Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
76eb371e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
76eb371e
编写于
12月 17, 2021
作者:
Z
zhaoyingli
提交者:
GitHub
12月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[AutoParallel] add gpt model for unittest (#38202)
* add gpt modeling * update file name
上级
9a8a4c77
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
989 addition
and
0 deletion
+989
-0
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
...n/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
+989
-0
未找到文件。
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
0 → 100644
浏览文件 @
76eb371e
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
collections
import
random
import
numpy
as
np
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
import
paddle.tensor
as
tensor
import
paddle.distributed.auto_parallel
as
auto
from
paddle
import
fluid
from
paddle.fluid
import
layers
from
paddle.distributed
import
fleet
from
paddle.nn.layer.transformer
import
_convert_param_attr_to_list
from
paddle.fluid.initializer
import
Normal
,
NumpyArrayInitializer
paddle
.
enable_static
()
def
init_global
():
global
_global_parallel_strategy
global
_global_process_mesh
global
PP_MESH_LIST
global
DPPP_MESH_LIST
global
MPPP_MESH_LIST
global
DPMPPP_MESH_LIST
class
MultiHeadAttention
(
nn
.
Layer
):
"""
Attention mapps queries and a set of key-value pairs to outputs, and
Multi-Head Attention performs multiple parallel attention to jointly attending
to information from different representation subspaces.
"""
Cache
=
collections
.
namedtuple
(
"Cache"
,
[
"k"
,
"v"
])
StaticCache
=
collections
.
namedtuple
(
"StaticCache"
,
[
"k"
,
"v"
])
def
__init__
(
self
,
embed_dim
,
num_heads
,
dropout
=
0.
,
kdim
=
None
,
vdim
=
None
,
need_weights
=
False
,
weight_attr
=
None
,
bias_attr
=
None
,
fuse
=
False
,
mesh_idx
=
None
):
super
(
MultiHeadAttention
,
self
).
__init__
()
self
.
embed_dim
=
embed_dim
self
.
kdim
=
kdim
if
kdim
is
not
None
else
embed_dim
self
.
vdim
=
vdim
if
vdim
is
not
None
else
embed_dim
self
.
num_heads
=
num_heads
self
.
dropout
=
dropout
self
.
need_weights
=
need_weights
self
.
fuse
=
fuse
self
.
mesh_idx
=
mesh_idx
self
.
head_dim
=
embed_dim
//
num_heads
assert
self
.
head_dim
*
num_heads
==
self
.
embed_dim
,
"embed_dim must be divisible by num_heads"
if
self
.
fuse
:
assert
self
.
kdim
==
embed_dim
assert
self
.
vdim
==
embed_dim
self
.
qkv_proj
=
nn
.
Linear
(
embed_dim
,
3
*
embed_dim
,
weight_attr
,
bias_attr
=
bias_attr
)
else
:
self
.
q_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
k_proj
=
nn
.
Linear
(
self
.
kdim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
v_proj
=
nn
.
Linear
(
self
.
vdim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
out_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
def
_fuse_prepare_qkv
(
self
,
query
):
mix_layer
=
self
.
qkv_proj
(
query
)
mix_layer
=
paddle
.
reshape_
(
mix_layer
,
[
0
,
0
,
self
.
num_heads
,
3
*
self
.
head_dim
])
mix_layer
=
paddle
.
transpose
(
mix_layer
,
[
0
,
2
,
1
,
3
])
q
,
k
,
v
=
paddle
.
split
(
mix_layer
,
num_or_sections
=
3
,
axis
=-
1
)
return
q
,
k
,
v
def
_prepare_qkv
(
self
,
query
,
key
,
value
,
use_cache
=
False
,
cache
=
None
):
"""
Prapares linear projected queries, keys and values for usage of subsequnt
multiple parallel attention. If `cache` is not None, using cached results
to reduce redundant calculations.
"""
q
=
self
.
q_proj
(
query
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
q
=
tensor
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
q
=
tensor
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
if
isinstance
(
cache
,
self
.
StaticCache
):
# for encoder-decoder attention in inference and has cached
k
,
v
=
cache
.
k
,
cache
.
v
else
:
k
,
v
=
self
.
compute_kv
(
key
,
value
)
if
isinstance
(
cache
,
self
.
Cache
):
# for decoder self-attention in inference
k
=
tensor
.
concat
([
cache
.
k
,
k
],
axis
=
2
)
v
=
tensor
.
concat
([
cache
.
v
,
v
],
axis
=
2
)
if
use_cache
is
True
:
cache
=
self
.
