diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index ce5d98b04e6b53fcedc4fc4610d9390e64846b2a..a0945e8055625ca4c21ea1c3fa9f27321ca9ba3c 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once +#include #include #include #include "paddle/framework/ddim.h" @@ -26,31 +27,65 @@ namespace framework { class Tensor { public: + Tensor() : offset_(0) {} + + explicit Tensor(const DDim& dims) : dims_(dims), offset_(0) {} + template const T* data() const { - PADDLE_ENFORCE(holder_ != nullptr, - "Tensor::data must be called after Tensor::mutable_data."); - return static_cast(holder_->Ptr()); + PADDLE_ENFORCE( + holder_ != nullptr, + "Tenosr has not been initialized. Call Tensor::mutable_data first."); + return reinterpret_cast( + reinterpret_cast(holder_->Ptr()) + offset_); } template ::value>::type* = nullptr> T* mutable_data(DDim dims, paddle::platform::Place place) { + dims_ = dims; if (holder_ == nullptr || !(holder_->Place() == place) /* some versions of boost::variant don't have operator!= */ - || holder_->Size() < product(dims) * sizeof(T)) { + || holder_->Size() < product(dims) * sizeof(T) + offset_) { holder_.reset(new PlaceholderImpl(place, product(dims) * sizeof(T))); + offset_ = 0; } - return static_cast(holder_->Ptr()); + return reinterpret_cast(reinterpret_cast(holder_->Ptr()) + + offset_); } - template ::value>::type* = nullptr> - T* mutable_data(DDim dims) { - return mutable_data(dims, paddle::platform::get_place()); + void ShareDataFrom(const Tensor& src) { + PADDLE_ENFORCE(src.holder_ != nullptr, + "Can not share data from an uninitialized tensor."); + holder_ = src.holder_; + dims_ = src.dims_; + offset_ = src.offset_; } + Tensor Slice(const int& begin_idx, const int& end_idx) const { + PADDLE_ENFORCE(holder_ != nullptr, + "The sliced tenosr has not been initialized."); + PADDLE_ENFORCE(begin_idx >= 0 && end_idx <= dims_[0], + "Slice index is less than zero or out of bound."); + PADDLE_ENFORCE(begin_idx < end_idx, + "Begin index must be less than end index."); + PADDLE_ENFORCE(dims_[0] != 1, "Can not slice a tensor with dims_[0] = 1."); + std::vector d = vectorize(dims_); + int base = 1; + for (size_t i = 1; i < d.size(); ++i) { + base *= d[i]; + } + Tensor dst; + dst.holder_ = holder_; + dst.dims_ = dims_; + dst.dims_[0] = end_idx - begin_idx; + dst.offset_ = offset_ + begin_idx * base * holder_->TypeSize(); + return dst; + } + + DDim dims() const { return dims_; } + private: // Placeholder hides type T, so it doesn't appear as a template // parameter of Variable. @@ -59,6 +94,7 @@ class Tensor { virtual void* Ptr() const = 0; virtual paddle::platform::Place Place() const = 0; virtual size_t Size() const = 0; + virtual size_t TypeSize() const = 0; }; template @@ -85,6 +121,7 @@ class Tensor { virtual void* Ptr() const { return static_cast(ptr_.get()); } virtual size_t Size() const { return size_; } virtual paddle::platform::Place Place() const { return place_; } + virtual size_t TypeSize() const { return sizeof(T); } std::unique_ptr ptr_; paddle::platform::Place place_; // record the place of ptr_. @@ -92,6 +129,8 @@ class Tensor { }; std::shared_ptr holder_; // holds the memory block if allocated. + DDim dims_; + size_t offset_; // marks the begin