Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
73e97d39
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
73e97d39
编写于
12月 17, 2019
作者:
Z
Zhang Ting
提交者:
Tao Luo
12月 17, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add check for check_grad in Op unittests (#21383)
上级
0677a1c1
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
130 addition
and
78 deletion
+130
-78
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+9
-5
python/paddle/fluid/tests/unittests/white_list/op_accuracy_white_list.py
...luid/tests/unittests/white_list/op_accuracy_white_list.py
+35
-73
python/paddle/fluid/tests/unittests/white_list/op_check_grad_white_list.py
...id/tests/unittests/white_list/op_check_grad_white_list.py
+86
-0
未找到文件。
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
73e97d39
...
@@ -33,7 +33,7 @@ from paddle.fluid.executor import Executor
...
@@ -33,7 +33,7 @@ from paddle.fluid.executor import Executor
from
paddle.fluid.framework
import
Program
,
OpProtoHolder
,
Variable
from
paddle.fluid.framework
import
Program
,
OpProtoHolder
,
Variable
from
testsuite
import
create_op
,
set_input
,
append_input_output
,
append_loss_ops
from
testsuite
import
create_op
,
set_input
,
append_input_output
,
append_loss_ops
from
paddle.fluid
import
unique_name
from
paddle.fluid
import
unique_name
from
white_list
import
op_accuracy_white_list
from
white_list
import
op_accuracy_white_list
,
op_check_grad_white_list
def
_set_use_system_allocator
(
value
=
None
):
def
_set_use_system_allocator
(
value
=
None
):
...
@@ -1362,9 +1362,9 @@ class OpTestFp16(OpTestBase):
...
@@ -1362,9 +1362,9 @@ class OpTestFp16(OpTestBase):
np
.
random
.
set_state
(
cls
.
_np_rand_state
)
np
.
random
.
set_state
(
cls
.
_np_rand_state
)
random
.
setstate
(
cls
.
_py_rand_state
)
random
.
setstate
(
cls
.
_py_rand_state
)
if
cls
.
__name__
not
in
op_accuracy_white_list
.
NO_NEED_FP16_CHECK_GRAD_CASES
\
if
not
hasattr
(
cls
,
"exist_check_grad"
)
\
and
not
hasattr
(
cls
,
"exist_check_grad"
)
\
and
cls
.
__name__
not
in
op_check_grad_white_list
.
NO_NEED_CHECK_GRAD_CASES
\
and
cls
.
op_type
not
in
op_
accuracy_white_list
.
NO_FP16_CHECK
_GRAD_OP_LIST
:
and
cls
.
op_type
not
in
op_
check_grad_white_list
.
EMPTY
_GRAD_OP_LIST
:
raise
AssertionError
(
"This test of %s op needs check_grad."
%
raise
AssertionError
(
"This test of %s op needs check_grad."
%
cls
.
op_type
)
cls
.
op_type
)
...
@@ -1438,8 +1438,12 @@ class OpTest(OpTestBase):
...
@@ -1438,8 +1438,12 @@ class OpTest(OpTestBase):
np
.
random
.
set_state
(
cls
.
_np_rand_state
)
np
.
random
.
set_state
(
cls
.
_np_rand_state
)
random
.
setstate
(
cls
.
_py_rand_state
)
random
.
setstate
(
cls
.
_py_rand_state
)
if
cls
.
__name__
not
in
op_accuracy_white_list
.
NO_NEED_FP64_CHECK_GRAD_CASES
\
# only for pass ci, but cases in NO_FP64_CHECK_GRAD_CASES
# and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
if
cls
.
__name__
not
in
op_accuracy_white_list
.
NO_FP64_CHECK_GRAD_CASES
\
and
not
hasattr
(
cls
,
'exist_fp64_check_grad'
)
\
and
not
hasattr
(
cls
,
'exist_fp64_check_grad'
)
\
and
cls
.
__name__
not
in
op_check_grad_white_list
.
