Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
75144f13
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
75144f13
编写于
6月 21, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
6月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update quantization round and clip calculation rules (#42695)
上级
ff7d2464
变更
20
显示空白变更内容
内联
并排
Showing
20 changed file
with
653 addition
and
253 deletion
+653
-253
paddle/fluid/framework/ir/delete_quant_dequant_filter_op_pass.cc
...fluid/framework/ir/delete_quant_dequant_filter_op_pass.cc
+8
-0
paddle/fluid/framework/ir/delete_quant_dequant_linear_op_pass.cc
...fluid/framework/ir/delete_quant_dequant_linear_op_pass.cc
+8
-0
paddle/fluid/framework/ir/delete_weight_dequant_linear_op_pass.cc
...luid/framework/ir/delete_weight_dequant_linear_op_pass.cc
+8
-0
paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc
paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc
+8
-0
paddle/fluid/operators/fake_quantize_op.cc
paddle/fluid/operators/fake_quantize_op.cc
+95
-32
paddle/fluid/operators/fake_quantize_op.cu.h
paddle/fluid/operators/fake_quantize_op.cu.h
+92
-44
paddle/fluid/operators/fake_quantize_op.h
paddle/fluid/operators/fake_quantize_op.h
+69
-23
paddle/fluid/operators/quantize_linear_op.cc
paddle/fluid/operators/quantize_linear_op.cc
+14
-2
paddle/fluid/operators/quantize_linear_op.h
paddle/fluid/operators/quantize_linear_op.h
+5
-4
python/paddle/fluid/contrib/slim/quantization/adaround.py
python/paddle/fluid/contrib/slim/quantization/adaround.py
+11
-1
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+31
-15
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+76
-17
python/paddle/fluid/contrib/slim/quantization/utils.py
python/paddle/fluid/contrib/slim/quantization/utils.py
+22
-12
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+1
-1
python/paddle/fluid/contrib/slim/tests/test_imperative_ptq.py
...on/paddle/fluid/contrib/slim/tests/test_imperative_ptq.py
+1
-1
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_lstm_model.py
.../slim/tests/test_post_training_quantization_lstm_model.py
+8
-8
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
...ntrib/slim/tests/test_post_training_quantization_mnist.py
+49
-34
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+17
-16
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
...ib/slim/tests/test_post_training_quantization_resnet50.py
+4
-4
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
+126
-39
未找到文件。
paddle/fluid/framework/ir/delete_quant_dequant_filter_op_pass.cc
浏览文件 @
75144f13
...
@@ -45,6 +45,10 @@ DeleteQuantDequantFilterOpPass::DeleteQuantDequantFilterOpPass() {
...
@@ -45,6 +45,10 @@ DeleteQuantDequantFilterOpPass::DeleteQuantDequantFilterOpPass() {
.
End
()
.
End
()
.
AddAttr
(
"bit_length"
)
.
AddAttr
(
"bit_length"
)
.
IsIntIn
({
8
,
16
})
.
IsIntIn
({
8
,
16
})
.
End
()
.
AddAttr
(
"round_type"
)
.
IsOptional
()
.
IsIntIn
({
0
,
1
})
.
End
();
.
End
();
AddOpCompat
(
OpCompat
(
"fake_channel_wise_quantize_dequantize_abs_max"
))
AddOpCompat
(
OpCompat
(
"fake_channel_wise_quantize_dequantize_abs_max"
))
.
AddInput
(
"X"
)
.
AddInput
(
"X"
)
...
@@ -61,6 +65,10 @@ DeleteQuantDequantFilterOpPass::DeleteQuantDequantFilterOpPass() {
...
@@ -61,6 +65,10 @@ DeleteQuantDequantFilterOpPass::DeleteQuantDequantFilterOpPass() {
.
End
()
.
End
()
.
AddAttr
(
"quant_axis"
)
.
AddAttr
(
"quant_axis"
)
.
IsIntIn
({
0
,
1
})
.
IsIntIn
({
0
,
1
})
.
End
()
.
AddAttr
(
"round_type"
)
.
IsOptional
()
.
IsIntIn
({
0
,
1
})
.
End
();
.
End
();
}
}
// Delete quant_dequant_op, then quantize and dequantize weight
// Delete quant_dequant_op, then quantize and dequantize weight
...
...
paddle/fluid/framework/ir/delete_quant_dequant_linear_op_pass.cc
浏览文件 @
75144f13
...
@@ -54,6 +54,10 @@ DeleteQuantDequantLinearOpPass::DeleteQuantDequantLinearOpPass() {
...
@@ -54,6 +54,10 @@ DeleteQuantDequantLinearOpPass::DeleteQuantDequantLinearOpPass() {
.
End
()
.
End
()
.
AddAttr
(
"quant_axis"
)
.
AddAttr
(
"quant_axis"
)
.
IsType
<
int
>
()
.
IsType
<
int
>
()
.
End
()
.
AddAttr
(
"round_type"
)
.
IsOptional
()
.
IsType
<
int
>
()
.
End
();
.
End
();
AddOpCompat
(
OpCompat
(
"dequantize_linear"
))
AddOpCompat
(
OpCompat
(
"dequantize_linear"
))
.
AddInput
(
"X"
)
.
AddInput
(
"X"
)
...
@@ -74,6 +78,10 @@ DeleteQuantDequantLinearOpPass::DeleteQuantDequantLinearOpPass() {
...
@@ -74,6 +78,10 @@ DeleteQuantDequantLinearOpPass::DeleteQuantDequantLinearOpPass() {
.
End
()
.
End
()
.
AddAttr
(
"quant_axis"
)
.
AddAttr
(
"quant_axis"
)
.
IsType
<
int
>
()
.
IsType
<
int
>
()
.
End
()
.
AddAttr
(
"round_type"
)
.
IsOptional
()
.
IsType
<
int
>
()
.
End
();
.
End
();
}
}
// Delete quantize_linear_op dequantize_linear_op, then add input_scales
// Delete quantize_linear_op dequantize_linear_op, then add input_scales
...
...
paddle/fluid/framework/ir/delete_weight_dequant_linear_op_pass.cc
浏览文件 @
75144f13
...
@@ -52,6 +52,10 @@ DeleteWeightQuantDequantLinearOpPass::DeleteWeightQuantDequantLinearOpPass() {
...
@@ -52,6 +52,10 @@ DeleteWeightQuantDequantLinearOpPass::DeleteWeightQuantDequantLinearOpPass() {
.
End
()
.
End
()
.
AddAttr
(
"quant_axis"
)
.
AddAttr
(
"quant_axis"
)
.
IsType
<
int
>
()
.
IsType
<
int
>
()
.
End
()
.
AddAttr
(
"round_type"
)
.
IsOptional
()
.
IsType
<
int
>
()
.
End
();
.
End
();
AddOpCompat
(
OpCompat
(
"dequantize_linear"
))
AddOpCompat
(
OpCompat
(
"dequantize_linear"
))
.
AddInput
(
"X"
)
.
AddInput
(
"X"
)
...
@@ -72,6 +76,10 @@ DeleteWeightQuantDequantLinearOpPass::DeleteWeightQuantDequantLinearOpPass() {
...
@@ -72,6 +76,10 @@ DeleteWeightQuantDequantLinearOpPass::DeleteWeightQuantDequantLinearOpPass() {
.
End
()
.
End
()
.
AddAttr
(
"quant_axis"
)
.
AddAttr
(
"quant_axis"
)
.
IsType
<
int
>
()
.
IsType
<
int
>
()
.
End
()
.
AddAttr
(
"round_type"
)
.
IsOptional
()
.
IsType
<
int
>
()
.
End
();
.
End
();
AddOpCompat
(
OpCompat
(
"conv2d"
))
AddOpCompat
(
OpCompat
(
"conv2d"
))
.
AddInput
(
"Input"
)
.
AddInput
(
"Input"
)
...
...
paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc
浏览文件 @
75144f13
...
@@ -49,6 +49,10 @@ QuantDequantFusePass::QuantDequantFusePass() {
...
@@ -49,6 +49,10 @@ QuantDequantFusePass::QuantDequantFusePass() {
.
End
()
.
End
()
.
AddAttr
(
"bit_length"
)
.
AddAttr
(
"bit_length"
)
.
IsIntIn
({
8
,
16
})
.
IsIntIn
({
8
,
16
})
.
End
()
.
AddAttr
(
"round_type"
)
.
IsOptional
()
.
IsIntIn
({
0
,
1
})
.
End
();
.
End
();
AddOpCompat
(
OpCompat
(
"fake_quantize_moving_average_abs_max"
))
AddOpCompat
(
OpCompat
(
"fake_quantize_moving_average_abs_max"
))
.
AddInput
(
"X"
)
.
AddInput
(
"X"
)
...
@@ -85,6 +89,10 @@ QuantDequantFusePass::QuantDequantFusePass() {
...
@@ -85,6 +89,10 @@ QuantDequantFusePass::QuantDequantFusePass() {
.
End
()
.
End
()
.
AddAttr
(
"bit_length"
)
.
AddAttr
(
"bit_length"
)
.
IsIntIn
({
8
,
16
})
.
IsIntIn
({
8
,
16
})
.
End
()
.
AddAttr
(
"round_type"
)
.
IsOptional
()
.
IsIntIn
({
0
,
1
})
.
End
();
.
End
();
AddOpCompat
(
OpCompat
(
"fake_dequantize_max_abs"
))
AddOpCompat
(
OpCompat
(
"fake_dequantize_max_abs"
))
.
AddInput
(
"X"
)
.
AddInput
(
"X"
)
...
...
paddle/fluid/operators/fake_quantize_op.cc
浏览文件 @
75144f13
...
@@ -88,14 +88,14 @@ template <typename T>
...
@@ -88,14 +88,14 @@ template <typename T>
struct
ClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
struct
ClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
)
{
const
int
bin_cnt
,
const
int
round_type
,
framework
::
Tensor
*
out
)
{
T
s
=
scale
.
data
<
T
>
()[
0
];
T
s
=
scale
.
data
<
T
>
()[
0
];
T
inv_s
=
inverse
(
s
);
T
inv_s
=
inverse
(
s
);
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
trans
(
ctx
,
in
.
data
<
T
>
(),
in
.
data
<
T
>
()
+
in
.
numel
(),
trans
(
ctx
,
in
.
data
<
T
>
(),
in
.
data
<
T
>
()
+
in
.
numel
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
phi
::
ClipFunctor
<
T
>
(
-
s
,
s
));
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
QuantTensorFunctor
<
T
>
(
static_cast
<
T
>
(
bin_cnt
),
round_type
,
inv_s
));
out_e
.
device
(
*
ctx
.
eigen_device
())
=
(
bin_cnt
*
inv_s
*
out_e
).
round
();
}
}
};
};
...
@@ -105,16 +105,17 @@ template <typename T>
...
@@ -105,16 +105,17 @@ template <typename T>
struct
ClipAndFakeQuantDequantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
struct
ClipAndFakeQuantDequantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
)
{
const
int
bin_cnt
,
const
int
round_type
,
framework
::
Tensor
*
out
)
{
T
s
=
scale
.
data
<
T
>
()[
0
];
T
s
=
scale
.
data
<
T
>
()[
0
];
T
inv_s
=
inverse
(
s
);
T
inv_s
=
inverse
(
s
);
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
trans
(
ctx
,
in
.
data
<
T
>
(),
in
.
data
<
T
>
()
+
in
.
numel
(),
trans
(
ctx
,
in
.
data
<
T
>
(),
in
.
data
<
T
>
()
+
in
.
numel
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
phi
::
ClipFunctor
<
T
>
(
-
s
,
s
));
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
QuantTensorFunctor
<
T
>
(
static_cast
<
T
>
(
bin_cnt
),
round_type
,
inv_s
));
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
out_e
.
device
(
*
ctx
.
eigen_device
())
=
out_e
.
device
(
*
ctx
.
eigen_device
())
=
out_e
*
s
/
static_cast
<
T
>
(
bin_cnt
);
(
bin_cnt
*
inv_s
*
out_e
).
round
()
*
s
/
static_cast
<
T
>
(
bin_cnt
);
}
}
};
};
template
struct
ClipAndFakeQuantDequantFunctor
<
platform
::
CPUDeviceContext
,
template
struct
ClipAndFakeQuantDequantFunctor
<
platform
::
CPUDeviceContext
,
...
@@ -124,7 +125,7 @@ template <typename T>
...
@@ -124,7 +125,7 @@ template <typename T>
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
quant_axis
,
const
int
bin_cnt
,
const
int
round_type
,
const
int
quant_axis
,
framework
::
Tensor
*
out
)
{
framework
::
Tensor
*
out
)
{
// At present, channelwise quantization supports conv2d, depthwise_conv2d
// At present, channelwise quantization supports conv2d, depthwise_conv2d
// conv2d_transpose and mul
// conv2d_transpose and mul
...
@@ -145,15 +146,10 @@ struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
...
@@ -145,15 +146,10 @@ struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
T
s
=
scale_data
[
i
];
T
s
=
scale_data
[
i
];
auto
*
start
=
in_data
+
i
*
channel_size
;
auto
*
start
=
in_data
+
i
*
channel_size
;
auto
*
end
=
in_data
+
(
i
+
1
)
*
channel_size
;
auto
*
end
=
in_data
+
(
i
+
1
)
*
channel_size
;
trans
(
ctx
,
start
,
end
,
out_data
+
i
*
channel_size
,
phi
::
ClipFunctor
<
T
>
(
-
s
,
s
));
}
for
(
int64_t
i
=
0
;
i
<
channel
;
i
++
)
{
T
s
=
scale_data
[
i
];
T
inv_s
=
inverse
(
s
);
T
inv_s
=
inverse
(
s
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
trans
(
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
ctx
,
start
,
end
,
out_data
+
i
*
channel_size
,
out_e
.
device
(
*
ctx
.
eigen_device
())
=
(
bin_cnt
*
inv_s
*
out_e
).
round
(
);
QuantTensorFunctor
<
T
>
(
static_cast
<
T
>
(
bin_cnt
),
round_type
,
inv_s
)
);
}
}
}
else
if
(
quant_axis
==
1
)
{
}
else
if
(
quant_axis
==
1
)
{
const
int64_t
step_i
=
in
.
numel
()
/
in_dims
[
0
];
const
int64_t
step_i
=
in
.
numel
()
/
in_dims
[
0
];
...
@@ -165,10 +161,9 @@ struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
...
@@ -165,10 +161,9 @@ struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
auto
*
start
=
in_data
+
i
*
step_i
+
j
*
step_j
;
auto
*
start
=
in_data
+
i
*
step_i
+
j
*
step_j
;
auto
*
end
=
in_data
+
i
*
step_i
+
(
j
+
1
)
*
step_j
;
auto
*
end
=
in_data
+
i
*
step_i
+
(
j
+
1
)
*
step_j
;
auto
*
cur_out_data
=
out_data
+
i
*
step_i
+
j
*
step_j
;
auto
*
cur_out_data
=
out_data
+
i
*
step_i
+
j
*
step_j
;
trans
(
ctx
,
start
,
end
,
cur_out_data
,
phi
::
ClipFunctor
<
T
>
(
-
s
,
s
));
trans
(
ctx
,
start
,
end
,
cur_out_data
,
for
(
int
k
=
0
;
k
<
step_j
;
k
++
)
{
QuantTensorFunctor
<
T
>
(
static_cast
<
T
>
(
bin_cnt
),
round_type
,
cur_out_data
[
k
]
=
std
::
round
(
bin_cnt
*
inv_s
*
cur_out_data
[
k
]);
inv_s
));
}
}
}
}
}
}
}
...
@@ -181,7 +176,7 @@ template <typename T>
...
@@ -181,7 +176,7 @@ template <typename T>
struct
ChannelClipFakeQuantDequantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
struct
ChannelClipFakeQuantDequantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
quant_axis
,
const
int
bin_cnt
,
const
int
round_type
,
const
int
quant_axis
,
framework
::
Tensor
*
out
)
{
framework
::
Tensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
quant_axis
==
0
||
quant_axis
==
1
,
true
,
quant_axis
==
0
||
quant_axis
==
1
,
true
,
...
@@ -201,16 +196,13 @@ struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
...
@@ -201,16 +196,13 @@ struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
T
s
=
scale_data
[
i
];
T
s
=
scale_data
[
i
];
auto
*
start
=
in_data
+
i
*
channel_size
;
auto
*
start
=
in_data
+
i
*
channel_size
;
auto
*
end
=
in_data
+
(
i
+
1
)
*
channel_size
;
auto
*
end
=
in_data
+
(
i
+
1
)
*
channel_size
;
trans
(
ctx
,
start
,
end
,
out_data
+
i
*
channel_size
,
phi
::
ClipFunctor
<
T
>
(
-
s
,
s
));
}
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
T
s
=
scale_data
[
i
];
T
inv_s
=
inverse
(
s
);
T
inv_s
=
inverse
(
s
);
trans
(
ctx
,
start
,
end
,
out_data
+
i
*
channel_size
,
QuantTensorFunctor
<
T
>
(
static_cast
<
T
>
(
bin_cnt
),
round_type
,
inv_s
));
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
out_e
.
device
(
*
ctx
.
eigen_device
())
=
out_e
.
device
(
*
ctx
.
eigen_device
())
=
out_e
*
s
/
static_cast
<
T
>
(
bin_cnt
);
(
bin_cnt
*
inv_s
*
out_e
).
round
()
*
s
/
static_cast
<
T
>
(
bin_cnt
);
}
}
}
else
if
(
quant_axis
==
1
)
{
}
else
if
(
quant_axis
==
1
)
{
const
int64_t
step_i
=
in
.
numel
()
/
in_dims
[
0
];
const
int64_t
step_i
=
in
.
numel
()
/
in_dims
[
0
];
...
