Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
72b5b5bf
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
72b5b5bf
编写于
9月 06, 2022
作者:
Y
Yuang Liu
提交者:
GitHub
9月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[dygraph hybrid pp for interleave] The interleave scheduler for pipeline parallel (#45497)
上级
fd86a938
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
783 addition
and
150 deletion
+783
-150
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+2
-2
python/paddle/distributed/fleet/base/topology.py
python/paddle/distributed/fleet/base/topology.py
+12
-0
python/paddle/distributed/fleet/meta_parallel/__init__.py
python/paddle/distributed/fleet/meta_parallel/__init__.py
+1
-0
python/paddle/distributed/fleet/meta_parallel/parallel_layers/pp_layers.py
...tributed/fleet/meta_parallel/parallel_layers/pp_layers.py
+4
-1
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+365
-27
python/paddle/distributed/fleet/meta_parallel/pp_utils/p2p_communication.py
...ributed/fleet/meta_parallel/pp_utils/p2p_communication.py
+169
-107
python/paddle/distributed/fleet/model.py
python/paddle/distributed/fleet/model.py
+12
-2
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+0
-7
python/paddle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
...dle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
+14
-0
python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_pp_layer_with_virtual_stage.py
...tive/fleet/hybrid_parallel_pp_layer_with_virtual_stage.py
+4
-2
python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_pp_transformer_with_virtual_stage.py
...leet/hybrid_parallel_pp_transformer_with_virtual_stage.py
+195
-0
python/paddle/fluid/tests/unittests/collective/fleet/test_parallel_dygraph_pipeline_parallel_with_virtual_stage.py
..._parallel_dygraph_pipeline_parallel_with_virtual_stage.py
+4
-2
python/paddle/fluid/tests/unittests/collective/fleet/testslist.csv
...ddle/fluid/tests/unittests/collective/fleet/testslist.csv
+1
-0
未找到文件。
python/paddle/distributed/collective.py
浏览文件 @
72b5b5bf
...
@@ -2384,7 +2384,7 @@ def isend(tensor, dst, group=None):
...
@@ -2384,7 +2384,7 @@ def isend(tensor, dst, group=None):
assert
group_dst_rank
>=
0
,
(
"dst rank out of group, need global rank"
)
assert
group_dst_rank
>=
0
,
(
"dst rank out of group, need global rank"
)
return
group
.
process_group
.
send
(
tensor
,
group_dst_rank
)
return
group
.
process_group
.
send
(
tensor
,
group_dst_rank
)
else
:
else
:
raise
RuntimeError
(
"
Don't support static graph mode currently
."
)
raise
RuntimeError
(
"
Only support eager dygraph mode
."
)
def
irecv
(
tensor
,
src
=
None
,
group
=
None
):
def
irecv
(
tensor
,
src
=
None
,
group
=
None
):
...
@@ -2433,7 +2433,7 @@ def irecv(tensor, src=None, group=None):
...
@@ -2433,7 +2433,7 @@ def irecv(tensor, src=None, group=None):
assert
group_src_rank
>=
0
,
(
"src rank out of group, need global rank"
)
assert
group_src_rank
>=
0
,
(
"src rank out of group, need global rank"
)
return
group
.
process_group
.
recv
(
tensor
,
group_src_rank
)
return
group
.
process_group
.
recv
(
tensor
,
group_src_rank
)
else
:
else
:
raise
RuntimeError
(
"
Don't support static graph mode currently
."
)
raise
RuntimeError
(
"
Only support eager dygraph mode
."
)
class
P2POp
(
object
):
class
P2POp
(
object
):
...
...
python/paddle/distributed/fleet/base/topology.py
浏览文件 @
72b5b5bf
...
@@ -240,6 +240,14 @@ class HybridCommunicateGroup(object):
...
@@ -240,6 +240,14 @@ class HybridCommunicateGroup(object):
return
parallel_group
,
parallel_comm_group
return
parallel_group
,
parallel_comm_group
def
_get_p2p_next_rank
(
self
):
assert
hasattr
(
self
,
'next_rank'
),
"next_rank has not been inited"
return
self
.
next_rank
def
_get_p2p_prev_rank
(
self
):
assert
hasattr
(
self
,
'prev_rank'
),
"prev_rank has not been inited"
return
self
.
prev_rank
def
_set_p2p_group
(
self
):
def
_set_p2p_group
(
self
):
comm_lists
=
self
.