Cache
(
k
,
v
)
return
(
q
,
k
,
v
)
if
use_cache
is
False
else
(
q
,
k
,
v
,
cache
)
def
compute_kv
(
self
,
key
,
value
):
"""
Applies linear projection on input keys and values, then splits heads
(reshape and transpose) to get keys and values from different representation
subspaces. The results are used as key-values pairs for subsequent multiple
parallel attention.
It is part of calculations in multi-head attention, and is provided as
a method to pre-compute and prefetch these results, thus we can use them
to construct cache for inference.
"""
k
=
self
.
k_proj
(
key
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
v
=
self
.
v_proj
(
value
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
k
=
tensor
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
k
=
tensor
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
v
=
tensor
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
v
=
tensor
.
transpose
(
x
=
v
,
perm
=
[
0
,
2
,
1
,
3
])
return
k
,
v
def
gen_cache
(
self
,
key
,
value
=
None
,
type
=
Cache
):
"""
Generates cache for `forward` usage in inference accroding to arguments.
The generated cache is an instance of `MultiHeadAttention.Cache` or an
instance of `MultiHeadAttention.StaticCache`.
"""
if
type
==
MultiHeadAttention
.
StaticCache
:
# static_kv
k
,
v
=
self
.
compute_kv
(
key
,
value
)
return
self
.
StaticCache
(
k
,
v
)
elif
value
is
None
:
# incremental_state
k
=
layers
.
fill_constant_batch_size_like
(
input
=
key
,
shape
=
[
-
1
,
self
.
num_heads
,
0
,
self
.
head_dim
],
dtype
=
key
.
dtype
,
value
=
0
)
v
=
layers
.
fill_constant_batch_size_like
(
input
=
key
,
shape
=
[
-
1
,
self
.
num_heads
,
0
,
self
.
head_dim
],
dtype
=
key
.
dtype
,
value
=
0
)
return
self
.
Cache
(
k
,
v
)
else
:
# incremental_state with initial value, mainly for usage like UniLM
return
self
.
Cache
(
key
,
value
)
def
forward
(
self
,
query
,
key
,
value
,
attn_mask
=
None
,
use_cache
=
False
,
cache
=
None
):
"""
Applies multi-head attention to map queries and a set of key-value pairs
to outputs.
"""
key
=
query
if
key
is
None
else
key
value
=
query
if
value
is
None
else
value
# compute q ,k ,v
if
use_cache
is
False
:
if
self
.
fuse
:
q
,
k
,
v
=
self
.
_fuse_prepare_qkv
(
query
)
else
:
q
,
k
,
v
=
self
.
_prepare_qkv
(
query
,
key
,
value
,
use_cache
,
cache
)
else
:
q
,
k
,
v
,
cache
=
self
.
_prepare_qkv
(
query
,
key
,
value
,
use_cache
,
cache
)
product
=
layers
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
if
attn_mask
is
not
None
:
product
=
product
+
attn_mask
weights
=
F
.
softmax
(
product
)
if
self
.
dropout
:
weights
=
F
.
dropout
(
weights
,
self
.
dropout
,
training
=
self
.
training
,
mode
=
"upscale_in_train"
)
out
=
tensor
.
matmul
(
weights
,
v
)
# combine heads
out
=
tensor
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
out
=
tensor
.
reshape
(
x
=
out
,
shape
=
[
0
,
0
,
out
.
shape
[
2
]
*
out
.
shape
[
3
]])
# project to output
out
=
self
.
out_proj
(
out
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
1
,
-
1
]
})
outs
=
[
out
]
if
self
.
need_weights
:
outs
.
append
(
weights
)
if
use_cache
:
outs
.
append
(
cache
)
return
out
if
len
(
outs
)
==
1
else
tuple
(
outs
)
class
TransformerDecoder
(
nn
.
Layer
):
"""
TransformerDecoder is a stack of N decoder layers.
"""
def
__init__
(
self
,
decoder_layers
,
num_layers
,
norm
=
None
,
hidden_size
=
None
):
super
(
TransformerDecoder
,
self
).
__init__
()
self
.
num_layers
=
num_layers
self
.
layers
=
decoder_layers
self
.
norm
=
norm
if
norm
is
"LayerNorm"
:
self
.
norm
=
nn
.