@@ -222,10 +214,11 @@ struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
...
@@ -222,10 +214,11 @@ struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
auto
*
start
=
in_data
+
i
*
step_i
+
j
*
step_j
;
auto
*
start
=
in_data
+
i
*
step_i
+
j
*
step_j
;
auto
*
end
=
in_data
+
i
*
step_i
+
(
j
+
1
)
*
step_j
;
auto
*
end
=
in_data
+
i
*
step_i
+
(
j
+
1
)
*
step_j
;
auto
*
cur_out_data
=
out_data
+
i
*
step_i
+
j
*
step_j
;
auto
*
cur_out_data
=
out_data
+
i
*
step_i
+
j
*
step_j
;
trans
(
ctx
,
start
,
end
,
cur_out_data
,
phi
::
ClipFunctor
<
T
>
(
-
s
,
s
));
trans
(
ctx
,
start
,
end
,
cur_out_data
,
QuantTensorFunctor
<
T
>
(
static_cast
<
T
>
(
bin_cnt
),
round_type
,
inv_s
));
for
(
int
k
=
0
;
k
<
step_j
;
k
++
)
{
for
(
int
k
=
0
;
k
<
step_j
;
k
++
)
{
cur_out_data
[
k
]
=
std
::
round
(
bin_cnt
*
inv_s
*
cur_out_data
[
k
])
*
cur_out_data
[
k
]
=
cur_out_data
[
k
]
*
s
/
static_cast
<
T
>
(
bin_cnt
);
s
/
static_cast
<
T
>
(
bin_cnt
);
}
}
}
}
}
}
...
@@ -334,6 +327,20 @@ class FakeQuantOrWithDequantAbsMaxOpMaker
...
@@ -334,6 +327,20 @@ class FakeQuantOrWithDequantAbsMaxOpMaker
"the received is %d"
,
"the received is %d"
,
bit_length
));
bit_length
));
});
});
AddAttr
<
int
>
(
"round_type"
,
"(int, default 0) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3"
)
.
SetDefault
(
0
)
.
AddCustomChecker
([](
const
int
&
round_type
)
{
PADDLE_ENFORCE_EQ
(
round_type
>=
0
&&
round_type
<=
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'round_type' should be between 0 and 1, but "
"the received is %d"
,
round_type
));
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
This is a Base Op which supports FakeQuantAbsMaxOpMaker and FakeQuantDequantAbsMaxOpMaker.
This is a Base Op which supports FakeQuantAbsMaxOpMaker and FakeQuantDequantAbsMaxOpMaker.
FakeQuantAbsMaxOp operator is used in the dynamic quantization.
FakeQuantAbsMaxOp operator is used in the dynamic quantization.
...
@@ -407,6 +414,20 @@ class FakeChannelWiseQuantizeAbsMaxOpMaker
...
@@ -407,6 +414,20 @@ class FakeChannelWiseQuantizeAbsMaxOpMaker
"the received is %d"
,
"the received is %d"
,
bit_length
));
bit_length
));
});
});
AddAttr
<
int
>
(
"round_type"
,
"(int, default 0) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3"
)
.
SetDefault
(
0
)
.
AddCustomChecker
([](
const
int
&
round_type
)
{
PADDLE_ENFORCE_EQ
(
round_type
>=
0
&&
round_type
<=
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'round_type' should be between 0 and 1, but "
"the received is %d"
,
round_type
));
});
AddAttr
<
bool
>
(
"is_test"
,
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
"for training. Some layers may run faster when this is true."
)
...
@@ -480,6 +501,20 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker
...
@@ -480,6 +501,20 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker
"the received is %d"
,
"the received is %d"
,
bit_length
));
bit_length
));
});
});
AddAttr
<
int
>
(
"round_type"
,
"(int, default 0) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3"
)
.
SetDefault
(
0
)
.
AddCustomChecker
([](
const
int
&
round_type
)
{
PADDLE_ENFORCE_EQ
(
round_type
>=
0
&&
round_type
<=
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'round_type' should be between 0 and 1, but "
"the received is %d"
,
round_type
));
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.
In detail, each channel of the input X has a scale value.
...
@@ -546,6 +581,20 @@ class FakeQuantizeRangeAbsMaxOpMaker
...
@@ -546,6 +581,20 @@ class FakeQuantizeRangeAbsMaxOpMaker
"the received is %d"
,
"the received is %d"
,
bit_length
));
bit_length
));
});
});
AddAttr
<
int
>
(
"round_type"
,
"(int, default 0) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3"
)
.
SetDefault
(
0
)
.
AddCustomChecker
([](
const
int
&
round_type
)
{
PADDLE_ENFORCE_EQ
(
round_type
>=
0
&&
round_type
<=
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'round_type' should be between 0 and 1, but "
"the received is %d"
,
round_type
));
});
AddAttr
<
bool
>
(
"is_test"
,
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
"for training. Some layers may run faster when this is true."
)
...
@@ -620,6 +669,20 @@ class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
...
@@ -620,6 +669,20 @@ class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
"the received is %d"
,
"the received is %d"
,
bit_length
));
bit_length
));
});
});
AddAttr
<
int
>
(
"round_type"
,
"(int, default 0) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3"
)
.
SetDefault
(
0
)
.
AddCustomChecker
([](
const
int
&
round_type
)
{
PADDLE_ENFORCE_EQ
(
round_type
>=
0
&&
round_type
<=
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'round_type' should be between 0 and 1, but "
"the received is %d"
,
round_type
));
});
AddAttr
<
bool
>
(
"is_test"
,
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
"for training. Some layers may run faster when this is true."
)
...
...
paddle/fluid/operators/fake_quantize_op.cu.h
浏览文件 @
75144f13
...
@@ -214,7 +214,8 @@ template struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, float>;
...
@@ -214,7 +214,8 @@ template struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, float>;
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ClipAndQuantKernel
(
const
T
*
in
,
const
T
*
scale
,
__global__
void
ClipAndQuantKernel
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
T
*
out
)
{
const
int
bin_cnt
,
const
int
round_type
,
const
int
n
,
T
*
out
)
{
int
bid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
int
bid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
int
tid
=
threadIdx
.
x
;
int
tid
=
threadIdx
.
x
;
...
@@ -226,16 +227,24 @@ __global__ void ClipAndQuantKernel(const T* in, const T* scale,
...
@@ -226,16 +227,24 @@ __global__ void ClipAndQuantKernel(const T* in, const T* scale,
for
(
int
i
=
bid
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(
int
i
=
bid
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
ComputeDataType
x
=
static_cast
<
ComputeDataType
>
(
in
[
i
]);
ComputeDataType
x
=
static_cast
<
ComputeDataType
>
(
in
[
i
]);
ComputeDataType
v
=
x
>
s
?
s
:
x
;
x
=
bin_cnt_t
*
inv_s
*
x
;
v
=
v
<
-
s
?
-
s
:
v
;
if
(
round_type
==
0
)
{
v
=
bin_cnt_t
*
inv_s
*
v
;
x
=
roundWithTiesToEven
(
x
);
out
[
i
]
=
static_cast
<
T
>
(
round
(
v
));
}
else
{
x
=
round
(
x
);
}
ComputeDataType
max_bound
=
bin_cnt_t
;
ComputeDataType
min_bound
=
-
bin_cnt_t
-
static_cast
<
ComputeDataType
>
(
1
);
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
out
[
i
]
=
static_cast
<
T
>
(
x
);
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ClipAndQuantDequantKernel
(
const
T
*
in
,
const
T
*
scale
,
__global__
void
ClipAndQuantDequantKernel
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
const
int
bin_cnt
,
const
int
round_type
,
const
int
n
,
T
*
out
)
{
T
*
out
)
{
int
bid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
int
bid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
int
tid
=
threadIdx
.
x
;
int
tid
=
threadIdx
.
x
;
...
@@ -248,10 +257,16 @@ __global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
...
@@ -248,10 +257,16 @@ __global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
for
(
int
i
=
bid
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(
int
i
=
bid
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
ComputeDataType
x
=
static_cast
<
ComputeDataType
>
(
in
[
i
]);
ComputeDataType
x
=
static_cast
<
ComputeDataType
>
(
in
[
i
]);
x
=
x
>
s
?
s
:
x
;
x
=
x
<
-
s
?
-
s
:
x
;
x
=
bin_cnt_t
*
inv_s
*
x
;
x
=
bin_cnt_t
*
inv_s
*
x
;
if
(
round_type
==
0
)
{
x
=
roundWithTiesToEven
(
x
);
}
else
{
x
=
round
(
x
);
x
=
round
(
x
);
}
ComputeDataType
max_bound
=
bin_cnt_t
;
ComputeDataType
min_bound
=
-
bin_cnt_t
-
static_cast
<
ComputeDataType
>
(
1
);
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
out
[
i
]
=
static_cast
<
T
>
((
x
*
s
)
/
bin_cnt_t
);
out
[
i
]
=
static_cast
<
T
>
((
x
*
s
)
/
bin_cnt_t
);
}
}
}
}
...
@@ -260,7 +275,8 @@ template <typename T>
...
@@ -260,7 +275,8 @@ template <typename T>
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
)
{
const
int
bin_cnt
,
const
int
round_type
,
framework
::
Tensor
*
out
)
{
int
num
=
in
.
numel
();
int
num
=
in
.
numel
();
int
block
=
1024
;
int
block
=
1024
;
int
grid
=
(
block
-
1
+
num
)
/
block
;
int
grid
=
(
block
-
1
+
num
)
/
block
;
...
@@ -270,7 +286,7 @@ struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
...
@@ -270,7 +286,7 @@ struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ClipAndQuantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
ClipAndQuantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
out_data
);
in_data
,
scale_data
,
bin_cnt
,
round_type
,
num
,
out_data
);
}
}
};
};
...
@@ -280,7 +296,8 @@ template <typename T>
...
@@ -280,7 +296,8 @@ template <typename T>
struct
ClipAndFakeQuantDequantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
struct
ClipAndFakeQuantDequantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
)
{
const
int
bin_cnt
,
const
int
round_type
,
framework
::
Tensor
*
out
)
{
int
num
=
in
.
numel
();
int
num
=
in
.
numel
();
int
block
=
1024
;
int
block
=
1024
;
int
grid
=
(
block
-
1
+
num
)
/
block
;
int
grid
=
(
block
-
1
+
num
)
/
block
;
...
@@ -290,7 +307,7 @@ struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
...
@@ -290,7 +307,7 @@ struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ClipAndQuantDequantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
ClipAndQuantDequantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
out_data
);
in_data
,
scale_data
,
bin_cnt
,
round_type
,
num
,
out_data
);
}
}
};
};
...
@@ -298,6 +315,7 @@ struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
...
@@ -298,6 +315,7 @@ struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ChannelClipAndQuantKernelQuantAxis0
(
const
T
*
in
,
const
T
*
scale
,
__global__
void
ChannelClipAndQuantKernelQuantAxis0
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
bin_cnt
,
const
int
round_type
,
const
int64_t
n
,
const
int64_t
n
,
const
int
c
,
T
*
out
)
{
const
int
c
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
tid
=
threadIdx
.
x
;
...
@@ -314,18 +332,25 @@ __global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
...
@@ -314,18 +332,25 @@ __global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
for
(
int64_t
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
for
(
int64_t
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
ComputeDataType
x
=
static_cast
<
ComputeDataType
>
(
in_c
[
i
]);
ComputeDataType
x
=
static_cast
<
ComputeDataType
>
(
in_c
[
i
]);
ComputeDataType
v
=
x
>
s
?
s
:
x
;
x
=
bin_cnt_t
*
inv_s
*
x
;
v
=
v
<
-
s
?
-
s
:
v
;
if
(
round_type
==
0
)
{
v
=
bin_cnt_t
*
inv_s
*
v
;
x
=
roundWithTiesToEven
(
x
);
out_c
[
i
]
=
static_cast
<
T
>
(
round
(
v
));
}
else
{
x
=
round
(
x
);
}
ComputeDataType
max_bound
=
bin_cnt_t
;
ComputeDataType
min_bound
=
-
bin_cnt_t
-
static_cast
<
ComputeDataType
>
(
1
);
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
out_c
[
i
]
=
static_cast
<
T
>
(
x
);
}
}
}
}
// ChannelClipAndQuantKernel for quant_axis is N
// ChannelClipAndQuantKernel for quant_axis is N
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ChannelClipAndQuantKernelQuantAxisN
(
__global__
void
ChannelClipAndQuantKernelQuantAxisN
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
64_t
n
,
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
round_type
,
const
int
nScale
,
const
int
quant_stride
,
T
*
out
)
{
const
int
64_t
n
,
const
int
nScale
,
const
int
quant_stride
,
T
*
out
)
{
int64_t
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int64_t
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
using
ComputeDataType
=
typename
QuantizeDataType
<
T
>::
type
;
using
ComputeDataType
=
typename
QuantizeDataType
<
T
>::
type
;
ComputeDataType
bin_cnt_t
=
static_cast
<
ComputeDataType
>
(
bin_cnt
);
ComputeDataType
bin_cnt_t
=
static_cast
<
ComputeDataType
>
(
bin_cnt
);
...
@@ -334,10 +359,17 @@ __global__ void ChannelClipAndQuantKernelQuantAxisN(
...
@@ -334,10 +359,17 @@ __global__ void ChannelClipAndQuantKernelQuantAxisN(
static_cast
<
ComputeDataType
>
(
scale
[(
i
/
quant_stride
)
%
nScale
]);
static_cast
<
ComputeDataType
>
(
scale
[(
i
/
quant_stride
)
%
nScale
]);
ComputeDataType
inv_s
=
inverse
(
s
);
ComputeDataType
inv_s
=
inverse
(
s
);
ComputeDataType
x
=
static_cast
<
ComputeDataType
>
(
in
[
i
]);
ComputeDataType
x
=
static_cast
<
ComputeDataType
>
(
in
[
i
]);
ComputeDataType
v
=
x
>
s
?
s
:
x
;
x
=
bin_cnt_t
*
inv_s
*
x
;
v
=
v
<
-
s
?
-
s
:
v
;
if
(
round_type
==
0
)
{
v
=
bin_cnt_t
*
inv_s
*
v
;
x
=
roundWithTiesToEven
(
x
);
out
[
i
]
=
static_cast
<
T
>
(
round
(
v
));
}
else
{
x
=
round
(
x
);
}
ComputeDataType
max_bound
=
bin_cnt_t
;
ComputeDataType
min_bound
=
-
bin_cnt_t
-
static_cast
<
ComputeDataType
>
(
1
);
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
out
[
i
]
=
static_cast
<
T
>
(
x
);
}
}
}
}
...
@@ -345,7 +377,7 @@ template <typename T>
...
@@ -345,7 +377,7 @@ template <typename T>
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
quant_axis
,
const
int
bin_cnt
,
const
int
round_type
,
const
int
quant_axis
,
framework
::
Tensor
*
out
)
{
framework
::
Tensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
quant_axis
==
0
||
quant_axis
==
1
,
true
,
quant_axis
==
0
||
quant_axis
==
1
,
true
,
...
@@ -363,7 +395,7 @@ struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
...
@@ -363,7 +395,7 @@ struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
int
grid
=
in_dims
[
0
];
int
grid
=
in_dims
[
0
];
int
block
=
1024
;
int
block
=
1024
;
ChannelClipAndQuantKernelQuantAxis0
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
ChannelClipAndQuantKernelQuantAxis0
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
in_dims
[
0
],
out_data
);
in_data
,
scale_data
,
bin_cnt
,
round_type
,
num
,
in_dims
[
0
],
out_data
);
}
else
{
}
else
{
int
quant_stride
=
1
;
int
quant_stride
=
1
;
for
(
int
i
=
quant_axis
+
1
;
i
<
in_dims
.
size
();
i
++
)
{
for
(
int
i
=
quant_axis
+
1
;
i
<
in_dims
.
size
();
i
++
)
{
...
@@ -380,8 +412,8 @@ struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
...
@@ -380,8 +412,8 @@ struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
std
::
min
(
max_blocks
,
(
num
+
block_size
-
1
)
/
block_size
);
std
::
min
(
max_blocks
,
(
num
+
block_size
-
1
)
/
block_size
);
ChannelClipAndQuantKernelQuantAxisN
<
T
><<<
grid_size
,
block_size
>>>
(
ChannelClipAndQuantKernelQuantAxisN
<
T
><<<
grid_size
,
block_size
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
in_dims
[
quant_axis
],
quant_stride
,
in_data
,
scale_data
,
bin_cnt
,
round_type
,
num
,
in_dims
[
quant_axis
]
,
out_data
);
quant_stride
,
out_data
);
}
}
}
}
};
};
...
@@ -485,8 +517,8 @@ struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
...