_topo
.
get_comm_list
(
'pipe'
)
comm_lists
=
self
.
_topo
.
get_comm_list
(
'pipe'
)
...
@@ -255,6 +263,10 @@ class HybridCommunicateGroup(object):
...
@@ -255,6 +263,10 @@ class HybridCommunicateGroup(object):
next_rank
=
comm_ranks
[(
idx
+
1
)
%
self
.
_pp_degree
]
next_rank
=
comm_ranks
[(
idx
+
1
)
%
self
.
_pp_degree
]
prev_rank
=
comm_ranks
[(
idx
-
1
)
%
self
.
_pp_degree
]
prev_rank
=
comm_ranks
[(
idx
-
1
)
%
self
.
_pp_degree
]
if
self
.
global_rank
==
curr_rank
:
self
.
next_rank
=
next_rank
self
.
prev_rank
=
prev_rank
next_group
=
paddle
.
distributed
.
new_group
(
next_group
=
paddle
.
distributed
.
new_group
(
ranks
=
[
curr_rank
,
next_rank
])
ranks
=
[
curr_rank
,
next_rank
])
if
self
.
global_rank
==
curr_rank
:
if
self
.
global_rank
==
curr_rank
:
...
...
python/paddle/distributed/fleet/meta_parallel/__init__.py
浏览文件 @
72b5b5bf
...
@@ -24,6 +24,7 @@ from .parallel_layers import model_parallel_random_seed # noqa: F401
...
@@ -24,6 +24,7 @@ from .parallel_layers import model_parallel_random_seed # noqa: F401
from
.parallel_layers
import
get_rng_state_tracker
# noqa: F401
from
.parallel_layers
import
get_rng_state_tracker
# noqa: F401
from
.tensor_parallel
import
TensorParallel
# noqa: F401
from
.tensor_parallel
import
TensorParallel
# noqa: F401
from
.pipeline_parallel
import
PipelineParallel
# noqa: F401
from
.pipeline_parallel
import
PipelineParallel
# noqa: F401
from
.pipeline_parallel
import
PipelineParallelWithInterleave
# noqa: F401
from
.sharding_parallel
import
ShardingParallel
# noqa: F401
from
.sharding_parallel
import
ShardingParallel
# noqa: F401
__all__
=
[]
__all__
=
[]
python/paddle/distributed/fleet/meta_parallel/parallel_layers/pp_layers.py
浏览文件 @
72b5b5bf
...
@@ -189,7 +189,7 @@ class PipelineLayerChunk(Layer):
...
@@ -189,7 +189,7 @@ class PipelineLayerChunk(Layer):
# Users shouldn't call PipelineLayerChunk directly, since all logics relating with recompute
# Users shouldn't call PipelineLayerChunk directly, since all logics relating with recompute
# are in the forward function of PipelineLayer. Any directly call will bring unexpected
# are in the forward function of PipelineLayer. Any directly call will bring unexpected
# behavior under recompute circumstance.
# behavior under recompute circumstance.
raise
NotImplemented
Error
(
raise
Permission
Error
(
"The forward function of PipelineLayerChunk cannot be called directly. "
"The forward function of PipelineLayerChunk cannot be called directly. "
"Please call forward function of PipelineLayer."
)
"Please call forward function of PipelineLayer."
)
...
@@ -385,6 +385,9 @@ class PipelineLayer(Layer):
...
@@ -385,6 +385,9 @@ class PipelineLayer(Layer):
start_idx
+
stage
+
1
]:
start_idx
+
stage
+
1
]:
return
stage
return
stage
def
get_num_virtual_stages
(
self
):
return
self
.
_num_virtual_pipeline_stages
def
get_model_chunks
(
self
):
def
get_model_chunks
(
self
):
return
None
if
self
.
_num_virtual_pipeline_stages
==
1
else
self
.
_model_chunks
return
None
if
self
.
_num_virtual_pipeline_stages
==
1
else
self
.
_model_chunks
...
...
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
72b5b5bf
...
@@ -22,6 +22,7 @@ from ..utils.hybrid_parallel_util import broadcast_dp_parameters
...
