved_mean
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
())),
static_cast
<
void
*>
(
saved_variance
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
()))));
const
int
num
=
transformed_x
.
numel
();
const
int
block
=
256
;
const
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
const
int
max_blocks
=
std
::
max
(
max_threads
/
block
,
1
);
const
int
grid
=
std
::
min
(
C
,
max_blocks
);
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
BNForwardTraining
<
T
,
block
,
DataLayout
::
kNCHW
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
transformed_x
.
template
data
<
T
>(),
scale
->
template
data
<
BatchNormParamType
<
T
>
>
(),
bias
->
template
data
<
BatchNormParamType
<
T
>
>
(),
C
,
N
,
H
*
W
*
D
,
epsilon
,
this_factor
,
transformed_y
.
template
data
<
T
>(),
mean_out
->
template
data
<
BatchNormParamType
<
T
>
>
(),
variance_out
->
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_mean
->
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_variance
->
template
data
<
BatchNormParamType
<
T
>
>
());
}
else
{
BNForwardTraining
<
T
,
block
,
DataLayout
::
kNHWC
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
transformed_x
.
template
data
<
T
>(),
scale
->
template
data
<
BatchNormParamType
<
T
>
>
(),
bias
->
template
data
<
BatchNormParamType
<
T
>
>
(),
C
,
N
,
H
*
W
*
D
,
epsilon
,
this_factor
,
transformed_y
.
template
data
<
T
>(),
mean_out
->
template
data
<
BatchNormParamType
<
T
>
>
(),
variance_out
->
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_mean
->
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_variance
->
template
data
<
BatchNormParamType
<
T
>
>
());
}
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenBatchNormalizationForwardTraining(
// handle, mode_, const_cast<void *>(static_cast<const void *>(
// CudnnDataType<T>::kOne())),
// const_cast<void *>(
// static_cast<const void *>(CudnnDataType<T>::kZero())),
// data_desc_,
// static_cast<const void *>(transformed_x.template data<T>()),
// data_desc_,
// static_cast<void *>(
// transformed_y.template mutable_data<T>(ctx.GetPlace())),
// bn_param_desc_,
// const_cast<void *>(static_cast<const void *>(
// scale->template data<BatchNormParamType<T>>())),
// const_cast<void *>(static_cast<const void *>(
// bias->template data<BatchNormParamType<T>>())),
// this_factor,
// static_cast<void *>(
// mean_out->template mutable_data<BatchNormParamType<T>>(
// ctx.GetPlace())),
// static_cast<void *>(variance_out->template mutable_data<
// BatchNormParamType<T>>(ctx.GetPlace())),
// epsilon,
// static_cast<void *>(
// saved_mean->template mutable_data<BatchNormParamType<T>>(
// ctx.GetPlace())),
// static_cast<void *>(saved_variance->template mutable_data<
// BatchNormParamType<T>>(ctx.GetPlace()))));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnBatchNormalizationForwardTraining
(
...
...
@@ -423,11 +564,12 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
ctx
,
&
transformed_y
,
y
);
}
#ifdef PADDLE_WITH_HIP
// clean when exit.
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenDestroyTensorDescriptor
(
data_desc_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenDestroyTensorDescriptor
(
bn_param_desc_
));
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// clean when exit.
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
#else
// clean when exit.
PADDLE_ENFORCE_CUDA_SUCCESS
(
...
...
@@ -439,7 +581,7 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
};
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
static
__global__
void
KeBNBackwardScaleBias
(
static
__global__
LAUNCH_BOUNDS
(
BlockDim
)
void
KeBNBackwardScaleBias
(
const
T
*
dy
,
const
T
*
x
,
const
BatchNormParamType
<
T
>
*
mean
,
const
BatchNormParamType
<
T
>
*
variance
,
const
double
epsilon
,
const
int
N
,
const
int
C
,
const
int
HxW
,
BatchNormParamType
<
T
>
*
dscale
,
...
...