@@ -485,8 +517,8 @@ struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
// ChannelClipAndQuantDequantKernel for quant_axis is 0
// ChannelClipAndQuantDequantKernel for quant_axis is 0
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ChannelClipAndQuantDequantKernelQuantAxis0
(
__global__
void
ChannelClipAndQuantDequantKernelQuantAxis0
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
const
int
c
,
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
round_type
,
T
*
out
)
{
const
int
n
,
const
int
c
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
tid
=
threadIdx
.
x
;
int
channel_size
=
n
/
c
;
int
channel_size
=
n
/
c
;
...
@@ -498,18 +530,25 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis0(
...
@@ -498,18 +530,25 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis0(
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in_c
[
i
];
T
x
=
in_c
[
i
];
T
v
=
x
>
s
?
s
:
x
;
x
=
bin_cnt
*
inv_s
*
x
;
v
=
v
<
-
s
?
-
s
:
v
;
if
(
round_type
==
0
)
{
v
=
bin_cnt
*
inv_s
*
v
;
x
=
roundWithTiesToEven
(
x
);
out_c
[
i
]
=
round
(
v
)
*
s
/
bin_cnt
;
}
else
{
x
=
round
(
x
);
}
T
max_bound
=
bin_cnt
;
T
min_bound
=
-
bin_cnt
-
static_cast
<
T
>
(
1
);
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
out_c
[
i
]
=
(
x
*
s
)
/
bin_cnt
;
}
}
}
}
// ChannelClipAndQuantDequantKernel for quant_axis is 1
// ChannelClipAndQuantDequantKernel for quant_axis is 1
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ChannelClipAndQuantDequantKernelQuantAxis1
(
__global__
void
ChannelClipAndQuantDequantKernelQuantAxis1
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
const
int
cin
,
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
round_type
,
const
int
cout
,
T
*
out
)
{
const
int
n
,
const
int
cin
,
const
int
cout
,
T
*
out
)
{
T
s
=
scale
[
blockIdx
.
x
%
cout
];
T
s
=
scale
[
blockIdx
.
x
%
cout
];
T
inv_s
=
inverse
(
s
);
T
inv_s
=
inverse
(
s
);
...
@@ -519,10 +558,17 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis1(
...
@@ -519,10 +558,17 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis1(
for
(
int
i
=
threadIdx
.
x
;
i
<
wh_size
;
i
+=
blockDim
.
x
)
{
for
(
int
i
=
threadIdx
.
x
;
i
<
wh_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in_c
[
i
];
T
x
=
in_c
[
i
];
T
v
=
x
>
s
?
s
:
x
;
x
=
bin_cnt
*
inv_s
*
x
;
v
=
v
<
-
s
?
-
s
:
v
;
if
(
round_type
==
0
)
{
v
=
bin_cnt
*
inv_s
*
v
;
x
=
roundWithTiesToEven
(
x
);
out_c
[
i
]
=
round
(
v
)
*
s
/
bin_cnt
;
}
else
{
x
=
round
(
x
);
}
T
max_bound
=
bin_cnt
;
T
min_bound
=
-
bin_cnt
-
static_cast
<
T
>
(
1
);
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
out_c
[
i
]
=
(
x
*
s
)
/
bin_cnt
;
}
}
}
}
...
@@ -530,7 +576,7 @@ template <typename T>
...
@@ -530,7 +576,7 @@ template <typename T>
struct
ChannelClipFakeQuantDequantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
struct
ChannelClipFakeQuantDequantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
quant_axis
,
const
int
bin_cnt
,
const
int
round_type
,
const
int
quant_axis
,
framework
::
Tensor
*
out
)
{
framework
::
Tensor
*
out
)
{
// At present, channelwise quantization supports conv2d, depthwise_conv2d
// At present, channelwise quantization supports conv2d, depthwise_conv2d
// conv2d_transpose and mul
// conv2d_transpose and mul
...
@@ -551,15 +597,17 @@ struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
...
@@ -551,15 +597,17 @@ struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
int
grid
=
in_dims
[
0
];
int
grid
=
in_dims
[
0
];
int
block
=
1024
;
int
block
=
1024
;
ChannelClipAndQuantDequantKernelQuantAxis0
<
T
>
ChannelClipAndQuantDequantKernelQuantAxis0
<
T
>
<<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
<<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
in_dims
[
0
],
out_data
);
round_type
,
num
,
in_dims
[
0
],
out_data
);
}
else
if
(
quant_axis
==
1
)
{
}
else
if
(
quant_axis
==
1
)
{
int
grid
=
in_dims
[
0
]
*
in_dims
[
1
];
int
grid
=
in_dims
[
0
]
*
in_dims
[
1
];
int
block
=
1024
;
int
block
=
1024
;
ChannelClipAndQuantDequantKernelQuantAxis1
<
T
>
ChannelClipAndQuantDequantKernelQuantAxis1
<
T
>
<<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
<<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
in_dims
[
0
],
in_dims
[
1
],
out_data
);
round_type
,
num
,
in_dims
[
0
],
in_dims
[
1
],
out_data
);
}
}
}
}
};
};
...
...
paddle/fluid/operators/fake_quantize_op.h
浏览文件 @
75144f13
...
@@ -34,6 +34,46 @@ inline HOSTDEVICE T inverse(T s) {
...
@@ -34,6 +34,46 @@ inline HOSTDEVICE T inverse(T s) {
return
s
<=
static_cast
<
T
>
(
1e-30
)
?
one
/
(
s
+
eps
)
:
one
/
s
;
return
s
<=
static_cast
<
T
>
(
1e-30
)
?
one
/
(
s
+
eps
)
:
one
/
s
;
}
}
template
<
typename
T
>
inline
HOSTDEVICE
T
roundWithTiesToEven
(
T
x
)
{
T
xLower
=
floor
(
x
);
T
xUpper
=
ceil
(
x
);
// x is in interval [xl,xu]. Choose closest of two bounds, breaking ties to
// even.
T
dLower
=
x
-
xLower
;
T
dUpper
=
xUpper
-
x
;
return
static_cast
<
T
>
(
(
dLower
==
dUpper
?
fmod
(
xLower
,
2.0
F
)
==
0.0
F
:
dLower
<
dUpper
)
?
xLower
:
xUpper
);
}
template
<
typename
T
>
class
QuantTensorFunctor
{
public:
explicit
QuantTensorFunctor
(
const
T
bin_cnt
,
const
int
round_type
,
const
T
inv_s
)
:
bin_cnt_
(
bin_cnt
),
round_type_
(
round_type
),
inv_s_
(
inv_s
)
{}
HOSTDEVICE
T
operator
()(
const
T
x
)
const
{
T
out
=
bin_cnt_
*
inv_s_
*
x
;
if
(
round_type_
==
0
)
{
out
=
roundWithTiesToEven
(
out
);
}
else
if
(
round_type_
==
1
)
{
out
=
std
::
round
(
out
);
}
T
max_bound
=
bin_cnt_
;
T
min_bound
=
-
bin_cnt_
-
static_cast
<
T
>
(
1
);
out
=
out
>
max_bound
?
max_bound
:
out
;
out
=
out
<
min_bound
?
min_bound
:
out
;
return
out
;
}
private:
T
bin_cnt_
;
int
round_type_
;
T
inv_s_
;
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
FindAbsMaxFunctor
{
struct
FindAbsMaxFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
T
*
in
,
const
int
num
,
T
*
out
);
void
operator
()(
const
DeviceContext
&
ctx
,
const
T
*
in
,
const
int
num
,
T
*
out
);
...
@@ -43,14 +83,14 @@ template <typename DeviceContext, typename T>
...
@@ -43,14 +83,14 @@ template <typename DeviceContext, typename T>
struct
ClipAndFakeQuantFunctor
{
struct
ClipAndFakeQuantFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
);
const
int
round_type
,
framework
::
Tensor
*
out
);
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
ClipAndFakeQuantDequantFunctor
{
struct
ClipAndFakeQuantDequantFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
);
int
round_type
,
framework
::
Tensor
*
out
);
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
...
@@ -71,14 +111,15 @@ template <typename DeviceContext, typename T>
...
@@ -71,14 +111,15 @@ template <typename DeviceContext, typename T>
struct
ChannelClipAndFakeQuantFunctor
{
struct
ChannelClipAndFakeQuantFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
quant_axis
,
framework
::
Tensor
*
out
);
const
int
round_type
,
const
int
quant_axis
,
framework
::
Tensor
*
out
);
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
ChannelClipFakeQuantDequantFunctor
{
struct
ChannelClipFakeQuantDequantFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
quant_axis
,
framework
::
Tensor
*
out
);
int
round_type
,
const
int
quant_axis
,
framework
::
Tensor
*
out
);
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
...
@@ -100,12 +141,13 @@ class FakeAbsMaxKernelBase : public framework::OpKernel<T> {
...
@@ -100,12 +141,13 @@ class FakeAbsMaxKernelBase : public framework::OpKernel<T> {
T
*
out_s
=
out_scale
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
out_s
=
out_scale
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
round_type
=
context
.
Attr
<
int
>
(
"round_type"
);
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
const
T
*
in_data
=
in
->
data
<
T
>
();
const
T
*
in_data
=
in
->
data
<
T
>
();
FindAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in_data
,
in
->
numel
(),
out_s
);
FindAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in_data
,
in
->
numel
(),
out_s
);
RunClipFunctor
(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
out
);
RunClipFunctor
(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
round_type
,
out
);
}
}
virtual
~
FakeAbsMaxKernelBase
()
=
default
;
virtual
~
FakeAbsMaxKernelBase
()
=
default
;
...
@@ -114,7 +156,7 @@ class FakeAbsMaxKernelBase : public framework::OpKernel<T> {
...
@@ -114,7 +156,7 @@ class FakeAbsMaxKernelBase : public framework::OpKernel<T> {
virtual
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
virtual
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
int
bin_cnt
,
const
framework
::
Tensor
&
scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
=
0
;
int
round_type
,
framework
::
Tensor
*
out
)
const
=
0
;
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
...
@@ -122,9 +164,9 @@ class FakeQuantizeAbsMaxKernel : public FakeAbsMaxKernelBase<DeviceContext, T> {
...
@@ -122,9 +164,9 @@ class FakeQuantizeAbsMaxKernel : public FakeAbsMaxKernelBase<DeviceContext, T> {
protected:
protected:
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
int
bin_cnt
,
const
framework
::
Tensor
&
scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
override
{
int
round_type
,
framework
::
Tensor
*
out
)
const
override
{
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
scale
,
bin_cnt
,
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
scale
,
bin_cnt
,
out
);
round_type
,
out
);
}
}
};
};
...
@@ -134,9 +176,9 @@ class FakeQuantizeDequantizeAbsMaxKernel
...
@@ -134,9 +176,9 @@ class FakeQuantizeDequantizeAbsMaxKernel
protected:
protected:
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
int
bin_cnt
,
const
framework
::
Tensor
&
scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
override
{
int
round_type
,
framework
::
Tensor
*
out
)
const
override
{
ClipAndFakeQuantDequantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
scale
,
ClipAndFakeQuantDequantFunctor
<
DeviceContext
,
T
>
()(
bin_cnt
,
out
);
dev_ctx
,
in
,
scale
,
bin_cnt
,
round_type
,
out
);
}
}
};
};
...
@@ -151,6 +193,7 @@ class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
...
@@ -151,6 +193,7 @@ class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
round_type
=
context
.
Attr
<
int
>
(
"round_type"
);
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
int
quant_axis
=
context
.
Attr
<
int
>
(
"quant_axis"
);
int
quant_axis
=
context
.
Attr
<
int
>
(
"quant_axis"
);
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
...
@@ -162,7 +205,7 @@ class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
...
@@ -162,7 +205,7 @@ class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
out_scale_data
);
out_scale_data
);
}
}
ChannelClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
ChannelClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
quant_axis
,
out
);
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
round_type
,
quant_axis
,
out
);
}
}
};
};
...
@@ -179,6 +222,7 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxKernel
...
@@ -179,6 +222,7 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxKernel
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
round_type
=
context
.
Attr
<
int
>
(
"round_type"
);
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
int
quant_axis
=
context
.
Attr
<
int
>
(
"quant_axis"
);
int
quant_axis
=
context
.
Attr
<
int
>
(
"quant_axis"
);
...
@@ -186,7 +230,7 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxKernel
...
@@ -186,7 +230,7 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxKernel
out_scale_data
);
out_scale_data
);
ChannelClipFakeQuantDequantFunctor
<
DeviceContext
,
T
>
()(
ChannelClipFakeQuantDequantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
quant_axis
,
out
);
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
round_type
,
quant_axis
,
out
);
}
}
};
};
...
@@ -202,13 +246,14 @@ class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
...
@@ -202,13 +246,14 @@ class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
round_type
=
context
.
Attr
<
int
>
(
"round_type"
);
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
// testing
// testing
if
(
is_test
)
{
if
(
is_test
)
{
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
in_scale
,
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
in_scale
,
bin_cnt
,
out
);
bin_cnt
,
round_type
,
out
);
return
;
return
;
}
}
...
@@ -228,7 +273,7 @@ class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
...
@@ -228,7 +273,7 @@ class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
*
iter
,
window_size
,
out_scales
,
*
iter
,
window_size
,
out_scales
,
out_scale
);
out_scale
);
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
out
);
bin_cnt
,
round_type
,
out
);
}
}
};
};
...
@@ -243,12 +288,13 @@ class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
...
@@ -243,12 +288,13 @@ class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
round_type
=
context
.
Attr
<
int
>
(
"round_type"
);
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
// testing
// testing
if
(
is_test
)
{
if
(
is_test
)
{
RunClipFunctor
(
dev_ctx
,
*
in
,
*
in_scale
,
bin_cnt
,
out
);
RunClipFunctor
(
dev_ctx
,
*
in
,
*
in_scale
,
bin_cnt
,
round_type
,
out
);
return
;
return
;
}
}
...
@@ -273,7 +319,7 @@ class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
...
@@ -273,7 +319,7 @@ class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
dev_ctx
,
*
in_accum
,
*
in_state
,
cur_scale_data
,
moving_rate
,
out_state
,
dev_ctx
,
*
in_accum
,
*
in_state
,
cur_scale_data
,
moving_rate
,
out_state
,
out_accum
,
out_scale
);
out_accum
,
out_scale
);
RunClipFunctor
(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
out
);
RunClipFunctor
(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
round_type
,
out
);
}
}
virtual
~
FakeMovingAverageAbsMaxKernelBase
()
=
default
;
virtual
~
FakeMovingAverageAbsMaxKernelBase
()
=
default
;
...
@@ -282,7 +328,7 @@ class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
...
@@ -282,7 +328,7 @@ class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
virtual
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
virtual
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
=
0
;
int
round_type
,
framework
::
Tensor
*
out
)
const
=
0
;
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
...
@@ -291,9 +337,9 @@ class FakeQuantizeMovingAverageAbsMaxKernel
...
@@ -291,9 +337,9 @@ class FakeQuantizeMovingAverageAbsMaxKernel
protected:
protected:
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
override
{
int
round_type
,
framework
::
Tensor
*
out
)
const
override
{
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
in_scale
,
bin_cnt
,
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
in_scale
,
bin_cnt
,
out
);
round_type
,
out
);
}
}
};
};
...
@@ -303,9 +349,9 @@ class FakeQuantizeDequantizeMovingAverageAbsMaxKernel
...
@@ -303,9 +349,9 @@ class FakeQuantizeDequantizeMovingAverageAbsMaxKernel
protected:
protected:
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
void
RunClipFunctor
(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
const
framework
::
Tensor
&
in_scale
,
int
bin_cnt
,
framework
::
Tensor
*
out
)
const
override
{
int
round_type
,
framework
::
Tensor
*
out
)
const
override
{
ClipAndFakeQuantDequantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
in_scale
,
ClipAndFakeQuantDequantFunctor
<
DeviceContext
,
T
>
()(
bin_cnt
,
out
);
dev_ctx
,
in
,
in_scale
,
bin_cnt
,
round_type
,
out
);
}
}
};
};
...
...
paddle/fluid/operators/quantize_linear_op.cc
浏览文件 @
75144f13
...
@@ -69,8 +69,6 @@ struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
...
@@ -69,8 +69,6 @@ struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
}
}
};
};
template
struct
DequantizeFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
DequantizeFunctor
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
ChannelDequantizeFunctorV2
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
ChannelDequantizeFunctorV2
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
ChannelDequantizeFunctorV2
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
ChannelDequantizeFunctorV2
<
platform
::
CPUDeviceContext
,
double
>;
...
@@ -135,6 +133,20 @@ class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -135,6 +133,20 @@ class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
"the received is %d"
,
"the received is %d"
,
bit_length
));
bit_length
));
});
});
AddAttr
<
int
>
(
"round_type"
,
"(int, default 0) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3"
)
.
SetDefault
(
0
)
.
AddCustomChecker
([](
const
int
&
round_type
)
{
PADDLE_ENFORCE_EQ
(
round_type
>=
0
&&
round_type
<=
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'round_type' should be between 0 and 1, but "
"the received is %d"
,
round_type
));
});
AddAttr
<
bool
>
(
"is_test"
,
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
"for training. Some layers may run faster when this is true."
)
...
...
paddle/fluid/operators/quantize_linear_op.h
浏览文件 @
75144f13
...