NO_NEED_CHECK_GRAD_CASES
\
and
cls
.
op_type
not
in
op_check_grad_white_list
.
EMPTY_GRAD_OP_LIST
\
and
cls
.
op_type
not
in
op_accuracy_white_list
.
NO_FP64_CHECK_GRAD_OP_LIST
:
and
cls
.
op_type
not
in
op_accuracy_white_list
.
NO_FP64_CHECK_GRAD_OP_LIST
:
raise
AssertionError
(
"This test of %s op needs fp64 check_grad."
%
raise
AssertionError
(
"This test of %s op needs fp64 check_grad."
%
cls
.
op_type
)
cls
.
op_type
)
python/paddle/fluid/tests/unittests/white_list/op_accuracy_white_list.py
浏览文件 @
73e97d39
...
@@ -24,81 +24,43 @@ FP16_CHECK_OP_LIST = [
...
@@ -24,81 +24,43 @@ FP16_CHECK_OP_LIST = [
# For op in NO_FP64_CHECK_GRAD_OP_LIST, the op test requires check_grad with fp64 precision
# For op in NO_FP64_CHECK_GRAD_OP_LIST, the op test requires check_grad with fp64 precision
NO_FP64_CHECK_GRAD_OP_LIST
=
[
NO_FP64_CHECK_GRAD_OP_LIST
=
[
'abs'
,
'accuracy'
,
'acos'
,
'adadelta'
,
'adagrad'
,
'adam'
,
'adamax'
,
'abs'
,
'acos'
,
'add_position_encoding'
,
'affine_grid'
,
'asin'
,
'atan'
,
'add_position_encoding'
,
'affine_grid'
,
'anchor_generator'
,
'arg_max'
,
'bilinear_interp'
,
'bilinear_tensor_product'
,
'brelu'
,
'center_loss'
,
'arg_min'
,
'argsort'
,
'asin'
,
'assign_value'
,
'atan'
,
'attention_lstm'
,
'clip'
,
'concat'
,
'conv2d'
,
'conv2d_transpose'
,
'conv3d'
,
'auc'
,
'bilinear_interp'
,
'bilinear_tensor_product'
,
'bipartite_match'
,
'conv3d_transpose'
,
'conv_shift'
,
'cos'
,
'cos_sim'
,
'crop'
,
'crop_tensor'
,
'box_clip'
,
'box_coder'
,
'box_decoder_and_assign'
,
'brelu'
,
'cast'
,
'ceil'
,
'cross_entropy'
,
'cross_entropy2'
,
'cudnn_lstm'
,
'cvm'
,
'data_norm'
,
'center_loss'
,
'chunk_eval'
,
'clip'
,
'clip_by_norm'
,
'coalesce_tensor'
,
'deformable_conv'
,
'deformable_conv_v1'
,
'deformable_psroi_pooling'
,
'collect_fpn_proposals'
,
'concat'
,
'conv2d'
,
'conv2d_fusion'
,
'depthwise_conv2d'
,
'depthwise_conv2d_transpose'
,
'dropout'
,
'conv2d_transpose'
,
'conv3d'
,
'conv3d_transpose'
,
'conv_shift'
,
'cos'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_max'
,
'elementwise_min'
,
'cos_sim'
,
'crf_decoding'
,
'crop'
,
'crop_tensor'
,
'cross_entropy'
,
'elementwise_mul'
,
'elementwise_pow'
,
'elementwise_sub'
,
'elu'
,
'exp'
,
'cross_entropy2'
,
'ctc_align'
,
'cudnn_lstm'
,
'cvm'
,
'data_norm'
,
'expand'
,
'flatten'
,
'flatten2'
,
'fused_elemwise_activation'
,
'decayed_adagrad'
,
'deformable_conv'
,
'deformable_conv_v1'
,
'fused_embedding_seq_pool'
,
'gather'
,
'gather_nd'
,
'gelu'
,
'grid_sampler'
,
'deformable_psroi_pooling'
,