@@ -22,6 +22,7 @@ from ..utils.hybrid_parallel_util import broadcast_dp_parameters
from
..utils.hybrid_parallel_util
import
broadcast_sharding_parameters
from
..utils.hybrid_parallel_util
import
broadcast_sharding_parameters
from
..utils.log_util
import
logger
from
..utils.log_util
import
logger
from
..meta_optimizers.dygraph_optimizer
import
HybridParallelOptimizer
,
HybridParallelGradScaler
from
..meta_optimizers.dygraph_optimizer
import
HybridParallelOptimizer
,
HybridParallelGradScaler
import
paddle.fluid.framework
as
framework
from
.pp_utils
import
p2p_communication
as
p2p
from
.pp_utils
import
p2p_communication
as
p2p
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
...
@@ -53,12 +54,15 @@ class PipelineParallel(MetaParallelBase):
...
@@ -53,12 +54,15 @@ class PipelineParallel(MetaParallelBase):
self
.
stage_id
=
self
.
_hcg
.
get_stage_id
()
self
.
stage_id
=
self
.
_hcg
.
get_stage_id
()
self
.
pp_group
=
self
.
_hcg
.
get_pipe_parallel_group
()
self
.
pp_group
=
self
.
_hcg
.
get_pipe_parallel_group
()
self
.
_virtual_pp_world_size
=
None
self
.
_virtual_pp_rank
=
None
self
.
_real_pp_world_size
=
self
.
num_stages
self
.
_real_pp_rank
=
self
.
stage_id
p2p
.
initialize_p2p_groups
(
hcg
,
self
.
_using_cache
)
p2p
.
initialize_p2p_groups
(
hcg
,
self
.
_using_cache
)
_initialize_recompute_hcg
(
hcg
)
_initialize_recompute_hcg
(
hcg
)
self
.
is_first_stage
=
self
.
stage_id
==
0
self
.
is_last_stage
=
(
self
.
stage_id
==
(
self
.
num_stages
-
1
))
self
.
global_rank
=
self
.
_hcg
.
get_global_rank
()
self
.
global_rank
=
self
.
_hcg
.
get_global_rank
()
self
.
micro_batch_id
=
0
self
.
micro_batch_id
=
0
...
@@ -79,6 +83,28 @@ class PipelineParallel(MetaParallelBase):
...
@@ -79,6 +83,28 @@ class PipelineParallel(MetaParallelBase):
logger
.
info
(
"start broadcast dp parameters"
)
logger
.
info
(
"start broadcast dp parameters"
)
broadcast_dp_parameters
(
self
.
_layers
,
self
.
_hcg
)
broadcast_dp_parameters
(
self
.
_layers
,
self
.
_hcg
)
def
is_pipeline_first_stage
(
self
,
ignore_virtual
=
False
):
if
not
ignore_virtual
:
if
self
.
_virtual_pp_world_size
is
not
None
:
assert
self
.
_virtual_pp_rank
is
not
None
if
self
.
_virtual_pp_rank
!=
0
:
return
False
assert
self
.
_real_pp_rank
is
not
None
return
self
.
_real_pp_rank
==
0
def
is_pipeline_last_stage
(
self
,
ignore_virtual
=
False
):
if
not
ignore_virtual
:
if
self
.
_virtual_pp_world_size
is
not
None
:
assert
self
.
_virtual_pp_rank
is
not
None
if
self
.
_virtual_pp_rank
!=
(
self
.
_virtual_pp_world_size
-
1
):
return
False
assert
self
.
_real_pp_rank
is
not
None
assert
self
.
_real_pp_world_size
is
not
None
return
self
.
_real_pp_rank
==
(
self
.
_real_pp_world_size
-
1
)
def
set_virtual_pipeline_rank
(
self
,
rank
):
self
.
_virtual_pp_rank
=
rank
def
forward_backward_pipeline
(
self
,
data
,
scaler
=
None
):
def
forward_backward_pipeline
(
self
,
data
,
scaler
=
None
):
# use the 1f1b scheduling strategy.
# use the 1f1b scheduling strategy.
# this strategy is inspired by:
# this strategy is inspired by:
...
@@ -103,23 +129,24 @@ class PipelineParallel(MetaParallelBase):
...
@@ -103,23 +129,24 @@ class PipelineParallel(MetaParallelBase):
output_buffers
=
[]
output_buffers
=
[]
for
step_id
in
range
(
startup_steps
):
for
step_id
in
range
(
startup_steps
):
input_tensor
=
p2p
.
recv_forward
()
input_tensor
=
p2p
.
recv_forward
(
self
.
is_pipeline_first_stage
()
)
output_tensor
=
self
.