of tensor data area. }; } // namespace framework diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc index 727d81f8d72e39ec564c42a48bf7ff64204adfff..f4822838cfbd27656232a23b14f716f2fbe510e0 100644 --- a/paddle/framework/tensor_test.cc +++ b/paddle/framework/tensor_test.cc @@ -15,15 +15,27 @@ #include #include -TEST(Tensor, ASSERT) { - paddle::framework::Tensor cpu_tensor; +TEST(Tensor, Dims) { + using namespace paddle::framework; + using namespace paddle::platform; + Tensor tt(make_ddim({2, 3, 4})); + DDim dims = tt.dims(); + ASSERT_EQ(arity(dims), 3); + for (int i = 0; i < 3; ++i) { + EXPECT_EQ(i + 2, dims[i]); + } +} + +TEST(Tensor, DataAssert) { + paddle::framework::Tensor src_tensor; bool caught = false; try { - const double* p __attribute__((unused)) = cpu_tensor.data(); + src_tensor.data(); } catch (paddle::framework::EnforceNotMet err) { caught = true; - std::string msg = "Tensor::data must be called after Tensor::mutable_data."; + std::string msg = + "Tenosr has not been initialized. Call Tensor::mutable_data first."; const char* what = err.what(); for (size_t i = 0; i < msg.length(); ++i) { ASSERT_EQ(what[i], msg[i]); @@ -32,54 +44,138 @@ TEST(Tensor, ASSERT) { ASSERT_TRUE(caught); } -/* mutable_data() is not tested at present +/* following tests are not available at present because Memory::Alloc() and Memory::Free() have not been ready. TEST(Tensor, MutableData) { using namespace paddle::framework; using namespace paddle::platform; { - Tensor cpu_tensor; + Tensor src_tensor; float* p1 = nullptr; float* p2 = nullptr; // initialization - p1 = cpu_tensor.mutable_data(make_ddim({1, 2, 3}), CPUPlace()); + p1 = src_tensor.mutable_data(make_ddim({1, 2, 3}), CPUPlace()); EXPECT_NE(p1, nullptr); - // set cpu_tensor a new dim with large size + // set src_tensor a new dim with large size // momery is supposed to be re-allocated - p2 = cpu_tensor.mutable_data(make_ddim({3, 4})); + p2 = src_tensor.mutable_data(make_ddim({3, 4}), CPUPlace()); EXPECT_NE(p2, nullptr); EXPECT_NE(p1, p2); - // set cpu_tensor a new dim with same size + // set src_tensor a new dim with same size // momery block is supposed to be unchanged - p1 = cpu_tensor.mutable_data(make_ddim({2, 2, 3})); + p1 = src_tensor.mutable_data(make_ddim({2, 2, 3}), CPUPlace()); EXPECT_EQ(p1, p2); - // set cpu_tensor a new dim with smaller size + // set src_tensor a new dim with smaller size // momery block is supposed to be unchanged - p2 = cpu_tensor.mutable_data(make_ddim({2, 2})); + p2 = src_tensor.mutable_data(make_ddim({2, 2}), CPUPlace()); EXPECT_EQ(p1, p2); } { - Tensor gpu_tensor; + Tensor src_tensor; float* p1 = nullptr; float* p2 = nullptr; // initialization - p1 = gpu_tensor.mutable_data(make_ddim({1, 2, 3}), GPUPlace()); + p1 = src_tensor.mutable_data(make_ddim({1, 2, 3}), GPUPlace()); EXPECT_NE(p1, nullptr); - // set gpu_tensor a new dim with large size + // set src_tensor a new dim with large size // momery is supposed to be re-allocated - p2 = gpu_tensor.mutable_data(make_ddim({3, 4})); + p2 = src_tensor.mutable_data(make_ddim({3, 4}), GPUPlace()); EXPECT_NE(p2, nullptr); EXPECT_NE(p1, p2); - // set gpu_tensor a new dim with same size + // set src_tensor a new dim with same size // momery