@@ -45,6 +45,7 @@ class QuantizeLinearKernel : public framework::OpKernel<T> {
...
@@ -45,6 +45,7 @@ class QuantizeLinearKernel : public framework::OpKernel<T> {
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
round_type
=
context
.
Attr
<
int
>
(
"round_type"
);
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
int
quant_axis
=
context
.
Attr
<
int
>
(
"quant_axis"
);
int
quant_axis
=
context
.
Attr
<
int
>
(
"quant_axis"
);
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
...
@@ -57,10 +58,10 @@ class QuantizeLinearKernel : public framework::OpKernel<T> {
...
@@ -57,10 +58,10 @@ class QuantizeLinearKernel : public framework::OpKernel<T> {
FindAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
->
data
<
T
>
(),
FindAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
->
data
<
T
>
(),
in
->
numel
(),
out_s
);
in
->
numel
(),
out_s
);
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
out
);
bin_cnt
,
round_type
,
out
);
}
else
{
}
else
{
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
in_scale
,
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
in_scale
,
bin_cnt
,
out
);
bin_cnt
,
round_type
,
out
);
}
}
}
else
{
}
else
{
if
(
!
is_test
)
{
if
(
!
is_test
)
{
...
@@ -69,10 +70,10 @@ class QuantizeLinearKernel : public framework::OpKernel<T> {
...
@@ -69,10 +70,10 @@ class QuantizeLinearKernel : public framework::OpKernel<T> {
FindChannelAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
quant_axis
,
FindChannelAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
quant_axis
,
out_scale_data
);
out_scale_data
);
ChannelClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
ChannelClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
quant_axis
,
out
);
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
round_type
,
quant_axis
,
out
);
}
else
{
}
else
{
ChannelClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
ChannelClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
in_scale
,
bin_cnt
,
quant_axis
,
out
);
dev_ctx
,
*
in
,
*
in_scale
,
bin_cnt
,
round_type
,
quant_axis
,
out
);
}
}
}
}
}
}
...
...
python/paddle/fluid/contrib/slim/quantization/adaround.py
浏览文件 @
75144f13
...
@@ -20,7 +20,7 @@ import logging
...
@@ -20,7 +20,7 @@ import logging
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
....log_helper
import
get_logger
from
....log_helper
import
get_logger
from
.utils
import
load_variable_data
,
set_variable_data
,
stable_sigmoid
,
quant_tensor
,
dequant_tensor
,
_channelwise_quant_axis1_ops
,
calculate_quant_cos_error
from
.utils
import
load_variable_data
,
set_variable_data
,
stable_sigmoid
,
quant_tensor
,
dequant_tensor
,
_channelwise_quant_axis1_ops
,
calculate_quant_cos_error
,
bias_correction_w
_logger
=
get_logger
(
__name__
,
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
logging
.
INFO
,
...
@@ -209,6 +209,7 @@ def run_adaround(data_loader,
...
@@ -209,6 +209,7 @@ def run_adaround(data_loader,
scale_dict
,
scale_dict
,
num_iterations
=
1000
,
num_iterations
=
1000
,
lr
=
0.001
,
lr
=
0.001
,
bias_correction
=
False
,
fast_mode
=
True
):
fast_mode
=
True
):
fetch_op_name
=
fetch_list
[
0
].
name
fetch_op_name
=
fetch_list
[
0
].
name
final_weight_tensor_quant_dict
=
{}
final_weight_tensor_quant_dict
=
{}
...
@@ -307,6 +308,15 @@ def run_adaround(data_loader,
...
@@ -307,6 +308,15 @@ def run_adaround(data_loader,
break
break
final_weight_tensor_quant_dict
[
final_weight_tensor_quant_dict
[
weight_var_name
]
=
adaround
.
update_final_weights
()
weight_var_name
]
=
adaround
.
update_final_weights
()
if
bias_correction
:
final_weight_tensor_quant_dict
[
weight_var_name
]
=
bias_correction_w
(
weight_var_tensor
,
final_weight_tensor_quant_dict
[
weight_var_name
],
scale
,
adaround
.
quant_axis
,
weight_bits
=
adaround
.
weight_bits
)
del
adaround
del
adaround
# update adarounded calibrated weights
# update adarounded calibrated weights
...
...
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
75144f13
...
@@ -121,7 +121,8 @@ class PostTrainingQuantization(object):
...
@@ -121,7 +121,8 @@ class PostTrainingQuantization(object):
algo
=
"KL"
,
algo
=
"KL"
,
hist_percent
=
0.99999
,
hist_percent
=
0.99999
,
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
],
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
],
round_type
=
'round'
,
weight_round_algo
=
'round'
,
round_type
=
'TiesToEven'
,
learning_rate
=
0.001
,
learning_rate
=
0.001
,
is_full_quantize
=
False
,
is_full_quantize
=
False
,
bias_correction
=
False
,
bias_correction
=
False
,
...
@@ -180,9 +181,14 @@ class PostTrainingQuantization(object):
...
@@ -180,9 +181,14 @@ class PostTrainingQuantization(object):
quantizable_op_type(list[str], optional): List the type of ops
quantizable_op_type(list[str], optional): List the type of ops
that will be quantized. Default is ["conv2d", "depthwise_conv2d",
that will be quantized. Default is ["conv2d", "depthwise_conv2d",
"mul"].
"mul"].
round_type
(str, optional): The method of converting the quantized weights
weight_round_algo
(str, optional): The method of converting the quantized weights
value float->int. Currently supports ['round', 'adaround'] methods.
value float->int. Currently supports ['round', 'adaround'] methods.
Default is `round`, which is rounding nearest to the nearest whole number.
Default is `round`, which is rounding nearest to the integer.
'adaround' is refer to https://arxiv.org/abs/2004.10568.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
learning_rate(float, optional): The learning rate of adaround method.
learning_rate(float, optional): The learning rate of adaround method.
is_full_quantized(bool, optional): If set is_full_quantized as True,
is_full_quantized(bool, optional): If set is_full_quantized as True,
apply quantization to all supported quantizable op type. If set
apply quantization to all supported quantizable op type. If set
...
@@ -263,8 +269,10 @@ class PostTrainingQuantization(object):
...
@@ -263,8 +269,10 @@ class PostTrainingQuantization(object):
self
.
_support_algo_type
=
[
self
.
_support_algo_type
=
[
'KL'
,
'hist'
,
'avg'
,
'mse'
,
'emd'
,
'abs_max'
,
'min_max'
'KL'
,
'hist'
,
'avg'
,
'mse'
,
'emd'
,
'abs_max'
,
'min_max'
]
]
assert
round_type
in
[
'
adaround'
,
'round
'
]
assert
round_type
in
[
'
TiesToEven'
,
'TiesAwayFromZero
'
]
self
.
_round_type
=
round_type
self
.
_round_type
=
round_type
assert
weight_round_algo
in
[
'adaround'
,
'round'
]
self
.
_weight_round_algo
=
weight_round_algo
self
.
_learning_rate
=
learning_rate
self
.
_learning_rate
=
learning_rate
self
.
_dynamic_quantize_op_type
=
[
'lstm'
]
self
.
_dynamic_quantize_op_type
=
[
'lstm'
]
self
.
_support_quantize_op_type
=
\
self
.
_support_quantize_op_type
=
\
...
@@ -406,7 +414,7 @@ class PostTrainingQuantization(object):
...
@@ -406,7 +414,7 @@ class PostTrainingQuantization(object):
if
self
.
_algo
in
[
"KL"
,
"hist"
]:
if
self
.
_algo
in
[
"KL"
,
"hist"
]:
self
.
_calculate_kl_hist_threshold
()
self
.
_calculate_kl_hist_threshold
()
if
self
.
_
round_type
==
'adaround'
:
if
self
.
_
weight_round_algo
==
'adaround'
:
self
.
_adaround_apply
()
self
.
_adaround_apply
()
self
.
_reset_activation_persistable
()
self
.
_reset_activation_persistable
()
...
@@ -459,6 +467,7 @@ class PostTrainingQuantization(object):
...
@@ -459,6 +467,7 @@ class PostTrainingQuantization(object):
self
.
_weight_op_pairs
,
self
.
_weight_op_pairs
,
scale_dict
,
scale_dict
,
num_iterations
=
self
.
_batch_nums
,
num_iterations
=
self
.
_batch_nums
,
bias_correction
=
self
.
_bias_correction
,
lr
=
self
.
_learning_rate
)
lr
=
self
.
_learning_rate
)
def
save_quantized_model
(
self
,
def
save_quantized_model
(
self
,
...
@@ -642,6 +651,7 @@ class PostTrainingQuantization(object):
...
@@ -642,6 +651,7 @@ class PostTrainingQuantization(object):
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_threshold
[
var_name
]
=
abs_max_value
self
.
_quantized_threshold
[
var_name
]
=
abs_max_value
_logger
.
info
(
"MSE searching stage ..."
)
_logger
.
info
(
"MSE searching stage ..."
)
distribution
=
np
.
round
if
self
.
_round_type
==
'TiesToEven'
else
utils
.
round_c
for
var_name
in
self
.
_quantized_act_var_name
:
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
utils
.
load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
utils
.
load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
var_tensor
.
flatten
()
var_tensor
=
var_tensor
.
flatten
()
...
@@ -654,9 +664,9 @@ class PostTrainingQuantization(object):
...
@@ -654,9 +664,9 @@ class PostTrainingQuantization(object):
scale
=
s
*
abs_max_value
scale
=
s
*
abs_max_value
s
+=
0.02
s
+=
0.02
bins
=
2
**
(
self
.
_activation_bits
-
1
)
-
1
bins
=
2
**
(
self
.
_activation_bits
-
1
)
-
1
quant_
dequant_var
=
np
.
round
(
quant_
var
=
np
.
clip
(
distribution
(
var_tensor
/
scale
*
bins
),
np
.
clip
(
var_tensor
,
0.0
,
scale
)
/
scale
*
-
bins
-
1
,
bins
)
bins
)
/
bins
*
scale
quant_dequant_var
=
quant_var
/
bins
*
scale
mse_loss
=
((
var_tensor
-
quant_dequant_var
)
**
2
).
mean
()
mse_loss
=
((
var_tensor
-
quant_dequant_var
)
**
2
).
mean
()
if
mse_loss
<=
self
.
_best_calibration_loss
[
var_name
]:
if
mse_loss
<=
self
.
_best_calibration_loss
[
var_name
]:
self
.
_best_calibration_loss
[
var_name
]
=
mse_loss
self
.
_best_calibration_loss
[
var_name
]
=
mse_loss
...
@@ -681,6 +691,7 @@ class PostTrainingQuantization(object):
...
@@ -681,6 +691,7 @@ class PostTrainingQuantization(object):
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_threshold
[
var_name
]
=
abs_max_value
self
.
_quantized_threshold
[
var_name
]
=
abs_max_value
_logger
.
info
(
"EMD searching stage ..."
)
_logger
.
info
(
"EMD searching stage ..."
)
distribution
=
np
.
round
if
self
.
_round_type
==
'TiesToEven'
else
utils
.
round_c
for
var_name
in
self
.
_quantized_act_var_name
:
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
utils
.
load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
utils
.
load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
var_tensor
.
flatten
()
var_tensor
=
var_tensor
.
flatten
()
...
@@ -693,9 +704,9 @@ class PostTrainingQuantization(object):
...
@@ -693,9 +704,9 @@ class PostTrainingQuantization(object):
scale
=
s
*
abs_max_value
scale
=
s
*
abs_max_value
s
+=
0.02
s
+=
0.02
bins
=
2
**
(
self
.
_activation_bits
-
1
)
-
1
bins
=
2
**
(
self
.
_activation_bits
-
1
)
-
1
quant_
dequant_var
=
np
.
round
(
quant_
var
=
np
.
clip
(
distribution
(
var_tensor
/
scale
*
bins
),
np
.
clip
(
var_tensor
,
0.0
,
scale
)
/
scale
*
-
bins
-
1
,
bins
)
bins
)
/
bins
*
scale
quant_dequant_var
=
quant_var
/
bins
*
scale
emd_loss
=
np
.
abs
(
emd_loss
=
np
.
abs
(
np
.
mean
(
var_tensor
)
-
np
.
mean
(
quant_dequant_var
))
+
np
.
abs
(
np
.
mean
(
var_tensor
)
-
np
.
mean
(
quant_dequant_var
))
+
np
.
abs
(
np
.
std
(
var_tensor
)
-
np
.
std
(
quant_dequant_var
))
np
.
std
(
var_tensor
)
-
np
.
std
(
quant_dequant_var
))
...
@@ -907,7 +918,8 @@ class PostTrainingQuantization(object):
...
@@ -907,7 +918,8 @@ class PostTrainingQuantization(object):
activation_bits
=
self
.
_activation_bits
,
activation_bits
=
self
.
_activation_bits
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
)
quantizable_op_type
=
major_quantizable_op_types
,
round_type
=
self
.
_round_type
)
else
:
else
:
transform_pass
=
QuantizationTransformPassV2
(
transform_pass
=
QuantizationTransformPassV2
(
scope
=
self
.
_scope
,
scope
=
self
.
_scope
,
...
@@ -916,7 +928,8 @@ class PostTrainingQuantization(object):
...
@@ -916,7 +928,8 @@ class PostTrainingQuantization(object):
activation_bits
=
self
.
_activation_bits
,
activation_bits
=
self
.
_activation_bits
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
)
quantizable_op_type
=
major_quantizable_op_types
,
round_type
=
self
.
_round_type
)
for
sub_graph
in
graph
.
all_sub_graphs
():
for
sub_graph
in
graph
.
all_sub_graphs
():
# Insert fake_quant/fake_dequantize op must in test graph, so
# Insert fake_quant/fake_dequantize op must in test graph, so
...
@@ -933,13 +946,15 @@ class PostTrainingQuantization(object):
...
@@ -933,13 +946,15 @@ class PostTrainingQuantization(object):
add_quant_dequant_pass
=
AddQuantDequantPass
(
add_quant_dequant_pass
=
AddQuantDequantPass
(
scope
=
self
.
_scope
,
scope
=
self
.
_scope
,
place
=
self
.
_place
,
place
=
self
.
_place
,
quantizable_op_type
=
minor_quantizable_op_types
)
quantizable_op_type
=
minor_quantizable_op_types
,
round_type
=
self
.
_round_type
)
else
:
else
:
add_quant_dequant_pass
=
AddQuantDequantPassV2
(
add_quant_dequant_pass
=
AddQuantDequantPassV2
(
scope
=
self
.
_scope
,
scope
=
self
.
_scope
,
place
=
self
.
_place
,
place
=
self
.
_place
,
quantizable_op_type
=
minor_quantizable_op_types
,
quantizable_op_type
=
minor_quantizable_op_types
,
is_full_quantized
=
self
.
_is_full_quantize
)
is_full_quantized
=
self
.
_is_full_quantize
,
round_type
=
self
.
_round_type
)
for
sub_graph
in
graph
.
all_sub_graphs
():
for
sub_graph
in
graph
.
all_sub_graphs
():
sub_graph
.
_for_test
=
True
sub_graph
.
_for_test
=
True
...
@@ -964,6 +979,7 @@ class PostTrainingQuantization(object):
...
@@ -964,6 +979,7 @@ class PostTrainingQuantization(object):
place
=
self
.
_place
,
place
=
self
.
_place
,
bias_correction
=
self
.
_bias_correction
,
bias_correction
=
self
.
_bias_correction
,
weight_bits
=
self
.
_weight_bits
,
weight_bits
=
self
.
_weight_bits
,
weight_round_algo
=
self
.
_weight_round_algo
,
round_type
=
self
.
_round_type
,
round_type
=
self
.
_round_type
,
activation_bits
=
self
.
_activation_bits
,
activation_bits
=
self
.
_activation_bits
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
75144f13
...
@@ -119,6 +119,7 @@ class QuantizationTransformPass(object):
...
@@ -119,6 +119,7 @@ class QuantizationTransformPass(object):
moving_rate
=
0.9
,
moving_rate
=
0.9
,
skip_pattern
=
[
'skip_quant'
],
skip_pattern
=
[
'skip_quant'
],
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
],
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
],
round_type
=
'TiesToEven'
,
weight_quantize_func
=
None
,
weight_quantize_func
=
None
,
act_quantize_func
=
None
,
act_quantize_func
=
None
,
weight_preprocess_func
=
None
,
weight_preprocess_func
=
None
,
...
@@ -156,6 +157,10 @@ class QuantizationTransformPass(object):
...
@@ -156,6 +157,10 @@ class QuantizationTransformPass(object):
quantizable_op_type(list[str]): List the type of ops that will be quantized.
quantizable_op_type(list[str]): List the type of ops that will be quantized.
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
weight_quantize_func(function): Function that defines how to quantize weight.
weight_quantize_func(function): Function that defines how to quantize weight.
Using this can quickly test if user's quantization method works or not.
Using this can quickly test if user's quantization method works or not.
In this function, user should both define quantization function and
In this function, user should both define quantization function and
...
@@ -206,6 +211,7 @@ class QuantizationTransformPass(object):
...
@@ -206,6 +211,7 @@ class QuantizationTransformPass(object):
self
.
_weight_bits
=
weight_bits
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_activation_bits
=
activation_bits
self
.
_skip_pattern
=
skip_pattern
self
.
