提交 73e97d39 编写于 作者: Z Zhang Ting 提交者: Tao Luo

add check for check_grad in Op unittests (#21383)

上级 0677a1c1
......@@ -33,7 +33,7 @@ from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, OpProtoHolder, Variable
from testsuite import create_op, set_input, append_input_output, append_loss_ops
from paddle.fluid import unique_name
from white_list import op_accuracy_white_list
from white_list import op_accuracy_white_list, op_check_grad_white_list
def _set_use_system_allocator(value=None):
......@@ -1362,9 +1362,9 @@ class OpTestFp16(OpTestBase):
np.random.set_state(cls._np_rand_state)
random.setstate(cls._py_rand_state)
if cls.__name__ not in op_accuracy_white_list.NO_NEED_FP16_CHECK_GRAD_CASES \
and not hasattr(cls, "exist_check_grad") \
and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST:
if not hasattr(cls, "exist_check_grad") \
and cls.__name__ not in op_check_grad_white_list.NO_NEED_CHECK_GRAD_CASES \
and cls.op_type not in op_check_grad_white_list.EMPTY_GRAD_OP_LIST:
raise AssertionError("This test of %s op needs check_grad." %
cls.op_type)
......@@ -1438,8 +1438,12 @@ class OpTest(OpTestBase):
np.random.set_state(cls._np_rand_state)
random.setstate(cls._py_rand_state)
if cls.__name__ not in op_accuracy_white_list.NO_NEED_FP64_CHECK_GRAD_CASES \
# only for pass ci, but cases in NO_FP64_CHECK_GRAD_CASES
# and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
if cls.__name__ not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_CASES \
and not hasattr(cls, 'exist_fp64_check_grad') \
and cls.__name__ not in op_check_grad_white_list.NO_NEED_CHECK_GRAD_CASES \
and cls.op_type not in op_check_grad_white_list.EMPTY_GRAD_OP_LIST \
and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST:
raise AssertionError("This test of %s op needs fp64 check_grad." %
cls.op_type)
......@@ -24,81 +24,43 @@ FP16_CHECK_OP_LIST = [
# For op in NO_FP64_CHECK_GRAD_OP_LIST, the op test requires check_grad with fp64 precision
NO_FP64_CHECK_GRAD_OP_LIST = [
'abs', 'accuracy', 'acos', 'adadelta', 'adagrad', 'adam', 'adamax',
'add_position_encoding', 'affine_grid', 'anchor_generator', 'arg_max',
'arg_min', 'argsort', 'asin', 'assign_value', 'atan', 'attention_lstm',
'auc', 'bilinear_interp', 'bilinear_tensor_product', 'bipartite_match',
'box_clip', 'box_coder', 'box_decoder_and_assign', 'brelu', 'cast', 'ceil',
'center_loss', 'chunk_eval', 'clip', 'clip_by_norm', 'coalesce_tensor',
'collect_fpn_proposals', 'concat', 'conv2d', 'conv2d_fusion',
'conv2d_transpose', 'conv3d', 'conv3d_transpose', 'conv_shift', 'cos',
'cos_sim', 'crf_decoding', 'crop', 'crop_tensor', 'cross_entropy',
'cross_entropy2', 'ctc_align', 'cudnn_lstm', 'cvm', 'data_norm',
'decayed_adagrad', 'deformable_conv', 'deformable_conv_v1',
'deformable_psroi_pooling', 'density_prior_box', 'depthwise_conv2d',
'depthwise_conv2d_transpose', 'dequantize', 'dequantize_abs_max',
'detection_map', 'diag', 'distribute_fpn_proposals', 'dpsgd', 'dropout',
'edit_distance', 'elementwise_add', 'elementwise_div',
'elementwise_floordiv', 'elementwise_max', 'elementwise_min',
'elementwise_mod', 'elementwise_mul', 'elementwise_pow', 'elementwise_sub',