_forward_step
(
input_tensor
)
output_tensor
=
self
.
_forward_step
(
input_tensor
)
p2p
.
send_forward
(
output_tensor
)
p2p
.
send_forward
(
output_tensor
,
self
.
is_pipeline_last_stage
()
)
input_buffers
.
append
(
input_tensor
)
input_buffers
.
append
(
input_tensor
)
output_buffers
.
append
(
output_tensor
)
output_buffers
.
append
(
output_tensor
)
if
steady_steps
>
0
:
if
steady_steps
>
0
:
input_tensor
=
p2p
.
recv_forward
()
input_tensor
=
p2p
.
recv_forward
(
self
.
is_pipeline_first_stage
()
)
for
i
in
range
(
steady_steps
):
for
i
in
range
(
steady_steps
):
last_iter
=
(
i
==
(
steady_steps
-
1
))
last_iter
=
(
i
==
(
steady_steps
-
1
))
output_tensor
=
self
.
_forward_step
(
input_tensor
)
output_tensor
=
self
.
_forward_step
(
input_tensor
)
output_tensor_grad
=
p2p
.
send_forward_recv_backward
(
output_tensor
)
output_tensor_grad
=
p2p
.
send_forward_recv_backward
(
output_tensor
,
self
.
is_pipeline_last_stage
())
input_buffers
.
append
(
input_tensor
)
input_buffers
.
append
(
input_tensor
)
output_buffers
.
append
(
output_tensor
)
output_buffers
.
append
(
output_tensor
)
...
@@ -132,33 +159,41 @@ class PipelineParallel(MetaParallelBase):
...
@@ -132,33 +159,41 @@ class PipelineParallel(MetaParallelBase):
if
last_iter
:
if
last_iter
:
input_tensor
=
None
input_tensor
=
None
p2p
.
send_backward
(
input_tensor_grad
)
p2p
.
send_backward
(
input_tensor_grad
,
self
.
is_pipeline_first_stage
())
else
:
else
:
input_tensor
=
p2p
.
send_backward_recv_forward
(
input_tensor_grad
)
input_tensor
=
p2p
.
send_backward_recv_forward
(
input_tensor_grad
,
self
.
is_pipeline_first_stage
())
for
i
in
range
(
startup_steps
):
for
i
in
range
(
startup_steps
):
input_tensor
=
input_buffers
.
pop
(
0
)
input_tensor
=
input_buffers
.
pop
(
0
)
output_tensor
=
output_buffers
.
pop
(
0
)
output_tensor
=
output_buffers
.
pop
(
0
)
output_tensor_grad
=
p2p
.
recv_backward
()
output_tensor_grad
=
p2p
.
recv_backward
(
self
.
is_pipeline_last_stage
())
input_tensor_grad
=
self
.
_backward_step
(
input_tensor
,
output_tensor
,
input_tensor_grad
=
self
.
_backward_step
(
input_tensor
,
output_tensor
,
output_tensor_grad
)
output_tensor_grad
)
p2p
.
send_backward
(
input_tensor_grad
)
p2p
.
send_backward
(
input_tensor_grad
,
self
.
is_pipeline_first_stage
()
)
self
.
_layers
.
allreduce_shared_weight_gradients
()
self
.
_layers
.
allreduce_shared_weight_gradients
()
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
train_loss
=
self
.
_broadcast_final_loss
()
train_loss
=
self
.
_broadcast_final_loss
()
return
train_loss
return
train_loss
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
,
scaler
=
None
):
def
_prepare_training
(
self
,
data
,
optimizer
,
lr_scheduler
):
# reset the virtual pp rank for each run
self
.
set_virtual_pipeline_rank
(
0
)
assert
isinstance
(
optimizer
,
HybridParallelOptimizer
),
(
assert
isinstance
(
optimizer
,
HybridParallelOptimizer
),
(
'optimizer should be HybridParallelOptimizer subclass.'
)
'optimizer should be HybridParallelOptimizer subclass.'
)
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
'Please enable the generation of gradients.'
)
'Please enable the generation of gradients.'
)
if
self
.
is_first_stage
or
self
.
is_last_stage
:
if
self
.
is_pipeline_first_stage
(
ignore_virtual
=
True
)
or
self
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
assert
data
is
not
None
,
(
assert
data
is
not
None
,
(
"For the first and the last stage, the data must be set."