@@ -526,13 +668,97 @@ class InplaceHelper {
};
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
static
__global__
void
BNBackwardData
(
const
T
*
dy
,
const
BatchNormParamType
<
T
>
*
scale
,
const
BatchNormParamType
<
T
>
*
mean
,
const
T
*
x
,
const
BatchNormParamType
<
T
>
*
variance
,
const
int
C
,
const
int
N
,
const
int
HxW
,
T
*
dx
)
{
static
__global__
LAUNCH_BOUNDS
(
BlockDim
)
void
BNBackward
(
const
T
*
dy
,
const
T
*
x
,
const
BatchNormParamType
<
T
>
*
scale
,
const
BatchNormParamType
<
T
>
*
saved_mean
,
const
BatchNormParamType
<
T
>
*
saved_inv_variance
,
const
int
C
,
const
int
N
,
const
int
HxW
,
const
double
epsilon
,
T
*
dx
,
BatchNormParamType
<
T
>
*
dscale
,
BatchNormParamType
<
T
>
*
dbias
)
{
const
int
outer_size
=
C
;
const
int
inner_size
=
N
*
HxW
;
typedef
cub
::
BlockReduce
<
BatchNormParamType
<
T
>
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
ds_storage
;
__shared__
typename
BlockReduce
::
TempStorage
db_storage
;
__shared__
typename
BlockReduce
::
TempStorage
mean_storage
;
__shared__
typename
BlockReduce
::
TempStorage
variance_storeage
;
__shared__
BatchNormParamType
<
T
>
inv_var_val
;
__shared__
BatchNormParamType
<
T
>
mean_val
;
__shared__
BatchNormParamType
<
T
>
dscale_val
;
__shared__
BatchNormParamType
<
T
>
dbias_val
;
for
(
int
i
=
blockIdx
.
x
;
i
<
outer_size
;
i
+=
gridDim
.
x
)
{
BatchNormParamType
<
T
>
ds_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
BatchNormParamType
<
T
>
db_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
if
(
saved_mean
&&
saved_inv_variance
)
{
if
(
threadIdx
.
x
==
0
)
{
inv_var_val
=
saved_inv_variance
[
i
];
mean_val
=
saved_mean
[
i
];
}
}
else
{
BatchNormParamType
<
T
>
x_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
BatchNormParamType
<
T
>
x_square_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
for
(
int
j
=
threadIdx
.
x
;
j
<
inner_size
;
j
+=
blockDim
.
x
)
{
const
int
index
=
layout
==
framework
::
DataLayout
::
kNCHW
?
(
j
/
HxW
*
C
+
i
)
*
HxW
+
j
%
HxW
:
j
*
outer_size
+
i
;
BatchNormParamType
<
T
>
x_i
=
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
index
]);
x_sum
+=
x_i
;
x_square_sum
+=
x_i
*
x_i
;
}
x_sum
=
BlockReduce
(
mean_storage
).
Reduce
(
x_sum
,
cub
::
Sum
());
x_square_sum
=
BlockReduce
(
variance_storeage
).
Reduce
(
x_square_sum
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
mean_val
=
x_sum
/
inner_size
;
inv_var_val
=
1
/
sqrt
(
x_square_sum
/
inner_size
-
mean_val
*
mean_val
+
epsilon
);
}
}
__syncthreads
();
for
(
int
j
=
threadIdx
.
x
;
j
<
inner_size
;
j
+=
blockDim
.
x
)
{
const
int
index
=
layout
==
framework
::
DataLayout
::
kNCHW
?
(
j
/
HxW
*
C
+
i
)
*
HxW
+
j
%
HxW
:
j
*
outer_size
+
i
;
BatchNormParamType
<
T
>
dy_i
=
static_cast
<
BatchNormParamType
<
T
>>
(
dy
[
index
]);
ds_sum
+=
dy_i
*
(
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
index
])
-
mean_val
);
db_sum
+=
dy_i
;
}
ds_sum
=
BlockReduce
(
ds_storage
).
Reduce
(
ds_sum
,
cub
::
Sum
());
db_sum
=
BlockReduce
(
db_storage
).
Reduce
(
db_sum
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
dscale_val
=
ds_sum
*
inv_var_val
;
dbias_val
=
db_sum
;
dscale
[
i
]
=
dscale_val
;
dbias
[
i
]
=
dbias_val
;
}
__syncthreads
();
for
(
int
j
=
threadIdx
.
x
;
j
<
inner_size
;
j
+=
blockDim
.
x
)
{
const
int
index
=
layout
==
framework
::
DataLayout
::
kNCHW
?