block is supposed to be unchanged - p1 = gpu_tensor.mutable_data(make_ddim({2, 2, 3})); + p1 = src_tensor.mutable_data(make_ddim({2, 2, 3}), GPUPlace()); EXPECT_EQ(p1, p2); - // set gpu_tensor a new dim with smaller size + // set src_tensor a new dim with smaller size // momery block is supposed to be unchanged - p2 = gpu_tensor.mutable_data(make_ddim({2, 2})); + p2 = src_tensor.mutable_data(make_ddim({2, 2}), GPUPlace()); EXPECT_EQ(p1, p2); } } -*/ + +TEST(Tensor, ShareDataFrom) { + using namespace paddle::framework; + using namespace paddle::platform; + { + Tensor src_tensor; + Tensor dst_tensor; + // Try to share data form uninitialized tensor + bool caught = false; + try { + dst_tensor.ShareDataFrom(src_tensor); + } catch (EnforceNotMet err) { + caught = true; + std::string msg = "Can not share data from an uninitialized tensor."; + const char* what = err.what(); + for (size_t i = 0; i < msg.length(); ++i) { + ASSERT_EQ(what[i], msg[i]); + } + } + ASSERT_TRUE(caught); + + src_tensor.mutable_data(make_ddim({2, 3, 4}), CPUPlace()); + dst_tensor.ShareDataFrom(src_tensor); + ASSERT_EQ(src_tensor.data(), dst_tensor.data()); + } + + { + Tensor src_tensor; + Tensor dst_tensor; + src_tensor.mutable_data(make_ddim({2, 3, 4}), GPUPlace()); + dst_tensor.ShareDataFrom(src_tensor); + ASSERT_EQ(src_tensor.data(), dst_tensor.data()); + } +} + +TEST(Tensor, Slice) { + using namespace paddle::framework; + using namespace paddle::platform; + { + Tensor src_tensor; + src_tensor.mutable_data(make_ddim({5, 3, 4}), CPUPlace()); + Tensor slice_tensor = src_tensor.Slice(1, 3); + DDim slice_dims = slice_tensor.dims(); + ASSERT_EQ(arity(slice_dims), 3); + EXPECT_EQ(slice_dims[0], 2); + EXPECT_EQ(slice_dims[1], 3); + EXPECT_EQ(slice_dims[2], 4); + + uintptr_t src_data_address = + reinterpret_cast(src_tensor.data()); + uintptr_t src_mutable_data_address = reinterpret_cast( + src_tensor.mutable_data(src_tensor.dims(), CPUPlace())); + uintptr_t slice_data_address = + reinterpret_cast(slice_tensor.data()); + uintptr_t slice_mutable_data_address = reinterpret_cast( + slice_tensor.mutable_data(slice_tensor.dims(), CPUPlace())); + EXPECT_EQ(src_data_address, src_mutable_data_address); + EXPECT_EQ(slice_data_address, slice_mutable_data_address); + EXPECT_EQ(src_data_address + 3 * 4 * 1 * sizeof(int), slice_data_address); + } + + { + Tensor src_tensor; + src_tensor.mutable_data(make_ddim({6, 9}), GPUPlace()); + Tensor slice_tensor = src_tensor.Slice(2, 6); + DDim slice_dims = slice_tensor.dims(); + ASSERT_EQ(arity(slice_dims), 2); + EXPECT_EQ(slice_dims[0], 4); + EXPECT_EQ(slice_dims[1], 9); + + uintptr_t src_data_address = + reinterpret_cast(src_tensor.data()); + uintptr_t src_mutable_data_address = reinterpret_cast( + src_tensor.mutable_data(src_tensor.dims(), GPUPlace())); + uintptr_t slice_data_address = + reinterpret_cast(slice_tensor.data()); + uintptr_t slice_mutable_data_address = reinterpret_cast( + slice_tensor.mutable_data(slice_tensor.dims(), GPUPlace())); + EXPECT_EQ(src_data_address, src_mutable_data_address); + EXPECT_EQ(slice_data_address, slice_mutable_data_address); + EXPECT_EQ(src_data_address + 9 * 2 * sizeof(double), slice_data_address); + } +} + +*/ \ No newline at end of file