)
"For the first and the last stage, the data must be set."
)
else
:
else
:
...
@@ -169,7 +204,11 @@ class PipelineParallel(MetaParallelBase):
...
@@ -169,7 +204,11 @@ class PipelineParallel(MetaParallelBase):
self
.
_layers
.
train
()
self
.
_layers
.
train
()
# 1f1b for pipeline
return
data
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
,
scaler
=
None
):
data
=
self
.
_prepare_training
(
data
,
optimizer
,
lr_scheduler
)
# 1f1b scheduler for pipeline parallel
train_loss
=
self
.
forward_backward_pipeline
(
data
,
scaler
)
train_loss
=
self
.
forward_backward_pipeline
(
data
,
scaler
)
# optimizer
# optimizer
...
@@ -179,6 +218,9 @@ class PipelineParallel(MetaParallelBase):
...
@@ -179,6 +218,9 @@ class PipelineParallel(MetaParallelBase):
return
train_loss
return
train_loss
def
eval_batch
(
self
,
data
,
compute_loss
=
False
):
def
eval_batch
(
self
,
data
,
compute_loss
=
False
):
# reset the virtual pp rank for each run
self
.
set_virtual_pipeline_rank
(
0
)
self
.
_layers
.
eval
()
self
.
_layers
.
eval
()
self
.
_compute_loss
=
compute_loss
self
.
_compute_loss
=
compute_loss
...
@@ -198,28 +240,28 @@ class PipelineParallel(MetaParallelBase):
...
@@ -198,28 +240,28 @@ class PipelineParallel(MetaParallelBase):
output_buffers
=
[]
output_buffers
=
[]
for
step_id
in
range
(
startup_steps
):
for
step_id
in
range
(
startup_steps
):
input_tensor
=
p2p
.
recv_forward
()
input_tensor
=
p2p
.
recv_forward
(
self
.
is_pipeline_first_stage
()
)
output_tensor
=
self
.
_forward_step
(
input_tensor
)
output_tensor
=
self
.
_forward_step
(
input_tensor
)
p2p
.
send_forward
(
output_tensor
)
p2p
.
send_forward
(
output_tensor
,
self
.
is_pipeline_last_stage
()
)
input_buffers
.
append
(
input_tensor
)
input_buffers
.
append
(
input_tensor
)
output_buffers
.
append
(
output_tensor
)
output_buffers
.
append
(
output_tensor
)
if
steady_steps
>
0
:
if
steady_steps
>
0
:
input_tensor
=
p2p
.
recv_forward
()
input_tensor
=
p2p
.
recv_forward
(
self
.
is_pipeline_first_stage
()
)
for
i
in
range
(
steady_steps
):
for
i
in
range
(
steady_steps
):
last_iter
=
(
i
==
(
steady_steps
-
1
))
last_iter
=
(
i
==
(
steady_steps
-
1
))
output_tensor
=
self
.
_forward_step
(
input_tensor
)
output_tensor
=
self
.
_forward_step
(
input_tensor
)
p2p
.
send_forward
(
output_tensor
)
p2p
.
send_forward
(
output_tensor
,
self
.
is_pipeline_last_stage
()
)
input_buffers
.
append
(
input_tensor
)
input_buffers
.
append
(
input_tensor
)
output_buffers
.
append
(
output_tensor
)
output_buffers
.
append
(
output_tensor
)
if
not
last_iter
:
if
not
last_iter
:
input_tensor
=
p2p
.
recv_forward
()
input_tensor
=
p2p
.
recv_forward
(
self
.
is_pipeline_first_stage
()
)
if
self
.
_compute_loss
:
if
self
.
_compute_loss
:
self
.
train_loss
=
self
.
_broadcast_final_loss
()
self
.
train_loss
=
self
.
_broadcast_final_loss
()
...
@@ -228,13 +270,15 @@ class PipelineParallel(MetaParallelBase):
...
@@ -228,13 +270,15 @@ class PipelineParallel(MetaParallelBase):
return
self
.
train_loss
return
self
.
train_loss
def
_forward_step
(
self
,
input_tensor
):
def
_forward_step
(
self
,
input_tensor
,
chunk_id
=
None
):
if
self
.
stage_id
==
0
:
if
self
.
is_pipeline_first_stage
()
:
input_tensor
=
self
.
_load_micro_batch
(
self
.
micro_batch_id
)
input_tensor
=
self
.