LayerNorm
(
hidden_size
)
elif
norm
is
not
None
:
raise
ValueError
(
"Only support LayerNorm"
)
self
.
checkpoints
=
[]
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
use_cache
=
False
,
cache
=
None
):
"""
Applies a stack of N Transformer decoder layers on inputs. If `norm` is
provided, also applies layer normalization on the output of last decoder
layer.
"""
output
=
tgt
new_caches
=
[]
self
.
checkpoints
=
[]
if
_global_parallel_strategy
==
"pp"
:
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
if
_global_parallel_strategy
==
"dp_pp"
:
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
if
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
if
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
for
i
,
mod
in
enumerate
(
self
.
layers
):
if
cache
is
None
:
if
use_cache
:
if
_global_parallel_strategy
==
"pp"
:
output
,
new_cache
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
elif
_global_parallel_strategy
==
"dp_pp"
:
output
,
new_cache
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
output
,
new_cache
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
output
,
new_cache
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
else
:
output
,
new_cache
=
mod
(
output
,
memory
,
tgt_mask
=
tgt_mask
,
use_cache
=
use_cache
,
cache
=
cache
)
new_caches
.
append
(
new_cache
)
else
:
if
_global_parallel_strategy
==
"pp"
:
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
elif
_global_parallel_strategy
==
"dp_pp"
:
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
else
:
output
=
mod
(
output
,
memory
,
tgt_mask
=
tgt_mask
,
use_cache
=
use_cache
,
cache
=
cache
)
else
:
if
_global_parallel_strategy
==
"pp"
:
output
,
new_cache
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
elif
_global_parallel_strategy
==
"dp_pp"
:
output
,
new_cache
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
output
,
new_cache
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
output
,
new_cache
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
else
:
output
,
new_cache
=
mod
(
output
,
memory
,
tgt_mask
=
tgt_mask
,
use_cache
=
use_cache
,
cache
=
cache
[
i
])
new_caches
.
append
(
new_cache
)
self
.
checkpoints
.
append
(
output
.
name
)
if
self
.
norm
is
not
None
:
output
=
self
.
norm
(
output
)
return
output
if
use_cache
is
False
else
(
output
,
new_caches
)
def
gen_cache
(
self
,
memory
,
do_zip
=
False
):
"""
Generates cache for `forward` usage. The generated cache is a list, and
each element in it is a tuple( :code:`(incremental_cache, static_cache)` )
produced by `TransformerDecoderLayer.gen_cache`. See `TransformerDecoderLayer.gen_cache`
for more details. If `do_zip` is True, apply `zip` on these tuples to get
a list with two elements.
"""
cache
=
[
layer
.
gen_cache
(
memory
)
for
layer
in
self
.
layers
]
if
do_zip
:
cache
=
list
(
zip
(
*
cache
))
return
cache
class
TransformerDecoderLayer
(
nn
.
Layer
):
"""
The transformer decoder layer.
It contains multiheadattention and some linear layers.
"""
def
__init__
(
self
,
d_model
,
nhead
,
dim_feedforward
,
dropout
=
0.1
,
activation
=
"gelu"
,
attn_dropout
=
None
,
act_dropout
=
None
,
normalize_before
=
True
,
weight_attr
=
None
,
bias_attr
=
None
,
mesh_idx
=
None
):
self
.
_config
=
locals
()
self
.
_config
.
pop
(
"self"
)
self
.
_config
.
pop
(
"__class__"
,
None
)
# py3
self
.
mesh_idx
=
mesh_idx
super
(
TransformerDecoderLayer
,
self
).
__init__
()
attn_dropout
=
dropout
if
attn_dropout
is
None
else
attn_dropout
act_dropout
=
dropout
if
act_dropout
is
None
else
act_dropout
self
.
normalize_before
=
normalize_before
weight_attrs
=
_convert_param_attr_to_list
(
weight_attr
,
3
)
bias_attrs
=
_convert_param_attr_to_list
(
bias_attr
,
3
)
self
.
self_attn
=
MultiHeadAttention
(
d_model
,
nhead
,
dropout
=
attn_dropout
,
weight_attr
=
weight_attrs
[
0
],
bias_attr
=
bias_attrs
[
0
],
mesh_idx
=
self
.
mesh_idx
)
self
.
linear1
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
norm1
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
norm2
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
dropout1
=
nn
.
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
self
.
dropout2
=
nn
.