_skip_pattern
=
skip_pattern
self
.
_round_type
=
round_type
self
.
_weight_quantize_func
=
weight_quantize_func
self
.
_weight_quantize_func
=
weight_quantize_func
self
.
_act_quantize_func
=
act_quantize_func
self
.
_act_quantize_func
=
act_quantize_func
self
.
_weight_preprocess_func
=
weight_preprocess_func
self
.
_weight_preprocess_func
=
weight_preprocess_func
...
@@ -459,10 +465,12 @@ class QuantizationTransformPass(object):
...
@@ -459,10 +465,12 @@ class QuantizationTransformPass(object):
_init_var_node
(
scale_var_node
,
_init_var_node
(
scale_var_node
,
np
.
zeros
(
scale_var_node
.
shape
(),
dtype
=
data_type
),
np
.
zeros
(
scale_var_node
.
shape
(),
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
self
.
_scope
,
self
.
_place
)
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
quant_op_node
=
graph
.
create_op_node
(
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_quantize_abs_max'
,
op_type
=
'fake_quantize_abs_max'
,
attrs
=
{
attrs
=
{
'bit_length'
:
quant_bits
,
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
},
inputs
=
{
'X'
:
var_node
},
inputs
=
{
'X'
:
var_node
},
...
@@ -517,9 +525,11 @@ class QuantizationTransformPass(object):
...
@@ -517,9 +525,11 @@ class QuantizationTransformPass(object):
inputs
[
'Iter'
]
=
self
.
_global_step
inputs
[
'Iter'
]
=
self
.
_global_step
outputs
[
'OutScales'
]
=
scales_node
outputs
[
'OutScales'
]
=
scales_node
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
attrs
=
{
attrs
=
{
'window_size'
:
self
.
_window_size
,
'window_size'
:
self
.
_window_size
,
'bit_length'
:
quant_bits
,
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'is_test'
:
self
.
_is_test
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
}
}
...
@@ -590,8 +600,10 @@ class QuantizationTransformPass(object):
...
@@ -590,8 +600,10 @@ class QuantizationTransformPass(object):
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutAccum'
]
=
accum_out_node
outs
[
'OutAccum'
]
=
accum_out_node
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
attrs
=
{
attrs
=
{
'bit_length'
:
quant_bits
,
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'moving_rate'
:
self
.
_moving_rate
,
'moving_rate'
:
self
.
_moving_rate
,
'is_test'
:
self
.
_is_test
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
...
@@ -638,10 +650,12 @@ class QuantizationTransformPass(object):
...
@@ -638,10 +650,12 @@ class QuantizationTransformPass(object):
_init_var_node
(
scale_var_node
,
_init_var_node
(
scale_var_node
,
np
.
zeros
(
scale_var_node
.
shape
(),
dtype
=
data_type
),
np
.
zeros
(
scale_var_node
.
shape
(),
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
self
.
_scope
,
self
.
_place
)
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
quant_op_node
=
graph
.
create_op_node
(
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_channel_wise_quantize_abs_max'
,
op_type
=
'fake_channel_wise_quantize_abs_max'
,
attrs
=
{
attrs
=
{
'bit_length'
:
quant_bits
,
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'quant_axis'
:
quant_axis
,
'quant_axis'
:
quant_axis
,
'is_test'
:
self
.
_is_test
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
...
@@ -935,7 +949,8 @@ class QuantizationFreezePass(object):
...
@@ -935,7 +949,8 @@ class QuantizationFreezePass(object):
bias_correction
=
False
,
bias_correction
=
False
,
weight_bits
=
8
,
weight_bits
=
8
,
activation_bits
=
8
,
activation_bits
=
8
,
round_type
=
'round'
,
weight_round_algo
=
'round'
,
round_type
=
'TiesToEven'
,
weight_quantize_type
=
'abs_max'
,
weight_quantize_type
=
'abs_max'
,
quantizable_op_type
=
None
):
quantizable_op_type
=
None
):
"""
"""
...
@@ -953,9 +968,14 @@ class QuantizationFreezePass(object):
...
@@ -953,9 +968,14 @@ class QuantizationFreezePass(object):
https://arxiv.org/abs/1810.05723.
https://arxiv.org/abs/1810.05723.
weight_bits(int): quantization bit number for weights.
weight_bits(int): quantization bit number for weights.
activation_bits(int): quantization bit number for activation.
activation_bits(int): quantization bit number for activation.
round_type(str, optional): The method of converting the quantized weights
weight_round_algo(str, optional): The method of converting the quantized weights
value from float to int. Currently supports ['round', 'adaround'] methods.
value float->int. Currently supports ['round', 'adaround'] methods.
Default is `round`, which is rounding nearest to the nearest whole number.
Default is `round`, which is rounding nearest to the integer.
'adaround' is refer to https://arxiv.org/abs/2004.10568.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
since weights are fixed once the model is well trained.
since weights are fixed once the model is well trained.
...
@@ -971,6 +991,7 @@ class QuantizationFreezePass(object):
...
@@ -971,6 +991,7 @@ class QuantizationFreezePass(object):
self
.
_place
=
_get_paddle_place
(
place
)
self
.
_place
=
_get_paddle_place
(
place
)
self
.
_weight_bits
=
weight_bits
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_activation_bits
=
activation_bits
self
.
_weight_round_algo
=
weight_round_algo
self
.
_round_type
=
round_type
self
.
_round_type
=
round_type
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_fake_quant_op_names
=
_fake_quant_op_list
self
.
_fake_quant_op_names
=
_fake_quant_op_list
...
@@ -1018,8 +1039,8 @@ class QuantizationFreezePass(object):
...
@@ -1018,8 +1039,8 @@ class QuantizationFreezePass(object):
scale_v
=
scale_v
.
tolist
()
scale_v
=
scale_v
.
tolist
()
self
.
_quant_var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_quant_var_scale_map
[
input_arg_name
]
=
scale_v
# Quantize weight and restore
# Quantize weight and restore
if
self
.
_weight_round_algo
==
'round'
:
param_v
=
self
.
_load_var
(
input_arg_name
)
param_v
=
self
.
_load_var
(
input_arg_name
)
if
self
.
_round_type
==
'round'
:
if
any
(
if
any
(
_check_grandchild_op_node
(
op_node
,
op
)
_check_grandchild_op_node
(
op_node
,
op
)
for
op
in
utils
.
_channelwise_quant_axis1_ops
):
for
op
in
utils
.
_channelwise_quant_axis1_ops
):
...
@@ -1028,8 +1049,8 @@ class QuantizationFreezePass(object):
...
@@ -1028,8 +1049,8 @@ class QuantizationFreezePass(object):
quant_axis
=
0
quant_axis
=
0
quantized_param_v
=
utils
.
quant_tensor
(
quantized_param_v
=
utils
.
quant_tensor
(
param_v
.
copy
(),
scale_v
,
quant_axis
,
param_v
.
copy
(),
scale_v
,
quant_axis
,
self
.
_weight_bits
)
self
.
_weight_bits
,
self
.
_round_type
)
quantized_param_v
=
np
.
round
(
quantized_param_v
)
# Weight bias correction
if
self
.
_bias_correction
==
True
:
if
self
.
_bias_correction
==
True
:
quantized_param_v
=
utils
.
bias_correction_w
(
quantized_param_v
=
utils
.
bias_correction_w
(
param_v
,
param_v
,
...
@@ -1037,7 +1058,6 @@ class QuantizationFreezePass(object):
...
@@ -1037,7 +1058,6 @@ class QuantizationFreezePass(object):
scale_v
,
scale_v
,
quant_axis
,
quant_axis
,
weight_bits
=
self
.
_weight_bits
)
weight_bits
=
self
.
_weight_bits
)
quantized_param_v
=
np
.
round
(
quantized_param_v
)
self
.
_restore_var
(
input_arg_name
,
quantized_param_v
)
self
.
_restore_var
(
input_arg_name
,
quantized_param_v
)
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
...
@@ -1580,7 +1600,8 @@ class AddQuantDequantPass(object):
...
@@ -1580,7 +1600,8 @@ class AddQuantDequantPass(object):
quant_bits
=
8
,
quant_bits
=
8
,
skip_pattern
=
[
"skip_quant"
],
skip_pattern
=
[
"skip_quant"
],
quantizable_op_type
=
[
"elementwise_add"
,
"pool2d"
],
quantizable_op_type
=
[
"elementwise_add"
,
"pool2d"
],
is_full_quantized
=
False
):
is_full_quantized
=
False
,
round_type
=
'TiesToEven'
):
"""
"""
Constructor.
Constructor.
...
@@ -1602,6 +1623,10 @@ class AddQuantDequantPass(object):
...
@@ -1602,6 +1623,10 @@ class AddQuantDequantPass(object):
quantization to all supported quantizable op type. If set is_full_quantized
quantization to all supported quantizable op type. If set is_full_quantized
as False, only apply quantization to the op type according to the input
as False, only apply quantization to the op type according to the input
quantizable_op_type.
quantizable_op_type.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
"""
"""
self
.
_scope
=
scope
self
.
_scope
=
scope
self
.
_place
=
_get_paddle_place
(
place
)
self
.
_place
=
_get_paddle_place
(
place
)
...
@@ -1609,6 +1634,7 @@ class AddQuantDequantPass(object):
...
@@ -1609,6 +1634,7 @@ class AddQuantDequantPass(object):
self
.
_quant_bits
=
quant_bits
self
.
_quant_bits
=
quant_bits
self
.
_is_test
=
None
self
.
_is_test
=
None
self
.
_skip_pattern
=
skip_pattern
self
.
_skip_pattern
=
skip_pattern
self
.
_round_type
=
round_type
if
is_full_quantized
:
if
is_full_quantized
:
self
.
_quantizable_op_type
=
utils
.
_act_supported_quantizable_op_type
self
.
_quantizable_op_type
=
utils
.
_act_supported_quantizable_op_type
...
@@ -1743,8 +1769,10 @@ class AddQuantDequantPass(object):
...
@@ -1743,8 +1769,10 @@ class AddQuantDequantPass(object):
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutAccum'
]
=
accum_out_node
outs
[
'OutAccum'
]
=
accum_out_node
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
attrs
=
{
attrs
=
{
'bit_length'
:
quant_bits
,
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'moving_rate'
:
self
.
_moving_rate
,
'moving_rate'
:
self
.
_moving_rate
,
'is_test'
:
self
.
_is_test
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
...
@@ -1784,6 +1812,10 @@ class InsertQuantizeLinear(object):
...
@@ -1784,6 +1812,10 @@ class InsertQuantizeLinear(object):
Default is -1.
Default is -1.
channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
is_test(bool, optional): Whether quantization with training or not. Default is True.
is_test(bool, optional): Whether quantization with training or not. Default is True.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
"""
"""
def
__init__
(
self
,
def
__init__
(
self
,
...
@@ -1792,13 +1824,15 @@ class InsertQuantizeLinear(object):
...
@@ -1792,13 +1824,15 @@ class InsertQuantizeLinear(object):
quant_bits
=
8
,
quant_bits
=
8
,
quant_axis
=-
1
,
quant_axis
=-
1
,
channel_wise
=
False
,
channel_wise
=
False
,
is_test
=
True
):
is_test
=
True
,
round_type
=
'TiesToEven'
):
self
.
_place
=
place
self
.
_place
=
place
self
.
_scope
=
scope
self
.
_scope
=
scope
self
.
quant_bits
=
quant_bits
self
.
quant_bits
=
quant_bits
self
.
quant_axis
=
quant_axis
self
.
quant_axis
=
quant_axis
self
.
channel_wise
=
channel_wise
self
.
channel_wise
=
channel_wise
self
.
_is_test
=
is_test
self
.
_is_test
=
is_test
self
.
_round_type
=
round_type
def
insert_quant_op
(
self
,
graph
,
var_node
):
def
insert_quant_op
(
self
,
graph
,
var_node
):
assert
var_node
.
is_var
(),
'{} is not a var'
.
format
(
var_node
.
name
())
assert
var_node
.
is_var
(),
'{} is not a var'
.
format
(
var_node
.
name
())
...
@@ -1841,7 +1875,12 @@ class InsertQuantizeLinear(object):
...
@@ -1841,7 +1875,12 @@ class InsertQuantizeLinear(object):
if
zero_point_node
is
not
None
:
if
zero_point_node
is
not
None
:
inputs
[
"ZeroPoint"
]
=
zero_point_node
inputs
[
"ZeroPoint"
]
=
zero_point_node
attrs
=
{
"quant_axis"
:
self
.
quant_axis
,
"bit_length"
:
self
.
quant_bits
}
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
attrs
=
{
"quant_axis"
:
self
.
quant_axis
,
"bit_length"
:
self
.
quant_bits
,
"round_type"
:
round_type
}
outputs
=
{
"Y"
:
quant_var_node
}
outputs
=
{
"Y"
:
quant_var_node
}
if
not
self
.
_is_test
:
if
not
self
.
_is_test
:
attrs
[
"is_test"
]
=
self
.
_is_test
attrs
[
"is_test"
]
=
self
.
_is_test
...
@@ -1946,6 +1985,7 @@ class QuantizationTransformPassV2(object):
...
@@ -1946,6 +1985,7 @@ class QuantizationTransformPassV2(object):
moving_rate
=
0.9
,
moving_rate
=
0.9
,
skip_pattern
=
[
'skip_quant'
],
skip_pattern
=
[
'skip_quant'
],
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
],
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
],
round_type
=
'TiesToEven'
,
weight_quantize_func
=
None
,
weight_quantize_func
=
None
,
act_quantize_func
=
None
,
act_quantize_func
=
None
,
weight_preprocess_func
=
None
,
weight_preprocess_func
=
None
,
...
@@ -1981,6 +2021,10 @@ class QuantizationTransformPassV2(object):
...
@@ -1981,6 +2021,10 @@ class QuantizationTransformPassV2(object):
quantizable_op_type(list[str]): List the type of ops that will be quantized.
quantizable_op_type(list[str]): List the type of ops that will be quantized.
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
weight_quantize_func(function): Function that defines how to quantize weight.
weight_quantize_func(function): Function that defines how to quantize weight.
Using this can quickly test if user's quantization method works or not.
Using this can quickly test if user's quantization method works or not.
In this function, user should both define quantization function and
In this function, user should both define quantization function and
...
@@ -2030,6 +2074,7 @@ class QuantizationTransformPassV2(object):
...
@@ -2030,6 +2074,7 @@ class QuantizationTransformPassV2(object):
self
.
_weight_bits
=
weight_bits
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_activation_bits
=
activation_bits
self
.
_skip_pattern
=
skip_pattern
self
.
_skip_pattern
=
skip_pattern
self
.
_round_type
=
round_type
self
.
_weight_quantize_func
=
weight_quantize_func
self
.
_weight_quantize_func
=
weight_quantize_func
self
.
_act_quantize_func
=
act_quantize_func
self
.
_act_quantize_func
=
act_quantize_func
self
.
_weight_preprocess_func
=
weight_preprocess_func
self
.
_weight_preprocess_func
=
weight_preprocess_func
...
@@ -2153,7 +2198,8 @@ class QuantizationTransformPassV2(object):
...
@@ -2153,7 +2198,8 @@ class QuantizationTransformPassV2(object):
quant_bits
=
quant_bits
,
quant_bits
=
quant_bits
,
quant_axis
=
quant_axis
,
quant_axis
=
quant_axis
,
channel_wise
=
channel_wise
,
channel_wise
=
channel_wise
,
is_test
=
self
.
_is_test
)
is_test
=
self
.
_is_test
,
round_type
=
self
.
_round_type
)
quant_var_node
,
scale_var_node
=
insert_quant_pass
.
insert_quant_op
(
quant_var_node
,
scale_var_node
=
insert_quant_pass
.
insert_quant_op
(
graph
,
var_node
)
graph
,
var_node
)
dequant_var_node
=
insert_quant_pass
.
insert_dequant_op
(
dequant_var_node
=
insert_quant_pass
.
insert_dequant_op
(
...
@@ -2261,7 +2307,8 @@ class AddQuantDequantPassV2(object):
...
@@ -2261,7 +2307,8 @@ class AddQuantDequantPassV2(object):
quant_bits
=
8
,
quant_bits
=
8
,
skip_pattern
=
[
"skip_quant"
],
skip_pattern
=
[
"skip_quant"
],
quantizable_op_type
=
[
"elementwise_add"
,
"pool2d"
],
quantizable_op_type
=
[
"elementwise_add"
,
"pool2d"
],
is_full_quantized
=
False
):
is_full_quantized
=
False
,
round_type
=
'TiesToEven'
):
"""
"""
Args:
Args:
scope(paddle.Scope): The scope is used to initialize these new parameters.
scope(paddle.Scope): The scope is used to initialize these new parameters.
...
@@ -2281,6 +2328,10 @@ class AddQuantDequantPassV2(object):
...
@@ -2281,6 +2328,10 @@ class AddQuantDequantPassV2(object):
quantization to all supported quantizable op type. If set is_full_quantized
quantization to all supported quantizable op type. If set is_full_quantized
as False, only apply quantization to the op type according to the input
as False, only apply quantization to the op type according to the input
quantizable_op_type.
quantizable_op_type.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -2303,6 +2354,7 @@ class AddQuantDequantPassV2(object):
...
@@ -2303,6 +2354,7 @@ class AddQuantDequantPassV2(object):
self
.