(
j
/
HxW
*
C
+
i
)
*
HxW
+
j
%
HxW
:
j
*
outer_size
+
i
;
dx
[
index
]
=
scale
[
i
]
*
inv_var_val
*
(
static_cast
<
BatchNormParamType
<
T
>>
(
dy
[
index
])
-
dbias_val
/
static_cast
<
BatchNormParamType
<
T
>>
(
inner_size
)
-
(
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
index
])
-
mean_val
)
*
inv_var_val
*
dscale_val
/
inner_size
);
}
}
}
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
static
__global__
LAUNCH_BOUNDS
(
BlockDim
)
void
BNBackwardData
(
const
T
*
dy
,
const
BatchNormParamType
<
T
>
*
scale
,
const
BatchNormParamType
<
T
>
*
mean
,
const
T
*
x
,
const
BatchNormParamType
<
T
>
*
variance
,
const
int
C
,
const
int
N
,
const
int
HxW
,
T
*
dx
)
{
const
int
outer_size
=
C
;
const
int
inner_size
=
N
*
HxW
;
typedef
cub
::
BlockReduce
<
BatchNormParamType
<
T
>
,
BlockDim
>
BlockReduce
;
...
...
@@ -567,7 +793,6 @@ static __global__ void BNBackwardData(const T *dy,
dy_x_sub_mean_sum_val
=
dy_x_sub_mean_sum
;
}
__syncthreads
();
for
(
int
j
=
threadIdx
.
x
;
j
<
inner_size
;
j
+=
blockDim
.
x
)
{
const
int
index
=
layout
==
framework
::
DataLayout
::
kNCHW
?
(
j
/
HxW
*
C
+
i
)
*
HxW
+
j
%
HxW
...
...
@@ -668,8 +893,12 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
auto
dtype
=
platform
::
CudnnDataType
<
T
>::
type
;
const
auto
*
reserve_space
=
ctx
.
Input
<
Tensor
>
(
"ReserveSpace"
);
#ifdef PADDLE_WITH_HIP
// HIP do not support compute format of NHWC
auto
compute_format
=
DataLayout
::
kNCHW
;
auto
compute_format
=
data_layout
==
DataLayout
::
kNHWC
?
DataLayout
::
kNHWC
:
DataLayout
::
kNCHW
;
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// HIP do not support compute format of NHWC
// auto compute_format = DataLayout::kNCHW;
#else
const
bool
fast_nhwc_batch_norm
=
dtype
==
CUDNN_DATA_HALF
&&
FLAGS_cudnn_batchnorm_spatial_persistent
&&
...
...
@@ -714,7 +943,11 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
const
int
num
=
transformed_x
.
numel
();
#ifdef HIPCC
const
int
block
=
256
;
#else
const
int
block
=
512
;
#endif
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
const
int
max_blocks
=
std
::
max
(
max_threads
/
block
,
1
);
int
grid1
=
(
num
+
block
-
1
)
/
block
;
...
...
@@ -734,14 +967,15 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
miopenTensorDescriptor_t
data_desc_
;
miopenTensorDescriptor_t
bn_param_desc_
;
miopenBatchNormMode_t
mode_
;
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenCreateTensorDescriptor
(
&
data_desc_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenCreateTensorDescriptor
(
&
bn_param_desc_
));
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// miopenTensorDescriptor_t data_desc_;
// miopenTensorDescriptor_t bn_param_desc_;
// miopenBatchNormMode_t mode_;
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
#else
cudnnTensorDescriptor_t
data_desc_
;
cudnnTensorDescriptor_t
bn_param_desc_
;
...
...
@@ -759,7 +993,8 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
}
epsilon
=
std
::
max
(
epsilon
,
CUDNN_BN_MIN_EPSILON
);
#ifdef PADDLE_WITH_HIP
mode_
=
miopenBNSpatial
;
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// mode_ = miopenBNSpatial;
#elif CUDNN_VERSION_MIN(7, 0, 1)
if
(
FLAGS_cudnn_batchnorm_spatial_persistent
)
{
mode_
=
CUDNN_BATCHNORM_SPATIAL_PERSISTENT
;
...