Dropout
(
act_dropout
,
mode
=
"upscale_in_train"
)
self
.
activation
=
getattr
(
F
,
activation
)
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
use_cache
=
False
,
cache
=
None
):
residual
=
tgt
if
self
.
normalize_before
:
tgt
=
self
.
norm1
(
tgt
)
if
use_cache
is
False
:
tgt
=
self
.
self_attn
(
tgt
,
tgt
,
tgt
,
tgt_mask
,
use_cache
,
cache
)
else
:
tgt
,
incremental_cache
=
self
.
self_attn
(
tgt
,
tgt
,
tgt
,
tgt_mask
,
use_cache
,
cache
)
tgt
=
residual
+
self
.
dropout1
(
tgt
)
if
not
self
.
normalize_before
:
tgt
=
self
.
norm1
(
tgt
)
residual
=
tgt
if
self
.
normalize_before
:
tgt
=
self
.
norm2
(
tgt
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
if
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
1
,
-
1
]
})
tgt
=
self
.
dropout2
(
self
.
linear2
(
F
.
gelu
(
self
.
linear1
(
tgt
),
approximate
=
True
)))
tgt
=
residual
+
tgt
if
not
self
.
normalize_before
:
tgt
=
self
.
norm2
(
tgt
)
return
tgt
if
use_cache
is
False
else
(
tgt
,
incremental_cache
)
def
gen_cache
(
self
,
memory
):
incremental_cache
=
self
.
self_attn
.
gen_cache
(
memory
,
type
=
self
.
self_attn
.
Cache
)
return
incremental_cache
class
GPTEmbeddings
(
nn
.
Layer
):
"""
Include embeddings from word, position and token_type embeddings
"""
def
__init__
(
self
,
vocab_size
,
hidden_size
=
768
,
hidden_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
initializer_range
=
0.02
):
super
(
GPTEmbeddings
,
self
).
__init__
()
self
.
word_embeddings
=
nn
.
Embedding
(
vocab_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
"word_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
self
.
position_embeddings
=
nn
.
Embedding
(
max_position_embeddings
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
"pos_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
self
.
dropout
=
nn
.
Dropout
(
hidden_dropout_prob
)
def
forward
(
self
,
input_ids
,
position_ids
=
None
):
if
position_ids
is
None
:
ones
=
paddle
.
ones_like
(
input_ids
,
dtype
=
"int64"
)
seq_length
=
paddle
.
cumsum
(
ones
,
axis
=-
1
)
position_ids
=
seq_length
-
ones
input_embedings
=
self
.
word_embeddings
(
input_ids
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
1
,
-
1
]
})
position_embeddings
=
self
.
position_embeddings
(
position_ids
)
embeddings
=
input_embedings
+
position_embeddings
embeddings
=
self
.
dropout
(
embeddings
)
return
embeddings
class
GPTModel
(
nn
.
Layer
):
"""
The base model of gpt.
"""
def
__init__
(
self
,
vocab_size
=
50304
,
hidden_size
=
1024
,
num_hidden_layers
=
24
,
num_attention_heads
=
16
,
intermediate_size
=
4096
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.
,
attention_probs_dropout_prob
=
0.
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
initializer_range
=
0.02
,
pad_token_id
=
0
,
eos_token_id
=
7
,
bos_token_id
=
0
,
eol_token_id
=
3
,
pp_degree
=
None
):
super
(
GPTModel
,
self
).
__init__
()
self
.
pad_token_id
=
pad_token_id
self
.
initializer_range
=
initializer_range
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
layer_per_stage
=
None
self
.
pipline_mode
=
(
pp_degree
is
not
None
and
pp_degree
>
1
)
if
self
.
pipline_mode
:
self
.
layer_per_stage
=
num_hidden_layers
//
pp_degree
self
.
embeddings
=
GPTEmbeddings
(
vocab_size
,
hidden_size
,
hidden_dropout_prob
,
max_position_embeddings
,
type_vocab_size
,
self
.
initializer_range
)
decoder_layers
=
nn
.
LayerList
()
for
i
in
range
(
num_hidden_layers
):
mesh_index
=
None
DecoderLayer
=
TransformerDecoderLayer
if
self
.
layer_per_stage
is
not
None
:
mesh_index
=
i
//
self
.
layer_per_stage
decoder_layers
.
append
(
DecoderLayer
(
d_model
=
hidden_size
,
nhead
=
num_attention_heads
,
dim_feedforward
=
intermediate_size
,
dropout
=
hidden_dropout_prob
,
activation
=
hidden_act
,
attn_dropout
=
attention_probs_dropout_prob
,
act_dropout
=
hidden_dropout_prob
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
self
.
initializer_range
)),
bias_attr
=
None
,
mesh_idx
=
mesh_index
))
Decoder
=
TransformerDecoder
self
.