_quant_bits
=
quant_bits
self
.
_quant_bits
=
quant_bits
self
.
_is_test
=
None
self
.
_is_test
=
None
self
.
_skip_pattern
=
skip_pattern
self
.
_skip_pattern
=
skip_pattern
self
.
_round_type
=
round_type
if
is_full_quantized
:
if
is_full_quantized
:
self
.
_quantizable_op_type
=
utils
.
_act_supported_quantizable_op_type
self
.
_quantizable_op_type
=
utils
.
_act_supported_quantizable_op_type
...
@@ -2375,7 +2427,8 @@ class AddQuantDequantPassV2(object):
...
@@ -2375,7 +2427,8 @@ class AddQuantDequantPassV2(object):
quant_bits
=
self
.
_quant_bits
,
quant_bits
=
self
.
_quant_bits
,
quant_axis
=-
1
,
quant_axis
=-
1
,
channel_wise
=
False
,
channel_wise
=
False
,
is_test
=
self
.
_is_test
)
is_test
=
self
.
_is_test
,
round_type
=
self
.
_round_type
)
quant_var_node
,
scale_var_node
=
insert_quant_pass
.
insert_quant_op
(
quant_var_node
,
scale_var_node
=
insert_quant_pass
.
insert_quant_op
(
graph
,
in_node
)
graph
,
in_node
)
dequant_var_node
=
insert_quant_pass
.
insert_dequant_op
(
dequant_var_node
=
insert_quant_pass
.
insert_dequant_op
(
...
@@ -2458,6 +2511,8 @@ class ReplaceFakeQuantDequantPass(object):
...
@@ -2458,6 +2511,8 @@ class ReplaceFakeQuantDequantPass(object):
"quant_axis"
)
else
-
1
"quant_axis"
)
else
-
1
bit_length
=
op
.
op
().
attr
(
"bit_length"
)
if
op
.
op
().
has_attr
(
bit_length
=
op
.
op
().
attr
(
"bit_length"
)
if
op
.
op
().
has_attr
(
"bit_length"
)
else
8
"bit_length"
)
else
8
round_type
=
op
.
op
().
attr
(
"round_type"
)
if
op
.
op
().
has_attr
(
"round_type"
)
else
0
zero_point_node
=
None
zero_point_node
=
None
quanted_node
=
x_node
quanted_node
=
x_node
...
@@ -2479,7 +2534,8 @@ class ReplaceFakeQuantDequantPass(object):
...
@@ -2479,7 +2534,8 @@ class ReplaceFakeQuantDequantPass(object):
quant_op_node
=
graph
.
create_op_node
(
op_type
=
"quantize_linear"
,
quant_op_node
=
graph
.
create_op_node
(
op_type
=
"quantize_linear"
,
attrs
=
{
attrs
=
{
"quant_axis"
:
quant_axis
,
"quant_axis"
:
quant_axis
,
"bit_length"
:
bit_length
"bit_length"
:
bit_length
,
"round_type"
:
round_type
},
},
inputs
=
{
inputs
=
{
"X"
:
x_node
,
"X"
:
x_node
,
...
@@ -2598,8 +2654,11 @@ class QuantWeightPass(object):
...
@@ -2598,8 +2654,11 @@ class QuantWeightPass(object):
param_v
=
self
.
_load_var
(
x_node
.
name
())
param_v
=
self
.
_load_var
(
x_node
.
name
())
quant_axis
=
_op
.
op
().
attr
(
"quant_axis"
)
quant_axis
=
_op
.
op
().
attr
(
"quant_axis"
)
bits_length
=
_op
.
op
().
attr
(
"bit_length"
)
bits_length
=
_op
.
op
().
attr
(
"bit_length"
)
round_type
=
_op
.
op
().
attr
(
"round_type"
)
if
_op
.
op
().
has_attr
(
"round_type"
)
else
0
quantized_param_v
=
utils
.
quant_tensor
(
param_v
.
copy
(),
scale_v
,
quantized_param_v
=
utils
.
quant_tensor
(
param_v
.
copy
(),
scale_v
,
quant_axis
,
bits_length
)
quant_axis
,
bits_length
,
round_type
)
if
self
.
_bias_correction
==
True
:
if
self
.
_bias_correction
==
True
:
quantized_param_v
=
utils
.
bias_correction_w
(
quantized_param_v
=
utils
.
bias_correction_w
(
param_v
,
param_v
,
...
...
python/paddle/fluid/contrib/slim/quantization/utils.py
浏览文件 @
75144f13
...
@@ -321,29 +321,39 @@ def set_variable_data(scope, place, var_name, np_value):
...
@@ -321,29 +321,39 @@ def set_variable_data(scope, place, var_name, np_value):
tensor
.
set
(
np_value
,
place
)
tensor
.
set
(
np_value
,
place
)
def
quant_tensor
(
x
,
scale
,
quant_axis
=
0
,
weight_bits
=
8
):
def
round_c_single_element
(
val
):
# symmetry quant
dtype
=
type
(
val
)
def
_clip
(
x
,
scale
):
if
val
>=
0
:
x
[
x
>
scale
]
=
scale
return
dtype
(
np
.
floor
(
val
+
0.5
))
x
[
x
<
-
scale
]
=
-
scale
return
dtype
(
np
.
ceil
(
val
-
0.5
))
return
x
# rounding to nearest ties away from zero
round_c
=
np
.
vectorize
(
round_c_single_element
)
def
quant_tensor
(
x
,
scale
,
quant_axis
=
0
,
weight_bits
=
8
,
round_type
=
'TiesToEven'
):
assert
quant_axis
in
[
0
,
1
],
'quant_axis should be 0 or 1 for now.'
assert
quant_axis
in
[
0
,
1
],
'quant_axis should be 0 or 1 for now.'
distribution
=
np
.
round
if
round_type
==
'TiesToEven'
else
round_c
bnt
=
(
1
<<
(
weight_bits
-
1
))
-
1
bnt
=
(
1
<<
(
weight_bits
-
1
))
-
1
if
isinstance
(
scale
,
list
):
if
isinstance
(
scale
,
list
):
for
i
,
s
in
enumerate
(
scale
):
for
i
,
s
in
enumerate
(
scale
):
if
s
==
0.0
:
if
s
==
0.0
:
s
=
1e-8
s
=
1e-8
if
quant_axis
==
0
:
if
quant_axis
==
0
:
x
[
i
]
=
_clip
(
x
[
i
],
s
)
x
[
i
]
=
distribution
(
x
[
i
]
/
s
*
bnt
)
x
[
i
]
=
x
[
i
]
/
s
*
bnt
x
[
i
]
=
np
.
clip
(
x
[
i
],
-
bnt
-
1
,
bnt
)
else
:
else
:
x
[:,
i
]
=
_clip
(
x
[:,
i
],
s
)
x
[:,
i
]
=
distribution
(
x
[:,
i
]
/
s
*
bnt
)
x
[:,
i
]
=
x
[:,
i
]
/
s
*
bnt
x
[:,
i
]
=
np
.
clip
(
x
[:,
i
],
-
bnt
-
1
,
bnt
)
else
:
else
:
scale
=
1e-8
if
scale
==
0.0
else
scale
scale
=
1e-8
if
scale
==
0.0
else
scale
x
=
_clip
(
x
,
scale
)
x
=
distribution
(
x
/
scale
*
bnt
)
x
=
x
/
scale
*
bnt
x
=
np
.
clip
(
x
,
-
bnt
-
1
,
bnt
)
return
x
return
x
...
...
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
浏览文件 @
75144f13
...
@@ -558,7 +558,7 @@ if(LINUX AND WITH_MKLDNN)
...
@@ -558,7 +558,7 @@ if(LINUX AND WITH_MKLDNN)
120
)
120
)
set_tests_properties
(
test_quant2_int8_ernie_mkldnn PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_quant2_int8_ernie_mkldnn PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_quant_int8_googlenet_mkldnn PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_quant_int8_googlenet_mkldnn PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_quant2_int8_resnet50_mkldnn PROPERTIES TIMEOUT
12
0
)
set_tests_properties
(
test_quant2_int8_resnet50_mkldnn PROPERTIES TIMEOUT
20
0
)
set_tests_properties
(
test_quant2_int8_lstm_mkldnn PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_quant2_int8_lstm_mkldnn PROPERTIES TIMEOUT 120
)
endif
()
endif
()
...
...
python/paddle/fluid/contrib/slim/tests/test_imperative_ptq.py
浏览文件 @
75144f13
...
@@ -338,7 +338,7 @@ class TestImperativePTQKL(TestImperativePTQ):
...
@@ -338,7 +338,7 @@ class TestImperativePTQKL(TestImperativePTQ):
self
.
batch_num
=
10
self
.
batch_num
=
10
self
.
batch_size
=
10
self
.
batch_size
=
10
self
.
eval_acc_top1
=
1.0
self
.
eval_acc_top1
=
0.98
conv2d_1_wt_thresholds
=
[
conv2d_1_wt_thresholds
=
[
0.18116560578346252
,
0.17079241573810577
,
0.1702047884464264
,
0.18116560578346252
,
0.17079241573810577
,
0.1702047884464264
,
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_lstm_model.py
浏览文件 @
75144f13
...
@@ -165,7 +165,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -165,7 +165,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
model_path
,
model_path
,
data_path
,
data_path
,
algo
=
"KL"
,
algo
=
"KL"
,
round_type
=
"round"
,
weight_round_algo
=
"round"
,
quantizable_op_type
=
[
"conv2d"
],
quantizable_op_type
=
[
"conv2d"
],
is_full_quantize
=
False
,
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
is_use_cache_file
=
False
,
...
@@ -185,7 +185,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -185,7 +185,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
batch_nums
=
batch_nums
,
batch_nums
=
batch_nums
,
algo
=
algo
,
algo
=
algo
,
quantizable_op_type
=
quantizable_op_type
,
quantizable_op_type
=
quantizable_op_type
,
round_type
=
round_type
,
weight_round_algo
=
weight_round_algo
,
is_full_quantize
=
is_full_quantize
,
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
optimize_model
=
is_optimize_model
,
onnx_format
=
onnx_format
,
onnx_format
=
onnx_format
,
...
@@ -201,7 +201,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -201,7 +201,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
data_url
,
data_url
,
data_md5
,
data_md5
,
algo
,
algo
,
round_type
,
weight_round_algo
,
quantizable_op_type
,
quantizable_op_type
,
is_full_quantize
,
is_full_quantize
,
is_use_cache_file
,
is_use_cache_file
,
...
@@ -224,7 +224,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -224,7 +224,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
print
(
"Start post training quantization for {0} on {1} samples ..."
.
print
(
"Start post training quantization for {0} on {1} samples ..."
.
format
(
model_name
,
quant_iterations
))
format
(
model_name
,
quant_iterations
))
self
.
generate_quantized_model
(
fp32_model_path
,
data_path
,
algo
,
self
.
generate_quantized_model
(
fp32_model_path
,
data_path
,
algo
,
round_type
,
quantizable_op_type
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
quant_iterations
,
is_optimize_model
,
quant_iterations
,
onnx_format
)
onnx_format
)
...
@@ -255,7 +255,7 @@ class TestPostTrainingAvgForLSTM(TestPostTrainingQuantization):
...
@@ -255,7 +255,7 @@ class TestPostTrainingAvgForLSTM(TestPostTrainingQuantization):
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
algo
=
"avg"
algo
=
"avg"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"mul"
,
"lstm"
]
quantizable_op_type
=
[
"mul"
,
"lstm"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -264,7 +264,7 @@ class TestPostTrainingAvgForLSTM(TestPostTrainingQuantization):
...
@@ -264,7 +264,7 @@ class TestPostTrainingAvgForLSTM(TestPostTrainingQuantization):
infer_iterations
=
100
infer_iterations
=
100
quant_iterations
=
10
quant_iterations
=
10
self
.
run_test
(
model_name
,
model_url
,
model_md5
,
data_name
,
data_url
,
self
.
run_test
(
model_name
,
model_url
,
model_md5
,
data_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
infer_iterations
,
quant_iterations
)
diff_threshold
,
infer_iterations
,
quant_iterations
)
...
@@ -279,7 +279,7 @@ class TestPostTrainingAvgForLSTMONNXFormat(TestPostTrainingQuantization):
...
@@ -279,7 +279,7 @@ class TestPostTrainingAvgForLSTMONNXFormat(TestPostTrainingQuantization):
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
algo
=
"avg"
algo
=
"avg"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"mul"
,
"lstm"
]
quantizable_op_type
=
[
"mul"
,
"lstm"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -295,7 +295,7 @@ class TestPostTrainingAvgForLSTMONNXFormat(TestPostTrainingQuantization):
...
@@ -295,7 +295,7 @@ class TestPostTrainingAvgForLSTMONNXFormat(TestPostTrainingQuantization):
data_url
,
data_url
,
data_md5
,
data_md5
,
algo
,
algo
,
round_type
,
weight_round_algo
,
quantizable_op_type
,
quantizable_op_type
,
is_full_quantize
,
is_full_quantize
,
is_use_cache_file
,
is_use_cache_file
,
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
浏览文件 @
75144f13
...
@@ -108,7 +108,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -108,7 +108,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
def
generate_quantized_model
(
self
,
def
generate_quantized_model
(
self
,
model_path
,
model_path
,
algo
=
"KL"
,
algo
=
"KL"
,
round_type
=
"round"
,
weight_round_algo
=
"round"
,
quantizable_op_type
=
[
"conv2d"
],
quantizable_op_type
=
[
"conv2d"
],
is_full_quantize
=
False
,
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
is_use_cache_file
=
False
,
...
@@ -116,7 +116,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -116,7 +116,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
batch_size
=
10
,
batch_size
=
10
,
batch_nums
=
10
,
batch_nums
=
10
,
onnx_format
=
False
,
onnx_format
=
False
,
skip_tensor_list
=
None
):
skip_tensor_list
=
None
,
bias_correction
=
False
):
place
=
fluid
.
CPUPlace
()
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
...
@@ -129,9 +130,10 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -129,9 +130,10 @@ class TestPostTrainingQuantization(unittest.TestCase):
batch_nums
=
batch_nums
,
batch_nums
=
batch_nums
,
algo
=
algo
,
algo
=
algo
,
quantizable_op_type
=
quantizable_op_type
,
quantizable_op_type
=
quantizable_op_type
,
round_type
=
round_type
,
weight_round_algo
=
weight_round_algo
,
is_full_quantize
=
is_full_quantize
,
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
optimize_model
=
is_optimize_model
,
bias_correction
=
bias_correction
,
onnx_format
=
onnx_format
,
onnx_format
=
onnx_format
,
skip_tensor_list
=
skip_tensor_list
,
skip_tensor_list
=
skip_tensor_list
,
is_use_cache_file
=
is_use_cache_file
)
is_use_cache_file
=
is_use_cache_file
)
...
@@ -143,7 +145,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -143,7 +145,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
data_url
,
data_url
,
data_md5
,
data_md5
,
algo
,
algo
,
round_type
,
weight_round_algo
,
quantizable_op_type
,
quantizable_op_type
,
is_full_quantize
,
is_full_quantize
,
is_use_cache_file
,
is_use_cache_file
,
...
@@ -152,6 +154,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -152,6 +154,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
batch_size
=
10
,
batch_size
=
10
,
infer_iterations
=
10
,
infer_iterations
=
10
,
quant_iterations
=
5
,
quant_iterations
=
5
,
bias_correction
=
False
,
onnx_format
=
False
,
onnx_format
=
False
,
skip_tensor_list
=
None
):
skip_tensor_list
=
None
):
...
@@ -166,11 +169,12 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -166,11 +169,12 @@ class TestPostTrainingQuantization(unittest.TestCase):
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model_name
,
quant_iterations
*
batch_size
))
format
(
model_name
,
quant_iterations
*
batch_size
))
self
.
generate_quantized_model
(
origin_model_path
,
algo
,
round_type
,
self
.
generate_quantized_model
(
origin_model_path
,
algo
,
quantizable_op_type
,
is_full_quantize
,
weight_round_algo
,
quantizable_op_type
,
is_use_cache_file
,
is_optimize_model
,
is_full_quantize
,
is_use_cache_file
,
batch_size
,
quant_iterations
,
onnx_format
,
is_optimize_model
,
batch_size
,
skip_tensor_list
)
quant_iterations
,
onnx_format
,
skip_tensor_list
,
bias_correction
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
model_name
,
infer_iterations
*
batch_size
))
model_name
,
infer_iterations
*
batch_size
))
...
@@ -200,7 +204,7 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
...
@@ -200,7 +204,7 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"KL"
algo
=
"KL"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -209,7 +213,7 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
...
@@ -209,7 +213,7 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
batch_size
=
10
batch_size
=
10
infer_iterations
=
50
infer_iterations
=
50
quant_iterations
=
5
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
infer_iterations
,
quant_iterations
)
...
@@ -222,7 +226,7 @@ class TestPostTraininghistForMnist(TestPostTrainingQuantization):
...
@@ -222,7 +226,7 @@ class TestPostTraininghistForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"hist"
algo
=
"hist"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -231,7 +235,7 @@ class TestPostTraininghistForMnist(TestPostTrainingQuantization):
...