...
@@ -771,13 +1006,14 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
#endif // CUDNN_VERSION_MIN(7, 0, 1)
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenSetTensorDescriptor
(
data_desc_
,
CudnnDataType
<
T
>::
type
,
x_dims
.
size
()
>
3
?
x_dims
.
size
()
:
4
,
const_cast
<
int
*>
(
dims
.
data
()),
const_cast
<
int
*>
(
strides
.
data
())));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenDeriveBNTensorDescriptor
(
bn_param_desc_
,
data_desc_
,
mode_
));
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
// data_desc_, CudnnDataType<T>::type,
// x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
// const_cast<int *>(strides.data())));
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenDeriveBNTensorDescriptor(bn_param_desc_,
// data_desc_, mode_));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
data_desc_
,
CudnnDataType
<
T
>::
type
,
...
...
@@ -871,20 +1107,49 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
#endif // CUDNN_VERSION_MIN(7, 4, 1)
if
(
!
called
)
{
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenBatchNormalizationBackward
(
dev_ctx
.
cudnn_handle
(),
mode_
,
CudnnDataType
<
T
>::
kOne
()
,
CudnnDataType
<
T
>::
kZero
(),
CudnnDataType
<
T
>::
kOne
(),
CudnnDataType
<
T
>::
kZero
(),
data_desc_
,
transformed_x
.
template
data
<
T
>(),
data_desc_
,
transformed_d_y
.
template
data
<
T
>(),
data_desc_
,
transformed_d_x
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
())
,
bn_param_desc_
,
scale
->
template
data
<
BatchNormParamType
<
T
>
>
(),
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
BNBackward
<
T
,
block
,
DataLayout
::
kNCHW
><<<
grid2
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
transformed_d_y
.
template
data
<
T
>()
,
transformed_x
.
template
data
<
T
>()
,
scale
->
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_mean_data
,
saved_var_data
,
C
,
N
,
H
*
W
*
D
,
epsilon
,
transformed_d_x
.
template
data
<
T
>(),
d_scale
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
()),
d_bias
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
()));
}
else
{
BNBackward
<
T
,
block
,
DataLayout
::
kNHWC
><<<
grid2
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
transformed_d_y
.
template
data
<
T
>(),
transformed_x
.
template
data
<
T
>(),
scale
->
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_mean_data
,
saved_var_data
,
C
,
N
,
H
*
W
*
D
,
epsilon
,
transformed_d_x
.
template
data
<
T
>(),
d_scale
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
()),
epsilon
,
saved_mean_data
,
saved_var_data
));
d_bias
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
()));
}
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenBatchNormalizationBackward(
// dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
// CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
// CudnnDataType<T>::kZero(), data_desc_,
// transformed_x.template data<T>(), data_desc_,
// transformed_d_y.template data<T>(), data_desc_,
// transformed_d_x.template mutable_data<T>(ctx.GetPlace()),
// bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
// d_scale->template mutable_data<BatchNormParamType<T>>(
// ctx.GetPlace()),
// d_bias->template mutable_data<BatchNormParamType<T>>(
// ctx.GetPlace()),
// epsilon, saved_mean_data, saved_var_data));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnBatchNormalizationBackward
(
...
...
@@ -931,11 +1196,12 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
}
#ifdef PADDLE_WITH_HIP
// clean when exit.
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenDestroyTensorDescriptor
(
data_desc_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenDestroyTensorDescriptor
(
bn_param_desc_
));
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// clean when exit.
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
// PADDLE_ENFORCE_CUDA_SUCCESS(
// platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
#else
// clean when exit.
PADDLE_ENFORCE_CUDA_SUCCESS
(
...
...
paddle/fluid/operators/norm_utils.cu.h
浏览文件 @
7879477f
...
...