'density_prior_box'
,
'depthwise_conv2d'
,
'group_norm'
,
'hard_shrink'
,
'hard_sigmoid'
,
'hard_swish'
,
'depthwise_conv2d_transpose'
,
'dequantize'
,
'dequantize_abs_max'
,
'hierarchical_sigmoid'
,
'hinge_loss'
,
'huber_loss'
,
'im2sequence'
,
'detection_map'
,
'diag'
,
'distribute_fpn_proposals'
,
'dpsgd'
,
'dropout'
,
'increment'
,
'kldiv_loss'
,
'l1_norm'
,
'leaky_relu'
,
'lod_reset'
,
'log'
,
'edit_distance'
,
'elementwise_add'
,
'elementwise_div'
,
'log_loss'
,
'logsigmoid'
,
'lookup_table'
,
'lookup_table_v2'
,
'lrn'
,
'elementwise_floordiv'
,
'elementwise_max'
,
'elementwise_min'
,
'elementwise_mod'
,
'elementwise_mul'
,
'elementwise_pow'
,
'elementwise_sub'
,
'elu'
,
'equal'
,
'exp'
,
'expand'
,
'eye'
,
'fake_channel_wise_dequantize_max_abs'
,
'fake_channel_wise_quantize_abs_max'
,
'fake_dequantize_max_abs'
,
'fake_quantize_abs_max'
,
'fake_quantize_dequantize_moving_average_abs_max'
,
'fake_quantize_moving_average_abs_max'
,
'fake_quantize_range_abs_max'
,
'fc'
,
'fill'
,
'fill_any_like'
,
'fill_constant'
,
'fill_constant_batch_size_like'
,
'fill_zeros_like'
,
'fill_zeros_like2'
,
'flatten'
,
'flatten2'
,
'floor'
,
'ftrl'
,
'fused_elemwise_activation'
,
'fused_embedding_fc_lstm'
,
'fused_embedding_seq_pool'
,
'fused_fc_elementwise_layernorm'
,
'fusion_gru'
,
'fusion_lstm'
,
'fusion_repeated_fc_relu'
,
'fusion_seqconv_eltadd_relu'
,
'fusion_seqexpand_concat_fc'
,
'fusion_seqpool_concat'
,
'fusion_seqpool_cvm_concat'
,
'fusion_squared_mat_sub'
,
'fusion_transpose_flatten_concat'
,
'gather'
,
'gather_nd'
,
'gather_tree'
,
'gaussian_random_batch_size_like'
,
'gelu'
,
'generate_mask_labels'
,
'generate_proposal_labels'
,
'generate_proposals'
,
'greater_equal'
,
'greater_than'
,
'grid_sampler'
,
'group_norm'
,
'hard_shrink'
,
'hard_sigmoid'
,
'hard_swish'
,
'hash'
,
'hierarchical_sigmoid'
,
'hinge_loss'
,
'huber_loss'
,
'im2sequence'
,
'increment'
,
'iou_similarity'
,
'is_empty'
,
'isfinite'
,
'isinf'
,
'isnan'
,
'kldiv_loss'
,
'l1_norm'
,
'lamb'
,
'lars_momentum'
,
'leaky_relu'
,
'less_equal'
,
'less_than'
,
'linspace'
,
'locality_aware_nms'
,
'lod_reset'
,
'log'
,
'log_loss'
,
'logical_and'
,
'logical_not'
,
'logical_or'
,
'logical_xor'
,
'logsigmoid'
,
'lookup_table'
,
'lookup_table_v2'
,
'lrn'
,
'margin_rank_loss'
,
'match_matrix_tensor'
,
'matmul'
,
'margin_rank_loss'
,
'match_matrix_tensor'
,
'matmul'
,
'max_pool2d_with_index'
,
'max_pool3d_with_index'
,
'maxout'
,
'mean'
,
'max_pool2d_with_index'
,
'max_pool3d_with_index'
,
'maxout'
,
'mean'
,
'minus'