@@ -231,7 +235,7 @@ class TestPostTraininghistForMnist(TestPostTrainingQuantization):
batch_size
=
10
batch_size
=
10
infer_iterations
=
50
infer_iterations
=
50
quant_iterations
=
5
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
infer_iterations
,
quant_iterations
)
...
@@ -244,7 +248,7 @@ class TestPostTrainingmseForMnist(TestPostTrainingQuantization):
...
@@ -244,7 +248,7 @@ class TestPostTrainingmseForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"mse"
algo
=
"mse"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -253,7 +257,7 @@ class TestPostTrainingmseForMnist(TestPostTrainingQuantization):
...
@@ -253,7 +257,7 @@ class TestPostTrainingmseForMnist(TestPostTrainingQuantization):
batch_size
=
10
batch_size
=
10
infer_iterations
=
50
infer_iterations
=
50
quant_iterations
=
5
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
infer_iterations
,
quant_iterations
)
...
@@ -266,7 +270,7 @@ class TestPostTrainingemdForMnist(TestPostTrainingQuantization):
...
@@ -266,7 +270,7 @@ class TestPostTrainingemdForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"emd"
algo
=
"emd"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -275,7 +279,7 @@ class TestPostTrainingemdForMnist(TestPostTrainingQuantization):
...
@@ -275,7 +279,7 @@ class TestPostTrainingemdForMnist(TestPostTrainingQuantization):
batch_size
=
10
batch_size
=
10
infer_iterations
=
50
infer_iterations
=
50
quant_iterations
=
5
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
infer_iterations
,
quant_iterations
)
...
@@ -288,7 +292,7 @@ class TestPostTrainingavgForMnist(TestPostTrainingQuantization):
...
@@ -288,7 +292,7 @@ class TestPostTrainingavgForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"avg"
algo
=
"avg"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -297,7 +301,7 @@ class TestPostTrainingavgForMnist(TestPostTrainingQuantization):
...
@@ -297,7 +301,7 @@ class TestPostTrainingavgForMnist(TestPostTrainingQuantization):
batch_size
=
10
batch_size
=
10
infer_iterations
=
50
infer_iterations
=
50
quant_iterations
=
5
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
infer_iterations
,
quant_iterations
)
...
@@ -310,7 +314,7 @@ class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
...
@@ -310,7 +314,7 @@ class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"abs_max"
algo
=
"abs_max"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"mul"
]
is_full_quantize
=
True
is_full_quantize
=
True
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -319,7 +323,7 @@ class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
...
@@ -319,7 +323,7 @@ class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
batch_size
=
10
batch_size
=
10
infer_iterations
=
50
infer_iterations
=
50
quant_iterations
=
10
quant_iterations
=
10
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
infer_iterations
,
quant_iterations
)
...
@@ -332,7 +336,7 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
...
@@ -332,7 +336,7 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"mse"
algo
=
"mse"
round_type
=
"adaround"
weight_round_algo
=
"adaround"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -341,10 +345,21 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
...
@@ -341,10 +345,21 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
batch_size
=
10
batch_size
=
10
infer_iterations
=
50
infer_iterations
=
50
quant_iterations
=
5
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
bias_correction
=
True
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
self
.
run_test
(
model_name
,
is_optimize_model
,
diff_threshold
,
batch_size
,
data_url
,
infer_iterations
,
quant_iterations
)
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
,
bias_correction
=
bias_correction
)
class
TestPostTrainingKLAdaroundForMnist
(
TestPostTrainingQuantization
):
class
TestPostTrainingKLAdaroundForMnist
(
TestPostTrainingQuantization
):
...
@@ -354,7 +369,7 @@ class TestPostTrainingKLAdaroundForMnist(TestPostTrainingQuantization):
...
@@ -354,7 +369,7 @@ class TestPostTrainingKLAdaroundForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"KL"
algo
=
"KL"
round_type
=
"adaround"
weight_round_algo
=
"adaround"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -363,7 +378,7 @@ class TestPostTrainingKLAdaroundForMnist(TestPostTrainingQuantization):
...
@@ -363,7 +378,7 @@ class TestPostTrainingKLAdaroundForMnist(TestPostTrainingQuantization):
batch_size
=
10
batch_size
=
10
infer_iterations
=
50
infer_iterations
=
50
quant_iterations
=
5
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
infer_iterations
,
quant_iterations
)
...
@@ -376,7 +391,7 @@ class TestPostTrainingmseForMnistONNXFormat(TestPostTrainingQuantization):
...
@@ -376,7 +391,7 @@ class TestPostTrainingmseForMnistONNXFormat(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"mse"
algo
=
"mse"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -390,7 +405,7 @@ class TestPostTrainingmseForMnistONNXFormat(TestPostTrainingQuantization):
...
@@ -390,7 +405,7 @@ class TestPostTrainingmseForMnistONNXFormat(TestPostTrainingQuantization):
data_url
,
data_url
,
data_md5
,
data_md5
,
algo
,
algo
,
round_type
,
weight_round_algo
,
quantizable_op_type
,
quantizable_op_type
,
is_full_quantize
,
is_full_quantize
,
is_use_cache_file
,
is_use_cache_file
,
...
@@ -410,7 +425,7 @@ class TestPostTrainingmseForMnistONNXFormatFullQuant(
...
@@ -410,7 +425,7 @@ class TestPostTrainingmseForMnistONNXFormatFullQuant(
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"mse"
algo
=
"mse"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
True
is_full_quantize
=
True
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -424,7 +439,7 @@ class TestPostTrainingmseForMnistONNXFormatFullQuant(
...
@@ -424,7 +439,7 @@ class TestPostTrainingmseForMnistONNXFormatFullQuant(
data_url
,
data_url
,
data_md5
,
data_md5
,
algo
,
algo
,
round_type
,
weight_round_algo
,
quantizable_op_type
,
quantizable_op_type
,
is_full_quantize
,
is_full_quantize
,
is_use_cache_file
,
is_use_cache_file
,
...
@@ -443,7 +458,7 @@ class TestPostTrainingavgForMnistSkipOP(TestPostTrainingQuantization):
...
@@ -443,7 +458,7 @@ class TestPostTrainingavgForMnistSkipOP(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"avg"
algo
=
"avg"
round_type
=
"round"
weight_round_algo
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
...
@@ -457,7 +472,7 @@ class TestPostTrainingavgForMnistSkipOP(TestPostTrainingQuantization):
...
@@ -457,7 +472,7 @@ class TestPostTrainingavgForMnistSkipOP(TestPostTrainingQuantization):
data_url
,
data_url
,
data_md5
,
data_md5
,
algo
,
algo
,
round_type
,
weight_round_algo
,
quantizable_op_type
,
quantizable_op_type
,
is_full_quantize
,
is_full_quantize
,
is_use_cache_file
,
is_use_cache_file
,
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
浏览文件 @
75144f13
...
@@ -242,7 +242,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -242,7 +242,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
model_path
,
model_path
,
quantizable_op_type
,
quantizable_op_type
,
algo
=
"KL"
,
algo
=
"KL"
,
round_type
=
"round"
,
weight_round_algo
=
"round"
,
is_full_quantize
=
False
,
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
is_use_cache_file
=
False
,
is_optimize_model
=
False
,
is_optimize_model
=
False
,
...
@@ -264,7 +264,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -264,7 +264,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
model_dir
=
model_path
,
model_dir
=
model_path
,
algo
=
algo
,
algo
=
algo
,
quantizable_op_type
=
quantizable_op_type
,
quantizable_op_type
=
quantizable_op_type
,
round_type
=
round_type
,
weight_round_algo
=
weight_round_algo
,
is_full_quantize
=
is_full_quantize
,
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
optimize_model
=
is_optimize_model
,
onnx_format
=
onnx_format
,
onnx_format
=
onnx_format
,
...
@@ -275,7 +275,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -275,7 +275,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
def
run_test
(
self
,
def
run_test
(
self
,
model
,
model
,
algo
,
algo
,
round_type
,
weight_round_algo
,
data_urls
,
data_urls
,
data_md5s
,
data_md5s
,
quantizable_op_type
,
quantizable_op_type
,
...
@@ -299,9 +299,10 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -299,9 +299,10 @@ class TestPostTrainingQuantization(unittest.TestCase):
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model
,
sample_iterations
*
batch_size
))
format
(
model
,
sample_iterations
*
batch_size
))
self
.
generate_quantized_model
(
model_cache_folder
+
"/model"
,
self
.
generate_quantized_model
(
model_cache_folder
+
"/model"
,
quantizable_op_type
,
algo
,
round_type
,
quantizable_op_type
,
algo
,
is_full_quantize
,
is_use_cache_file
,
weight_round_algo
,
is_full_quantize
,
is_optimize_model
,
onnx_format
)
is_use_cache_file
,
is_optimize_model
,
onnx_format
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
model
,
infer_iterations
*
batch_size
))
model
,
infer_iterations
*
batch_size
))
...
@@ -329,7 +330,7 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
...
@@ -329,7 +330,7 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_kl_mobilenetv1
(
self
):
def
test_post_training_kl_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
model
=
"MobileNet-V1"
algo
=
"KL"
algo
=
"KL"
round_type
=
"round"
weight_round_algo
=
"round"
data_urls
=
[
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
]
...
@@ -344,7 +345,7 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
...
@@ -344,7 +345,7 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
is_optimize_model
=
True
diff_threshold
=
0.025
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
is_optimize_model
,
diff_threshold
)
...
@@ -354,7 +355,7 @@ class TestPostTrainingavgForMobilenetv1(TestPostTrainingQuantization):
...
@@ -354,7 +355,7 @@ class TestPostTrainingavgForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_avg_mobilenetv1
(
self
):
def
test_post_training_avg_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
model
=
"MobileNet-V1"
algo
=
"avg"
algo
=
"avg"
round_type
=
"round"
weight_round_algo
=
"round"
data_urls
=
[
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
]
...
@@ -368,7 +369,7 @@ class TestPostTrainingavgForMobilenetv1(TestPostTrainingQuantization):
...
@@ -368,7 +369,7 @@ class TestPostTrainingavgForMobilenetv1(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
is_optimize_model
=
True
diff_threshold
=
0.025
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
is_optimize_model
,
diff_threshold
)
...
@@ -378,7 +379,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
...
@@ -378,7 +379,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_hist_mobilenetv1
(
self
):
def
test_post_training_hist_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
model
=
"MobileNet-V1"
algo
=
"hist"
algo
=
"hist"
round_type
=
"round"
weight_round_algo
=
"round"
data_urls
=
[
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
]
...
@@ -392,7 +393,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
...
@@ -392,7 +393,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
is_optimize_model
=
True
diff_threshold
=
0.03
diff_threshold
=
0.03
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
is_optimize_model
,
diff_threshold
)
...
@@ -402,7 +403,7 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
...
@@ -402,7 +403,7 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_abs_max_mobilenetv1
(
self
):
def
test_post_training_abs_max_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
model
=
"MobileNet-V1"
algo
=
"abs_max"
algo
=
"abs_max"
round_type
=
"round"
weight_round_algo
=
"round"
data_urls
=
[
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
]
...
@@ -416,7 +417,7 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
...
@@ -416,7 +417,7 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
is_optimize_model
=
False
is_optimize_model
=
False
# The accuracy diff of post-training quantization (abs_max) maybe bigger
# The accuracy diff of post-training quantization (abs_max) maybe bigger
diff_threshold
=
0.05
diff_threshold
=
0.05
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
is_optimize_model
,
diff_threshold
)
...
@@ -426,7 +427,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
...
@@ -426,7 +427,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_onnx_format_mobilenetv1
(
self
):
def
test_post_training_onnx_format_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
model
=
"MobileNet-V1"
algo
=
"avg"
algo
=
"avg"
round_type
=
"round"
weight_round_algo
=
"round"
data_urls
=
[
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
]
...
@@ -443,7 +444,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
...
@@ -443,7 +444,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
diff_threshold
=
0.05
diff_threshold
=
0.05
self
.
run_test
(
model
,
self
.
run_test
(
model
,
algo
,
algo
,
round_type
,
weight_round_algo
,
data_urls
,
data_urls
,
data_md5s
,
data_md5s
,
quantizable_op_type
,
quantizable_op_type
,
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
浏览文件 @
75144f13
...
@@ -25,7 +25,7 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
...
@@ -25,7 +25,7 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
def
test_post_training_resnet50
(
self
):
def
test_post_training_resnet50
(
self
):
model
=
"ResNet-50"
model
=
"ResNet-50"
algo
=
"min_max"
algo
=
"min_max"
round_type
=
"round"
weight_round_algo
=
"round"
data_urls
=
[
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
]
...
@@ -35,7 +35,7 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
...
@@ -35,7 +35,7 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_use_cache_file
=
False
is_optimize_model
=
False
is_optimize_model
=
False
diff_threshold
=
0.025
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
is_optimize_model
,
diff_threshold
)
...
@@ -45,7 +45,7 @@ class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
...
@@ -45,7 +45,7 @@ class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
def
test_post_training_resnet50
(
self
):
def
test_post_training_resnet50
(
self
):
model
=
"ResNet-50"
model
=
"ResNet-50"
algo
=
"min_max"
algo
=
"min_max"
round_type
=
"round"
weight_round_algo
=
"round"
data_urls
=
[
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
]
...
@@ -58,7 +58,7 @@ class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
...
@@ -58,7 +58,7 @@ class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
onnx_format
=
True
onnx_format
=
True
self
.
run_test
(
model
,
self
.
run_test
(
model
,
algo
,
algo
,
round_type
,
weight_round_algo
,
data_urls
,
data_urls
,
data_md5s
,
data_md5s
,
quantizable_op_type
,
quantizable_op_type
,
...
...
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
浏览文件 @
75144f13
...
@@ -21,8 +21,6 @@ import math
...
@@ -21,8 +21,6 @@ import math
from
op_test
import
OpTest
from
op_test
import
OpTest
# numpy.round has different behavior in comparision to c++ round function
# so we use round_c instead of numpy.round to align the output data
def
round_c_single_element
(
val
):
def
round_c_single_element
(
val
):
dtype
=
type
(
val
)
dtype
=
type
(
val
)
if
val
>=
0
:
if
val
>=
0
:
...
@@ -30,6 +28,7 @@ def round_c_single_element(val):
...
@@ -30,6 +28,7 @@ def round_c_single_element(val):
return
dtype
(
np
.
ceil
(
val
-
0.5
))
return
dtype
(
np
.
ceil
(
val
-
0.5
))
# rounding to nearest ties away from zero
round_c
=
np
.
vectorize
(
round_c_single_element
)
round_c
=
np
.
vectorize
(
round_c_single_element
)
...
@@ -46,13 +45,25 @@ class TestFakeQuantizeAbsMaxOp(OpTest):
...
@@ -46,13 +45,25 @@ class TestFakeQuantizeAbsMaxOp(OpTest):
self
.
op_type
=
'fake_quantize_abs_max'
self
.
op_type
=
'fake_quantize_abs_max'
self
.
attrs
=
{
'bit_length'
:
8
}
self
.
attrs
=
{
'bit_length'
:
8
}
def
_fake_quantize_abs_max
(
self
,
dtype
,
input_shape
,
distribution
):
def
_fake_quantize_abs_max
(
self
,
dtype
,
input_shape
,
distribution
,
round_type
=
'TiesToEven'
):
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
scale
=
np
.
max
(
np
.
abs
(
input_data
))
scale
=
np
.
max
(
np
.
abs
(
input_data
))
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
inv_scale
=
1.0
/
(
scale
+
1e-6
)
if
scale
<
1e-30
else
1.0
/
scale
inv_scale
=
1.0
/
(
scale
+
1e-6
)
if
scale
<
1e-30
else
1.0
/
scale
output_data
=
round_c
(
input_data
.
astype
(
compute_type
)
*
inv_scale
*
bnt
)
if
round_type
==
'TiesToEven'
:
round_out
=
np
.
round
(
input_data
.
astype
(
compute_type
)
*
inv_scale
*
bnt
)
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
input_data
.
astype
(
compute_type
)
*
inv_scale
*
bnt
)
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
self
.
inputs
=
{
'X'
:
input_data
}
self
.
inputs
=
{
'X'
:
input_data
}
self
.
outputs
=
{
'Out'
:
output_data
,
'OutScale'
:
scale
}
self
.
outputs
=
{
'Out'
:
output_data
,
'OutScale'
:
scale
}
self
.
dtype
=
dtype
self
.
dtype
=
dtype
...
@@ -61,6 +72,11 @@ class TestFakeQuantizeAbsMaxOp(OpTest):
...
@@ -61,6 +72,11 @@ class TestFakeQuantizeAbsMaxOp(OpTest):
def
test_fake_quantize_abs_max
(
self
):
def
test_fake_quantize_abs_max
(
self
):
self
.
_fake_quantize_abs_max
(
np
.
float32
,
(
124
,
240
),
np
.
random
.
random
)
self
.
_fake_quantize_abs_max
(
np
.
float32
,
(
124
,
240
),
np
.
random
.
random
)
def
test_fake_quantize_abs_max_round1
(
self
):
self
.
_fake_quantize_abs_max
(
np
.
float32
,
(
124
,
240
),
np
.
random
.
random
,
round_type
=
'TiesAwayFromZero'
)
def
test_fake_quantize_abs_max_float16
(
self
):
def
test_fake_quantize_abs_max_float16
(
self
):
self
.