@@ -32,6 +32,12 @@ namespace cub = hipcub;
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef __HIPCC__
#define LAUNCH_BOUNDS(BlockDim) __launch_bounds__(BlockDim)
#else
#define LAUNCH_BOUNDS(BlockDim)
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -58,12 +64,10 @@ using DataLayout = framework::DataLayout;
// axis=(n,h,w)))
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
__global__
void
DoubleGradComputeDX
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
ddx
,
const
T
*
dy
,
const
T
*
scale
,
const
T
*
ddscale
,
const
int
N
,
const
int
C
,
const
int
sample_size
,
const
double
epsilon
,
T
*
dx
)
{
__global__
LAUNCH_BOUNDS
(
BlockDim
)
void
DoubleGradComputeDX
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
ddx
,
const
T
*
dy
,
const
T
*
scale
,
const
T
*
ddscale
,
const
int
N
,
const
int
C
,
const
int
sample_size
,
const
double
epsilon
,
T
*
dx
)
{
const
int
outer_size
=
C
;
const
int
inner_size
=
N
*
sample_size
;
...
...
@@ -160,12 +164,10 @@ __global__ void DoubleGradComputeDX(const T *x, const T *mean,
// scale * inv_var * (ddx - (x - mean) * inv_var.pow(2) *
// np.mean(ddx * (x - mean), axis=(n,h,w)))
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
__global__
void
DoubleGradComputeDDY
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
ddscale
,
const
T
*
ddbias
,
const
T
*
ddx
,
const
T
*
scale
,
const
int
N
,
const
int
C
,
const
int
sample_size
,
const
double
epsilon
,
T
*
ddy
)
{
__global__
LAUNCH_BOUNDS
(
BlockDim
)
void
DoubleGradComputeDDY
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
ddscale
,
const
T
*
ddbias
,
const
T
*
ddx
,
const
T
*
scale
,
const
int
N
,
const
int
C
,
const
int
sample_size
,
const
double
epsilon
,
T
*
ddy
)
{
const
int
outer_size
=
C
;
const
int
inner_size
=
N
*
sample_size
;
...
...
@@ -238,11 +240,10 @@ __global__ void DoubleGradComputeDDY(const T *x, const T *mean,
// inv_var.pow(2) * np.mean(dy * (x-mean), axis=(n,h,w)))) *
// ddx
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
__global__
void
DoubleGradComputeDScale
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
ddx
,
const
T
*
dy
,
const
int
N
,
const
int
C
,
const
int
sample_size
,
const
double
epsilon
,
T
*
dscale
)
{
__global__
LAUNCH_BOUNDS
(
BlockDim
)
void
DoubleGradComputeDScale
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
variance
,
const
T
*
ddx
,
const
T
*
dy
,
const
int
N
,
const
int
C
,
const
int
sample_size
,
const
double
epsilon
,
T
*
dscale
)
{
const
int
outer_size
=
C
;
const
int
inner_size
=
N
*
sample_size
;
...
...
@@ -302,7 +303,7 @@ __global__ void DoubleGradComputeDScale(const T *x, const T *mean,
// math: dscale = np.sum(ddx * dy, axis=(n,h,w)) * inv_var
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
__global__
void
DoubleGradComputeDScaleWithGlobal
(
__global__
LAUNCH_BOUNDS
(
BlockDim
)
void
DoubleGradComputeDScaleWithGlobal
(
const
T
*
ddx
,
const
T
*
variance
,
const
T
*
dy
,
const
double
epsilon
,
const
int
N
,
const
int
C
,
const
int
sample_size
,
T
*
dscale
)
{
int
outer_size
=
C
;
...
...
@@ -422,8 +423,11 @@ void NormDoubleGradFunctor(const framework::ExecutionContext &ctx,
set_constant
(
dev_ctx
,
&
scale_tmp
,
static_cast
<
T
>
(
1
));
}
const
T
*
scale_data
=
Scale
?
Scale
->
data
<
T
>
()
:
scale_tmp
.
data
<
T
>
();
#ifdef __HIPCC__
const
int
block
=
256
;
#else
const
int
block
=
512
;
#endif
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
const
int
max_blocks
=
std
::
max
(
max_threads
/
block
,
1
);
int
grid
=
std
::
min
(
C
,
max_blocks
);
...
...
@@ -532,6 +536,5 @@ void NormDoubleGradFunctor(const framework::ExecutionContext &ctx,
}
}
}
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录