'elu', 'equal', 'exp', 'expand', 'eye',
'fake_channel_wise_dequantize_max_abs',
'fake_channel_wise_quantize_abs_max', 'fake_dequantize_max_abs',
'fake_quantize_abs_max', 'fake_quantize_dequantize_moving_average_abs_max',
'fake_quantize_moving_average_abs_max', 'fake_quantize_range_abs_max', 'fc',
'fill', 'fill_any_like', 'fill_constant', 'fill_constant_batch_size_like',
'fill_zeros_like', 'fill_zeros_like2', 'flatten', 'flatten2', 'floor',
'ftrl', 'fused_elemwise_activation', 'fused_embedding_fc_lstm',
'fused_embedding_seq_pool', 'fused_fc_elementwise_layernorm', 'fusion_gru',
'fusion_lstm', 'fusion_repeated_fc_relu', 'fusion_seqconv_eltadd_relu',
'fusion_seqexpand_concat_fc', 'fusion_seqpool_concat',
'fusion_seqpool_cvm_concat', 'fusion_squared_mat_sub',
'fusion_transpose_flatten_concat', 'gather', 'gather_nd', 'gather_tree',
'gaussian_random_batch_size_like', 'gelu', 'generate_mask_labels',
'generate_proposal_labels', 'generate_proposals', 'greater_equal',
'greater_than', 'grid_sampler', 'group_norm', 'hard_shrink', 'hard_sigmoid',
'hard_swish', 'hash', 'hierarchical_sigmoid', 'hinge_loss', 'huber_loss',
'im2sequence', 'increment', 'iou_similarity', 'is_empty', 'isfinite',
'isinf', 'isnan', 'kldiv_loss', 'l1_norm', 'lamb', 'lars_momentum',
'leaky_relu', 'less_equal', 'less_than', 'linspace', 'locality_aware_nms',
'lod_reset', 'log', 'log_loss', 'logical_and', 'logical_not', 'logical_or',
'logical_xor', 'logsigmoid', 'lookup_table', 'lookup_table_v2', 'lrn',
'abs', 'acos', 'add_position_encoding', 'affine_grid', 'asin', 'atan',
'bilinear_interp', 'bilinear_tensor_product', 'brelu', 'center_loss',
'clip', 'concat', 'conv2d', 'conv2d_transpose', 'conv3d',
'conv3d_transpose', 'conv_shift', 'cos', 'cos_sim', 'crop', 'crop_tensor',
'cross_entropy', 'cross_entropy2', 'cudnn_lstm', 'cvm', 'data_norm',
'deformable_conv', 'deformable_conv_v1', 'deformable_psroi_pooling',
'depthwise_conv2d', 'depthwise_conv2d_transpose', 'dropout',
'elementwise_add', 'elementwise_div', 'elementwise_max', 'elementwise_min',
'elementwise_mul', 'elementwise_pow', 'elementwise_sub', 'elu', 'exp',
'expand', 'flatten', 'flatten2', 'fused_elemwise_activation',
'fused_embedding_seq_pool', 'gather', 'gather_nd', 'gelu', 'grid_sampler',
'group_norm', 'hard_shrink', 'hard_sigmoid', 'hard_swish',
'hierarchical_sigmoid', 'hinge_loss', 'huber_loss', 'im2sequence',
'increment', 'kldiv_loss', 'l1_norm', 'leaky_relu', 'lod_reset', 'log',
'log_loss', 'logsigmoid', 'lookup_table', 'lookup_table_v2', 'lrn',
'margin_rank_loss', 'match_matrix_tensor', 'matmul',
'max_pool2d_with_index', 'max_pool3d_with_index', 'maxout', 'mean',
'mean_iou', 'merge_ids', 'mine_hard_examples', 'minus',
'modified_huber_loss', 'momentum', 'moving_average_abs_max_scale', 'mul',
'multiclass_nms', 'multiclass_nms2', 'multihead_matmul', 'multiplex', 'nce',
'nearest_interp', 'not_equal', 'one_hot', 'one_hot_v2', 'pad', 'pad2d',
'pad_constant_like', 'pixel_shuffle', 'polygon_box_transform', 'pool2d',
'pool3d', 'positive_negative_pair', 'pow', 'precision_recall', 'prelu',
'prior_box', 'proximal_adagrad', 'proximal_gd', 'prroi_pool', 'psroi_pool',