,
'mean_iou'
,
'merge_ids'
,
'mine_hard_examples'
,
'minus'
,
'modified_huber_loss'
,
'mul'
,
'multiplex'
,
'nce'
,
'nearest_interp'
,
'pad'
,
'modified_huber_loss'
,
'momentum'
,
'moving_average_abs_max_scale'
,
'mul'
,
'pad2d'
,
'pad_constant_like'
,
'pixel_shuffle'
,
'pool2d'
,
'pool3d'
,
'pow'
,
'multiclass_nms'
,
'multiclass_nms2'
,
'multihead_matmul'
,
'multiplex'
,
'nce'
,
'prelu'
,
'prroi_pool'
,
'psroi_pool'
,
'rank_loss'
,
'reciprocal'
,
'nearest_interp'
,
'not_equal'
,
'one_hot'
,
'one_hot_v2'
,
'pad'
,
'pad2d'
,
'reduce_max'
,
'reduce_min'
,
'relu'
,
'relu6'
,
'reshape2'
,
'reverse'
,
'pad_constant_like'
,
'pixel_shuffle'
,
'polygon_box_transform'
,
'pool2d'
,
'roi_align'
,
'roi_perspective_transform'
,
'roi_pool'
,
'row_conv'
,
'rsqrt'
,
'pool3d'
,
'positive_negative_pair'
,
'pow'
,
'precision_recall'
,
'prelu'
,
'scale'
,
'scatter'
,
'scatter_nd_add'
,
'seed'
,
'selu'
,
'sequence_concat'
,
'prior_box'
,
'proximal_adagrad'
,
'proximal_gd'
,
'prroi_pool'
,
'psroi_pool'
,
'sequence_conv'
,
'sequence_expand'
,
'sequence_expand_as'
,
'sequence_pad'
,
'quantize'
,
'random_crop'
,
'range'
,
'rank_loss'
,
'reciprocal'
,
'reduce_all'
,
'sequence_pool'
,
'sequence_reshape'
,
'sequence_reverse'
,
'sequence_scatter'
,
'reduce_any'
,
'reduce_max'
,
'reduce_min'
,
'ref_by_trainer_id'
,
'relu'
,
'relu6'
,
'requantize'
,
'reshape2'
,
'retinanet_detection_output'
,
'retinanet_target_assign'
,
'reverse'
,
'roi_align'
,
'roi_perspective_transform'
,
'roi_pool'
,
'round'
,
'row_conv'
,
'rpn_target_assign'
,
'rsqrt'
,
'sampling_id'
,
'scale'
,
'scatter'
,
'scatter_nd_add'
,
'seed'
,
'selu'
,
'sequence_concat'
,
'sequence_conv'
,
'sequence_enumerate'
,
'sequence_erase'
,
'sequence_expand'
,
'sequence_expand_as'
,
'sequence_mask'
,
'sequence_pad'
,
'sequence_pool'
,
'sequence_reshape'
,
'sequence_reverse'
,
'sequence_scatter'
,
'sequence_slice'
,
'sequence_softmax'
,
'sequence_topk_avg_pooling'
,
'sequence_slice'
,
'sequence_softmax'
,
'sequence_topk_avg_pooling'
,
'sequence_unpad'
,
'sgd'
,
'shape'
,
'shard_index'
,
'shuffle_channel'
,
'sequence_unpad'
,
'shuffle_channel'
,
'sigmoid'
,
'sigmoid'
,
'sigmoid_cross_entropy_with_logits'
,
'sigmoid_focal_loss'
,
'sigmoid_cross_entropy_with_logits'
,
'sigmoid_focal_loss'
,
'sign'
,
'sin'
,
'sign'
,
'similarity_focus'
,
'sin'
,
'size'
,
'slice'
,
'smooth_l1_loss'
,
'slice'
,
'smooth_l1_loss'
,
'soft_relu'
,
'softmax'
,
'softshrink'
,
'softsign'
,
'soft_relu'
,
'softmax'
,
'softshrink'
,
'softsign'
,
'space_to_depth'
,