_fake_quantize_abs_max
(
np
.
float16
,
(
124
,
240
),
np
.
random
.
random
)
self
.
_fake_quantize_abs_max
(
np
.
float16
,
(
124
,
240
),
np
.
random
.
random
)
...
@@ -78,8 +94,12 @@ class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest):
...
@@ -78,8 +94,12 @@ class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest):
self
.
op_type
=
'fake_channel_wise_quantize_abs_max'
self
.
op_type
=
'fake_channel_wise_quantize_abs_max'
self
.
attrs
=
{
'bit_length'
:
8
}
self
.
attrs
=
{
'bit_length'
:
8
}
def
_fake_channel_wise_quantize_abs_max
(
self
,
dtype
,
input_shape
,
def
_fake_channel_wise_quantize_abs_max
(
self
,
quant_axis
,
distribution
):
dtype
,
input_shape
,
quant_axis
,
distribution
,
round_type
=
'TiesToEven'
):
assert
quant_axis
in
[
0
,
1
],
'quant_axis should be 0 or 1.'
assert
quant_axis
in
[
0
,
1
],
'quant_axis should be 0 or 1.'
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
...
@@ -87,8 +107,15 @@ class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest):
...
@@ -87,8 +107,15 @@ class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest):
compute_axis
=
tuple
(
i
for
i
in
range
(
len
(
input_shape
))
compute_axis
=
tuple
(
i
for
i
in
range
(
len
(
input_shape
))
if
i
!=
quant_axis
)
if
i
!=
quant_axis
)
scale_broadcast
=
np
.
amax
(
input_data
,
axis
=
compute_axis
,
keepdims
=
True
)
scale_broadcast
=
np
.
amax
(
input_data
,
axis
=
compute_axis
,
keepdims
=
True
)
output_data
=
round_c
(
bnt
*
input_data
.
astype
(
compute_type
)
/
if
round_type
==
'TiesToEven'
:
scale_broadcast
)
round_out
=
np
.
round
(
input_data
.
astype
(
compute_type
)
/
scale_broadcast
*
bnt
)
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
input_data
.
astype
(
compute_type
)
/
scale_broadcast
*
bnt
)
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
if
quant_axis
==
1
:
if
quant_axis
==
1
:
scale_broadcast
=
np
.
transpose
(
scale_broadcast
,
scale_broadcast
=
np
.
transpose
(
scale_broadcast
,
(
1
,
)
+
compute_axis
)
(
1
,
)
+
compute_axis
)
...
@@ -102,16 +129,20 @@ class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest):
...
@@ -102,16 +129,20 @@ class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest):
def
test_fake_channel_wise_quantize_abs_max
(
self
):
def
test_fake_channel_wise_quantize_abs_max
(
self
):
dtype_options
=
[
np
.
float32
,
np
.
float16
]
dtype_options
=
[
np
.
float32
,
np
.
float16
]
input_shape_quant_axis_options
=
[[(
20
,
15
,
6
,
6
),
0
],
input_shape_quant_axis_options
=
[[(
20
,
15
,
6
,
6
),
0
],
[(
15
,
20
,
5
,
5
),
1
],
[(
30
,
15
),
0
],
[(
20
,
15
,
6
,
6
),
1
],
[(
30
,
30
),
0
],
[(
30
,
15
),
1
]]
[(
30
,
30
),
1
]]
for
dtype
,
input_shape_quant_axis
in
itertools
.
product
(
round_type_options
=
[
'TiesToEven'
,
'TiesAwayFromZero'
]
dtype_options
,
input_shape_quant_axis_options
):
for
dtype
,
input_shape_quant_axis
,
round_type
in
itertools
.
product
(
dtype_options
,
input_shape_quant_axis_options
,
round_type_options
):
input_shape
,
quant_axis
=
input_shape_quant_axis
input_shape
,
quant_axis
=
input_shape_quant_axis
with
self
.
subTest
(
dtype
=
dtype
,
with
self
.
subTest
(
dtype
=
dtype
,
input_shape
=
input_shape
,
input_shape
=
input_shape
,
quant_axis
=
quant_axis
):
quant_axis
=
quant_axis
,
round_type
=
round_type
):
self
.
_fake_channel_wise_quantize_abs_max
(
self
.
_fake_channel_wise_quantize_abs_max
(
dtype
,
input_shape
,
quant_axis
,
np
.
random
.
random
)
dtype
,
input_shape
,
quant_axis
,
np
.
random
.
random
,
round_type
)
class
TestFakeQuantizeRangeAbsMaxOp
(
OpTest
):
class
TestFakeQuantizeRangeAbsMaxOp
(
OpTest
):
...
@@ -124,7 +155,8 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
...
@@ -124,7 +155,8 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
dtype
,
dtype
,
input_shape
,
input_shape
,
distribution
,
distribution
,
is_test
=
False
):
is_test
=
False
,
round_type
=
'TiesToEven'
):
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
...
@@ -133,11 +165,15 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
...
@@ -133,11 +165,15 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
out_scale
[
0
]
=
np
.
max
(
np
.
abs
(
input_data
))
out_scale
[
0
]
=
np
.
max
(
np
.
abs
(
input_data
))
if
is_test
:
if
is_test
:
out_scale
[
0
]
=
in_scale
[
0
]
=
out_scale
[
0
]
-
1.0
out_scale
[
0
]
=
in_scale
[
0
]
=
out_scale
[
0
]
-
1.0
clip_data
=
np
.
clip
(
input_data
,
-
in_scale
,
in_scale
)
if
round_type
==
'TiesToEven'
:
round_out
=
np
.
round
(
input_data
.
astype
(
compute_type
)
/
out_scale
[
0
]
*
bnt
)
self
.
attrs
[
'round_type'
]
=
0
else
:
else
:
clip_data
=
input_data
round_out
=
round_c
(
output_data
=
round_c
(
input_data
.
astype
(
compute_type
)
/
out_scale
[
0
]
*
bnt
)
clip_data
.
astype
(
compute_type
)
/
out_scale
[
0
]
*
bnt
)
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
input_data
,
'X'
:
input_data
,
'Iter'
:
np
.
zeros
(
1
).
astype
(
np
.
int64
),
'Iter'
:
np
.
zeros
(
1
).
astype
(
np
.
int64
),
...
@@ -153,15 +189,20 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
...
@@ -153,15 +189,20 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
self
.
check_output
()
self
.
check_output
()
def
test_fake_quantize_range_abs_max
(
self
):
def
test_fake_quantize_range_abs_max
(
self
):
dtype_options
=
[
np
.
float
32
,
np
.
float16
]
dtype_options
=
[
np
.
float
16
,
np
.
float32
]
is_test_options
=
[
False
,
True
]
is_test_options
=
[
False
,
True
]
for
dtype
,
is_test
in
itertools
.
product
(
dtype_options
,
is_test_options
):
round_type_options
=
[
'TiesToEven'
,
'TiesAwayFromZero'
]
for
dtype
,
is_test
,
round_type
in
itertools
.
product
(
dtype_options
,
is_test_options
,
round_type_options
):
self
.
attrs
[
'bit_length'
]
=
8
if
is_test
else
5
self
.
attrs
[
'bit_length'
]
=
8
if
is_test
else
5
with
self
.
subTest
(
dtype
=
dtype
,
is_test
=
is_test
):
with
self
.
subTest
(
dtype
=
dtype
,
is_test
=
is_test
,
round_type
=
round_type
):
self
.
_fake_quantize_range_abs_max
(
self
.
_fake_quantize_range_abs_max
(
dtype
,
(
8
,
16
,
7
,
7
),
dtype
,
(
8
,
16
,
6
,
6
),
lambda
shape
:
(
np
.
random
.
random
(
shape
)
-
0.5
)
*
10
,
lambda
shape
:
(
np
.
random
.
random
(
shape
)
-
0.4
)
*
10
,
is_test
=
is_test
)
is_test
=
is_test
,
round_type
=
round_type
)
class
TestMovingAverageAbsMaxScaleOp
(
OpTest
):
class
TestMovingAverageAbsMaxScaleOp
(
OpTest
):
...
@@ -208,7 +249,8 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
...
@@ -208,7 +249,8 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
input_shape
,
input_shape
,
distribution
,
distribution
,
dequantize
=
False
,
dequantize
=
False
,
with_gradient
=
False
):
with_gradient
=
False
,
round_type
=
'TiesToEven'
):
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
...
@@ -222,12 +264,20 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
...
@@ -222,12 +264,20 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
np
.
abs
(
input_data
))
np
.
abs
(
input_data
))
out_state
[
0
]
=
self
.
attrs
[
'moving_rate'
]
*
in_state
[
0
]
+
1.0
out_state
[
0
]
=
self
.
attrs
[
'moving_rate'
]
*
in_state
[
0
]
+
1.0
out_scale
=
out_accum
/
out_state
out_scale
=
out_accum
/
out_state
round_data
=
round_c
(
input_data
.
astype
(
compute_type
)
/
out_scale
*
bnt
)
if
round_type
==
'TiesToEven'
:
round_out
=
np
.
round
(
input_data
.
astype
(
compute_type
)
/
out_scale
*
bnt
)
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
input_data
.
astype
(
compute_type
)
/
out_scale
*
bnt
)
self
.
attrs
[
'round_type'
]
=
1
quant_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
if
dequantize
:
if
dequantize
:
output_data
=
(
round
_data
*
out_scale
/
bnt
).
astype
(
dtype
)
output_data
=
(
quant
_data
*
out_scale
/
bnt
).
astype
(
dtype
)
self
.
op_type
=
'fake_quantize_dequantize_moving_average_abs_max'
self
.
op_type
=
'fake_quantize_dequantize_moving_average_abs_max'
else
:
else
:
output_data
=
round
_data
.
astype
(
dtype
)
output_data
=
quant
_data
.
astype
(
dtype
)
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
input_data
,
'X'
:
input_data
,
'InScale'
:
in_scale
,
'InScale'
:
in_scale
,
...
@@ -256,6 +306,12 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
...
@@ -256,6 +306,12 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
self
.
_fake_quantize_moving_average_abs_max
(
np
.
float16
,
(
8
,
16
,
7
,
7
),
self
.
_fake_quantize_moving_average_abs_max
(
np
.
float16
,
(
8
,
16
,
7
,
7
),
np
.
random
.
random
)
np
.
random
.
random
)
def
test_fake_quantize_moving_average_abs_max_round1
(
self
):
self
.
_fake_quantize_moving_average_abs_max
(
np
.
float32
,
(
8
,
16
,
7
,
7
),
np
.
random
.
random
,
round_type
=
'TiesAwayFromZero'
)
def
test_fake_quantize_dequantize_moving_average_abs_max
(
self
):
def
test_fake_quantize_dequantize_moving_average_abs_max
(
self
):
self
.
_fake_quantize_moving_average_abs_max
(
np
.
float32
,
(
8
,
16
,
7
,
7
),
self
.
_fake_quantize_moving_average_abs_max
(
np
.
float32
,
(
8
,
16
,
7
,
7
),
np
.
random
.
random
,
np
.
random
.
random
,
...
@@ -269,12 +325,21 @@ class TestFakeQuantizeDequantizeAbsMaxOp(OpTest):
...
@@ -269,12 +325,21 @@ class TestFakeQuantizeDequantizeAbsMaxOp(OpTest):
self
.
op_type
=
'fake_quantize_dequantize_abs_max'
self
.
op_type
=
'fake_quantize_dequantize_abs_max'
self
.
attrs
=
{
'bit_length'
:
8
}
self
.
attrs
=
{
'bit_length'
:
8
}
def
_fake_quantize_dequantize_abs_max
(
self
,
dtype
,
input_shape
,
def
_fake_quantize_dequantize_abs_max
(
self
,
distribution
):
dtype
,
input_shape
,
distribution
,
round_type
=
'TiesToEven'
):
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
scale
=
np
.
max
(
np
.
abs
(
input_data
)).
astype
(
dtype
)
scale
=
np
.
max
(
np
.
abs
(
input_data
)).
astype
(
dtype
)
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
output_data
=
round_c
(
input_data
/
scale
*
bnt
)
*
scale
/
bnt
if
round_type
==
'TiesToEven'
:
round_out
=
np
.
round
(
input_data
/
scale
*
bnt
)
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
input_data
/
scale
*
bnt
)
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
*
scale
/
bnt
self
.
inputs
=
{
'X'
:
input_data
}
self
.
inputs
=
{
'X'
:
input_data
}
self
.
outputs
=
{
self
.
outputs
=
{
'Out'
:
output_data
,
'Out'
:
output_data
,
...
@@ -289,6 +354,11 @@ class TestFakeQuantizeDequantizeAbsMaxOp(OpTest):
...
@@ -289,6 +354,11 @@ class TestFakeQuantizeDequantizeAbsMaxOp(OpTest):
self
.
_fake_quantize_dequantize_abs_max
(
np
.
float32
,
(
124
,
240
),
self
.
_fake_quantize_dequantize_abs_max
(
np
.
float32
,
(
124
,
240
),
np
.
random
.
random
)
np
.
random
.
random
)
def
test_fake_quantize_dequantize_abs_max_round1
(
self
):
self
.
_fake_quantize_dequantize_abs_max
(
np
.
float32
,
(
124
,
240
),
np
.
random
.
random
,
round_type
=
'TiesAwayFromZero'
)
class
TestChannelWiseFakeQuantizeDequantizeAbsMaxOp
(
OpTest
):
class
TestChannelWiseFakeQuantizeDequantizeAbsMaxOp
(
OpTest
):
...
@@ -296,9 +366,12 @@ class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest):
...
@@ -296,9 +366,12 @@ class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest):
self
.
op_type
=
'fake_channel_wise_quantize_dequantize_abs_max'
self
.
op_type
=
'fake_channel_wise_quantize_dequantize_abs_max'
self
.
attrs
=
{
'bit_length'
:
8
}
self
.
attrs
=
{
'bit_length'
:
8
}
def
_fake_channel_wise_quantize_dequantize_abs_max
(
self
,
dtype
,
input_shape
,
def
_fake_channel_wise_quantize_dequantize_abs_max
(
self
,
dtype
,
input_shape
,
quant_axis
,
quant_axis
,
distribution
):
distribution
,
round_type
=
'TiesToEven'
):
assert
quant_axis
in
[
0
,
1
],
'quant_axis should be 0 or 1.'
assert
quant_axis
in
[
0
,
1
],
'quant_axis should be 0 or 1.'
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
...
@@ -307,8 +380,13 @@ class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest):
...
@@ -307,8 +380,13 @@ class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest):
compute_axis
=
tuple
(
i
for
i
in
range
(
len
(
input_shape
))
compute_axis
=
tuple
(
i
for
i
in
range
(
len
(
input_shape
))
if
i
!=
quant_axis
)
if
i
!=
quant_axis
)
scale_broadcast
=
np
.
amax
(
input_data
,
axis
=
compute_axis
,
keepdims
=
True
)
scale_broadcast
=
np
.
amax
(
input_data
,
axis
=
compute_axis
,
keepdims
=
True
)
output_data
=
round_c
(
if
round_type
==
'TiesToEven'
:
bnt
*
output_data
/
scale_broadcast
)
*
scale_broadcast
/
bnt
round_out
=
np
.
round
(
bnt
*
output_data
/
scale_broadcast
)
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
bnt
*
output_data
/
scale_broadcast
)
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
*
scale_broadcast
/
bnt
if
quant_axis
==
1
:
if
quant_axis
==
1
:
scale_broadcast
=
np
.
transpose
(
scale_broadcast
,
scale_broadcast
=
np
.
transpose
(
scale_broadcast
,
(
1
,
)
+
compute_axis
)
(
1
,
)
+
compute_axis
)
...
@@ -325,10 +403,19 @@ class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest):
...
@@ -325,10 +403,19 @@ class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest):
input_shape_quant_axis_options
=
[[(
3
,
4
,
64
,
64
),
0
],
input_shape_quant_axis_options
=
[[(
3
,
4
,
64
,
64
),
0
],
[(
15
,
20
,
5
,
5
),
1
],
[(
30
,
15
),
0
],
[(
15
,
20
,
5
,
5
),
1
],
[(
30
,
15
),
0
],
[(
30
,
15
),
1
]]
[(
30
,
15
),
1
]]
for
input_shape
,
quant_axis
in
input_shape_quant_axis_options
:
round_type_options
=
[
'TiesToEven'
,
'TiesAwayFromZero'
]
with
self
.
subTest
(
input_shape
=
input_shape
,
quant_axis
=
quant_axis
):
for
input_shape_quant_axis
,
round_type
in
itertools
.
product
(
input_shape_quant_axis_options
,
round_type_options
):
input_shape
,
quant_axis
=
input_shape_quant_axis
with
self
.
subTest
(
input_shape
=
input_shape
,
quant_axis
=
quant_axis
,
round_type
=
round_type
):
self
.
_fake_channel_wise_quantize_dequantize_abs_max
(
self
.
_fake_channel_wise_quantize_dequantize_abs_max
(
np
.
float32
,
input_shape
,
quant_axis
,
np
.
random
.
random
)
np
.
float32
,
input_shape
,
quant_axis
,
np
.
random
.
random
,
round_type
=
round_type
)
def
quantize_max_abs
(
x
,
max_range
):
def
quantize_max_abs
(
x
,
max_range
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录