'quantize', 'random_crop', 'range', 'rank_loss', 'reciprocal', 'reduce_all',
'reduce_any', 'reduce_max', 'reduce_min', 'ref_by_trainer_id', 'relu',
'relu6', 'requantize', 'reshape2', 'retinanet_detection_output',
'retinanet_target_assign', 'reverse', 'roi_align',
'roi_perspective_transform', 'roi_pool', 'round', 'row_conv',
'rpn_target_assign', 'rsqrt', 'sampling_id', 'scale', 'scatter',
'scatter_nd_add', 'seed', 'selu', 'sequence_concat', 'sequence_conv',
'sequence_enumerate', 'sequence_erase', 'sequence_expand',
'sequence_expand_as', 'sequence_mask', 'sequence_pad', 'sequence_pool',
'sequence_reshape', 'sequence_reverse', 'sequence_scatter',
'max_pool2d_with_index', 'max_pool3d_with_index', 'maxout', 'mean', 'minus',
'modified_huber_loss', 'mul', 'multiplex', 'nce', 'nearest_interp', 'pad',
'pad2d', 'pad_constant_like', 'pixel_shuffle', 'pool2d', 'pool3d', 'pow',
'prelu', 'prroi_pool', 'psroi_pool', 'rank_loss', 'reciprocal',
'reduce_max', 'reduce_min', 'relu', 'relu6', 'reshape2', 'reverse',
'roi_align', 'roi_perspective_transform', 'roi_pool', 'row_conv', 'rsqrt',
'scale', 'scatter', 'scatter_nd_add', 'seed', 'selu', 'sequence_concat',
'sequence_conv', 'sequence_expand', 'sequence_expand_as', 'sequence_pad',
'sequence_pool', 'sequence_reshape', 'sequence_reverse', 'sequence_scatter',
'sequence_slice', 'sequence_softmax', 'sequence_topk_avg_pooling',
'sequence_unpad', 'sgd', 'shape', 'shard_index', 'shuffle_channel',
'sigmoid', 'sigmoid_cross_entropy_with_logits', 'sigmoid_focal_loss',
'sign', 'similarity_focus', 'sin', 'size', 'slice', 'smooth_l1_loss',
'soft_relu', 'softmax', 'softshrink', 'softsign', 'space_to_depth',
'spectral_norm', 'split', 'split_ids', 'spp', 'sqrt', 'square',
'sequence_unpad', 'shuffle_channel', 'sigmoid',
'sigmoid_cross_entropy_with_logits', 'sigmoid_focal_loss', 'sign', 'sin',
'slice', 'smooth_l1_loss', 'soft_relu', 'softmax', 'softshrink', 'softsign',
'space_to_depth', 'spectral_norm', 'split', 'spp', 'sqrt', 'square',
'squared_l2_distance', 'squared_l2_norm', 'squeeze', 'squeeze2', 'stack',
'stanh', 'strided_slice', 'sum', 'swish', 'tanh', 'tanh_shrink',
'target_assign', 'teacher_student_sigmoid_loss', 'temporal_shift',
'thresholded_relu', 'top_k', 'transpose2', 'tree_conv', 'trilinear_interp',
'unfold', 'uniform_random', 'uniform_random_batch_size_like', 'unique',
'unique_with_counts', 'unpool', 'unsqueeze', 'unsqueeze2', 'unstack',
'var_conv_2d', 'warpctc', 'where', 'yolo_box', 'yolov3_loss'
'stanh', 'strided_slice', 'swish', 'tanh', 'tanh_shrink',
'teacher_student_sigmoid_loss', 'temporal_shift', 'thresholded_relu',
'transpose2', 'tree_conv', 'trilinear_interp', 'unfold', 'unpool',
'unsqueeze', 'unsqueeze2', 'unstack', 'var_conv_2d', 'warpctc',
'yolov3_loss'
]
NO_NEED_FP64_CHECK_GRAD_CASES = ['TestFSPOp']
NO_FP16_CHECK_GRAD_OP_LIST = []
NO_NEED_FP16_CHECK_GRAD_CASES = []
# For cases in NO_FP64_CHECK_GRAD_CASES, the op test requires check_grad with fp64 precision
NO_FP64_CHECK_GRAD_CASES = ['TestFSPOp']
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Grad op is not registered for Ops in EMPTY_GRAD_OP_LIST, so check grad