'space_to_depth'
,
'spectral_norm'
,
'split'
,
'spp'
,
'sqrt'
,
'square'
,
'spectral_norm'
,
'split'
,
'split_ids'
,
'spp'
,
'sqrt'
,
'square'
,
'squared_l2_distance'
,
'squared_l2_norm'
,
'squeeze'
,
'squeeze2'
,
'stack'
,
'squared_l2_distance'
,
'squared_l2_norm'
,
'squeeze'
,
'squeeze2'
,
'stack'
,
'stanh'
,
'strided_slice'
,
'sum'
,
'swish'
,
'tanh'
,
'tanh_shrink'
,
'stanh'
,
'strided_slice'
,
'swish'
,
'tanh'
,
'tanh_shrink'
,
'target_assign'
,
'teacher_student_sigmoid_loss'
,
'temporal_shift'
,
'teacher_student_sigmoid_loss'
,
'temporal_shift'
,
'thresholded_relu'
,
'thresholded_relu'
,
'top_k'
,
'transpose2'
,
'tree_conv'
,
'trilinear_interp'
,
'transpose2'
,
'tree_conv'
,
'trilinear_interp'
,
'unfold'
,
'unpool'
,
'unfold'
,
'uniform_random'
,
'uniform_random_batch_size_like'
,
'unique'
,
'unsqueeze'
,
'unsqueeze2'
,
'unstack'
,
'var_conv_2d'
,
'warpctc'
,
'unique_with_counts'
,
'unpool'
,
'unsqueeze'
,
'unsqueeze2'
,
'unstack'
,
'yolov3_loss'
'var_conv_2d'
,
'warpctc'
,
'where'
,
'yolo_box'
,
'yolov3_loss'
]
]
NO_NEED_FP64_CHECK_GRAD_CASES
=
[
'TestFSPOp'
]
# For cases in NO_FP64_CHECK_GRAD_CASES, the op test requires check_grad with fp64 precision
NO_FP64_CHECK_GRAD_CASES
=
[
'TestFSPOp'
]
NO_FP16_CHECK_GRAD_OP_LIST
=
[]
NO_NEED_FP16_CHECK_GRAD_CASES
=
[]
python/paddle/fluid/tests/unittests/white_list/op_check_grad_white_list.py
0 → 100644
浏览文件 @
73e97d39
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Grad op is not registered for Ops in EMPTY_GRAD_OP_LIST, so check grad
# will not be required.
EMPTY_GRAD_OP_LIST
=
[
'fill_zeros_like2'
,
'gaussian_random_batch_size_like'
,
'fill_constant_batch_size_like'
,
'iou_similarity'
,
'where'
,
'uniform_random_batch_size_like'
,
'box_coder'
,
'equal'
,
'greater_equal'
,
'greater_than'
,
'less_equal'
,
'sequence_enumerate'
,
'logical_and'
,
'logical_not'
,
'logical_or'
,
'logical_xor'
,
'unique'
,
'fusion_seqconv_eltadd_relu'
,
'prior_box'
,
'decayed_adagrad'
,
'crf_decoding'
,
'mine_hard_examples'
,
'fusion_seqpool_concat'
,
'fused_embedding_fc_lstm'
,
'top_k'
,
'uniform_random'
,
'multihead_matmul'
,
'edit_distance'
,
'shard_index'
,
'generate_proposals'
,
'density_prior_box'
,
'round'
,
'floor'
,
'ceil'
,
'precision_recall'
,
'proximal_adagrad'
,
'cast'
,
'isinf'
,
'isfinite'
,
'isnan'
,
'fill_constant'
,
'fusion_seqpool_cvm_concat'
,
'accuracy'
,
'fc'
,
'sgd'
,
'anchor_generator'
,
'fake_channel_wise_quantize_abs_max'
,
'fake_quantize_dequantize_moving_average_abs_max'
,
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