decoder
=
Decoder
(
decoder_layers
,
num_hidden_layers
,
norm
=
"LayerNorm"
,
hidden_size
=
hidden_size
)
self
.
checkpoints
=
[]
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
attention_mask
=
None
,
use_cache
=
False
,
cache
=
None
):
self
.
checkpoints
=
[]
if
position_ids
is
None
:
past_length
=
0
if
cache
is
not
None
:
past_length
=
paddle
.
shape
(
cache
[
0
].
k
)[
-
2
]
position_ids
=
paddle
.
arange
(
past_length
,
paddle
.
shape
(
input_ids
)[
-
1
]
+
past_length
,
dtype
=
'int64'
)
position_ids
=
position_ids
.
unsqueeze
(
0
)
position_ids
=
paddle
.
fluid
.
layers
.
expand_as
(
position_ids
,
input_ids
)
embedding_output
=
self
.
embeddings
(
input_ids
=
input_ids
,
position_ids
=
position_ids
)
if
_global_parallel_strategy
==
"pp"
:
auto
.
shard_tensor
(
input_ids
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
))]
})
if
_global_parallel_strategy
==
"dp_pp"
:
auto
.
shard_tensor
(
input_ids
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
})
if
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
input_ids
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
})
attention_mask
.
stop_gradient
=
True
encoder_outputs
=
self
.
decoder
(
embedding_output
,
memory
=
None
,
tgt_mask
=
attention_mask
,
use_cache
=
use_cache
,
cache
=
cache
)
self
.
checkpoints
.
extend
(
self
.
decoder
.
checkpoints
)
return
encoder_outputs
class
GPTForPretraining
(
nn
.
Layer
):
"""
The pretraining model of GPT.
It returns some logits and cached_kvs.
"""
def
__init__
(
self
,
gpt
,
vocab_size
=
50304
,
hidden_size
=
768
,
initializer_range
=
0.02
,
):
super
(
GPTForPretraining
,
self
).
__init__
()
self
.
output_embeddings
=
nn
.
Embedding
(
vocab_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
"output_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
self
.
gpt
=
gpt
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
attention_mask
=
None
,
masked_positions
=
None
,
use_cache
=
False
,
cache
=
None
):
outputs
=
self
.
gpt
(
input_ids
,
position_ids
=
position_ids
,
attention_mask
=
attention_mask
,
use_cache
=
use_cache
,
cache
=
cache
)
if
use_cache
:
encoder_outputs
,
cached_kvs
=
outputs
[:
2
]
else
:
encoder_outputs
=
outputs
logits
=
paddle
.
matmul
(
encoder_outputs
,
self
.
output_embeddings
.
weight
,
transpose_y
=
True
)
if
use_cache
:
return
logits
,
cached_kvs
else
:
return
logits
class
GPTPretrainingCriterion
(
nn
.
Layer
):
"""
Criterion for GPT.
It calculates the final loss.
"""
def
__init__
(
self
):
super
(
GPTPretrainingCriterion
,
self
).
__init__
()
self
.
loss_func
=
paddle
.
nn
.
CrossEntropyLoss
(
reduction
=
"none"
)
def
forward
(
self
,
prediction_scores
,
masked_lm_labels
,
loss_mask
):
masked_lm_loss
=
self
.
loss_func
(
prediction_scores
,
masked_lm_labels
.
unsqueeze
(
2
))
loss_mask
=
loss_mask
.
reshape
([
-
1
])
masked_lm_loss
=
paddle
.
sum
(
masked_lm_loss
.
reshape
([
-
1
])
*
loss_mask
)
total_loss
=
masked_lm_loss
/
loss_mask
.
sum
()
pp_total_loss
=
None
loss
=
total_loss
if
"pp"
in
_global_parallel_strategy
:
total_loss
=
total_loss
masked_lm_loss
.
persistable
=
True
total_loss
.
persistable
=
True
total_loss
.
persistable
=
True
pp_total_loss
=
paddle
.
fluid
.
layers
.
fill_constant
([
1
,
],
"float32"
,
0.0
)
pp_total_loss
.
persistable
=
True
block
=
paddle
.
static
.
default_main_program
().
global_block
()
acc_steps
=
1
tmp
=
total_loss
/
acc_steps
block
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
"X"
:
[
pp_total_loss
],
"Y"
:
[
tmp
]},
outputs
=
{
"Out"
:
[
pp_total_loss
]})
loss
=
pp_total_loss
return
loss
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录