# will not be required.
EMPTY_GRAD_OP_LIST = [
'fill_zeros_like2', 'gaussian_random_batch_size_like',
'fill_constant_batch_size_like', 'iou_similarity', 'where',
'uniform_random_batch_size_like', 'box_coder', 'equal', 'greater_equal',
'greater_than', 'less_equal', 'sequence_enumerate', 'logical_and',
'logical_not', 'logical_or', 'logical_xor', 'unique',
'fusion_seqconv_eltadd_relu', 'prior_box', 'decayed_adagrad',
'crf_decoding', 'mine_hard_examples', 'fusion_seqpool_concat',
'fused_embedding_fc_lstm', 'top_k', 'uniform_random', 'multihead_matmul',
'edit_distance', 'shard_index', 'generate_proposals', 'density_prior_box',
'round', 'floor', 'ceil', 'precision_recall', 'proximal_adagrad', 'cast',
'isinf', 'isfinite', 'isnan', 'fill_constant', 'fusion_seqpool_cvm_concat',
'accuracy', 'fc', 'sgd', 'anchor_generator',
'fake_channel_wise_quantize_abs_max',
'fake_quantize_dequantize_moving_average_abs_max', 'fake_quantize_abs_max',
'fake_quantize_range_abs_max', 'moving_average_abs_max_scale',
'fake_quantize_moving_average_abs_max', 'fill_any_like', 'one_hot',
'gather_tree', 'lookup_sparse_table', 'lamb', 'fusion_squared_mat_sub',
'range', 'box_decoder_and_assign', 'one_hot_v2', 'shape',
'fusion_transpose_flatten_concat', 'lars_momentum', 'momentum',
'fusion_lstm', 'assign_value', 'polygon_box_transform',
'retinanet_detection_output', 'generate_proposal_labels', 'ctc_align',
'sequence_erase', 'fake_channel_wise_dequantize_max_abs',
'fake_dequantize_max_abs', 'generate_mask_labels', 'elementwise_floordiv',
'sum', 'ftrl', 'fusion_repeated_fc_relu', 'size', 'bipartite_match',
'elementwise_mod', 'multiclass_nms2', 'multiclass_nms', 'fill_zeros_like',
'adadelta', 'conv2d_fusion', 'adamax', 'sampling_id', 'dpsgd',
'target_assign', 'random_crop', 'mean_iou', 'reduce_all', 'reduce_any',
'attention_lstm', 'fusion_seqexpand_concat_fc', 'dequantize_abs_max',
'clip_by_norm', 'diag', 'yolo_box', 'adam', 'fusion_gru',
'locality_aware_nms', 'ref_by_trainer_id', 'linspace', 'box_clip',
'similarity_focus', 'detection_map', 'sequence_mask', 'coalesce_tensor',
'arg_min', 'arg_max', 'split_ids', 'adagrad', 'fill', 'argsort',
'dequantize', 'merge_ids', 'fused_fc_elementwise_layernorm',
'retinanet_target_assign', 'rpn_target_assign', 'requantize',
'distribute_fpn_proposals', 'auc', 'quantize', 'positive_negative_pair',
'hash', 'less_than', 'not_equal', 'eye', 'chunk_eval', 'is_empty',
'proximal_gd', 'collect_fpn_proposals', 'unique_with_counts'
]
# Special cases do not need to check grad
NO_NEED_CHECK_GRAD_CASES = [
'TestLookupTableOpWithPadding',
'TestLookupTableOpWithTensorIdsAndPadding',
'TestLookupTableOpWithPadding',
'TestLookupTableOpWithTensorIdsAndPadding',
'TestSeqMaxPool2DInference',
'TestSeqMaxPool2DInferenceLen0',
'TestSeqMaxPool2DInferenceLen0LoDLevel2',
'TestDropoutOp4',
'TestDropoutOp5',
'TestDropoutOp8',
'TestDropoutOp9',
'TestFP16DropoutOp',
'TestFP16DropoutOp2',
'TestExpandOpBoolean',
'TestFusedEmbeddingSeqPoolOp',
'TestMKLDNNConcatOp',
'TestMKLDNNConcatOp',
'TestMKLDNNConcatOp3',
'TestElementwiseMulMKLDNNOp_Integrated_With_Convs',
'TestConv2dTransposeMKLDNNOp',
'TestMKLDNNFuseBias',
'TestMKLDNNWithPad',
'TestMKLDNNWithStride',
'TestMKLDNNWithAsymPad',
'TestMKLDNNWithSamePad',
'TestMKLDNNWithValidPad',
'TestMKLDNNWithValidPad_NHWC',
]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册