,
'moving_average_abs_max_scale'
,
'fake_quantize_moving_average_abs_max'
,
'fill_any_like'
,
'one_hot'
,
'gather_tree'
,
'lookup_sparse_table'
,
'lamb'
,
'fusion_squared_mat_sub'
,
'range'
,
'box_decoder_and_assign'
,
'one_hot_v2'
,
'shape'
,
'fusion_transpose_flatten_concat'
,
'lars_momentum'
,
'momentum'
,
'fusion_lstm'
,
'assign_value'
,
'polygon_box_transform'
,
'retinanet_detection_output'
,
'generate_proposal_labels'
,
'ctc_align'
,
'sequence_erase'
,
'fake_channel_wise_dequantize_max_abs'
,
'fake_dequantize_max_abs'
,
'generate_mask_labels'
,
'elementwise_floordiv'
,
'sum'
,
'ftrl'
,
'fusion_repeated_fc_relu'
,
'size'
,
'bipartite_match'
,
'elementwise_mod'
,
'multiclass_nms2'
,
'multiclass_nms'
,
'fill_zeros_like'
,
'adadelta'
,
'conv2d_fusion'
,
'adamax'
,
'sampling_id'
,
'dpsgd'
,
'target_assign'
,
'random_crop'
,
'mean_iou'
,
'reduce_all'
,
'reduce_any'
,
'attention_lstm'
,
'fusion_seqexpand_concat_fc'
,
'dequantize_abs_max'
,
'clip_by_norm'
,
'diag'
,
'yolo_box'
,
'adam'
,
'fusion_gru'
,
'locality_aware_nms'
,
'ref_by_trainer_id'
,
'linspace'
,
'box_clip'
,
'similarity_focus'
,
'detection_map'
,
'sequence_mask'
,
'coalesce_tensor'
,
'arg_min'
,
'arg_max'
,
'split_ids'
,
'adagrad'
,
'fill'
,
'argsort'
,
'dequantize'
,
'merge_ids'
,
'fused_fc_elementwise_layernorm'
,
'retinanet_target_assign'
,
'rpn_target_assign'
,
'requantize'
,
'distribute_fpn_proposals'
,
'auc'
,
'quantize'
,
'positive_negative_pair'
,
'hash'
,
'less_than'
,
'not_equal'
,
'eye'
,
'chunk_eval'
,
'is_empty'
,
'proximal_gd'
,
'collect_fpn_proposals'
,
'unique_with_counts'
]
# Special cases do not need to check grad
NO_NEED_CHECK_GRAD_CASES
=
[
'TestLookupTableOpWithPadding'
,
'TestLookupTableOpWithTensorIdsAndPadding'
,
'TestLookupTableOpWithPadding'
,
'TestLookupTableOpWithTensorIdsAndPadding'
,
'TestSeqMaxPool2DInference'
,
'TestSeqMaxPool2DInferenceLen0'
,
'TestSeqMaxPool2DInferenceLen0LoDLevel2'
,
'TestDropoutOp4'
,
'TestDropoutOp5'
,
'TestDropoutOp8'
,
'TestDropoutOp9'
,
'TestFP16DropoutOp'
,
'TestFP16DropoutOp2'
,
'TestExpandOpBoolean'
,
'TestFusedEmbeddingSeqPoolOp'
,
'TestMKLDNNConcatOp'
,
'TestMKLDNNConcatOp'
,
'TestMKLDNNConcatOp3'
,
'TestElementwiseMulMKLDNNOp_Integrated_With_Convs'
,
'TestConv2dTransposeMKLDNNOp'
,
'TestMKLDNNFuseBias'
,
'TestMKLDNNWithPad'
,
'TestMKLDNNWithStride'
,
'TestMKLDNNWithAsymPad'
,
'TestMKLDNNWithSamePad'
,
'TestMKLDNNWithValidPad'
,
'TestMKLDNNWithValidPad_NHWC'
,
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录