_load_micro_batch
(
self
.
micro_batch_id
)
output_tensor
=
self
.
_layers
.
forward
(
input_tensor
)
assert
chunk_id
is
None
or
isinstance
(
chunk_id
,
int
)
output_tensor
=
self
.
_layers
.
forward
(
input_tensor
,
chunk_id
=
chunk_id
)
if
self
.
is_
last_stage
:
if
self
.
is_
pipeline_last_stage
()
:
# train calculate loss for train
# train calculate loss for train
if
self
.
_compute_loss
:
if
self
.
_compute_loss
:
assert
self
.
_layers
.
_loss_fn
is
not
None
,
"loss function should exist to compute loss"
assert
self
.
_layers
.
_loss_fn
is
not
None
,
"loss function should exist to compute loss"
...
@@ -253,12 +297,15 @@ class PipelineParallel(MetaParallelBase):
...
@@ -253,12 +297,15 @@ class PipelineParallel(MetaParallelBase):
self
.
total_loss
=
paddle
.
zeros_like
(
output_tensor
)
self
.
total_loss
=
paddle
.
zeros_like
(
output_tensor
)
self
.
total_loss
+=
output_tensor
.
detach
()
self
.
total_loss
+=
output_tensor
.
detach
()
self
.
micro_batch_id
+=
1
if
self
.
is_pipeline_first_stage
()
or
self
.
is_pipeline_last_stage
():
# Only increase micro batch id at virtual first/last pp stage.
# The micro batch id is used to load data, therefore, only increase it when load data.
self
.
micro_batch_id
+=
1
return
output_tensor
return
output_tensor
def
_backward_step
(
self
,
input_tensor
,
output_tensor
,
output_tensor_grad
):
def
_backward_step
(
self
,
input_tensor
,
output_tensor
,
output_tensor_grad
):
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
if
self
.
is_
last_stage
:
if
self
.
is_
pipeline_last_stage
()
:
assert
output_tensor_grad
is
None
assert
output_tensor_grad
is
None
if
self
.
scaler
:
if
self
.
scaler
:
paddle
.
autograd
.
backward
(
self
.
scaler
.
scale
(
output_tensor
))
paddle
.
autograd
.
backward
(
self
.
scaler
.
scale
(
output_tensor
))
...
@@ -289,7 +336,8 @@ class PipelineParallel(MetaParallelBase):
...
@@ -289,7 +336,8 @@ class PipelineParallel(MetaParallelBase):
begin
=
cache_id
*
self
.
micro_batch_size
begin
=
cache_id
*
self
.
micro_batch_size
end
=
begin
+
self
.
micro_batch_size
end
=
begin
+
self
.
micro_batch_size
if
self
.
is_first_stage
:
# The virtual first and last pipeline stage need data, all others don't need.
if
self
.
is_pipeline_first_stage
():
assert
len
(
inputs
)
==
2
,
"length of input should be 2"
assert
len
(
inputs
)
==
2
,
"length of input should be 2"
if
isinstance
(
inputs
[
0
],
tuple
):
if
isinstance
(
inputs
[
0
],
tuple
):
assert
len
(
assert
len
(
...
@@ -307,7 +355,7 @@ class PipelineParallel(MetaParallelBase):
...
@@ -307,7 +355,7 @@ class PipelineParallel(MetaParallelBase):
batch_size
=
inputs
[
0
].
shape
[
0
]
batch_size
=
inputs
[
0
].
shape
[
0
]
assert
self
.
micro_batch_size
*
self
.
accumulate_steps
==
batch_size
assert
self
.
micro_batch_size
*
self
.
accumulate_steps
==
batch_size
return
inputs
[
0
][
begin
:
end
,
:].
detach
()
return
inputs
[
0
][
begin
:
end
,
:].
detach
()
elif
self
.
is_
last_stage
:
elif
self
.
is_
pipeline_last_stage
()
:
assert
len
(
inputs
)
==
2
,
"length of input should be 2"
assert
len
(
inputs
)
==
2
,
"length of input should be 2"
if
isinstance
(
inputs
[
1
],
tuple
):
if
isinstance
(
inputs
[
1
],
tuple
):
batch_size
=
inputs
[
1
][
0
].
shape
[
0
]
batch_size
=
inputs
[
1
][
0
].
shape
[
0
]
...
@@ -323,7 +371,9 @@ class PipelineParallel(MetaParallelBase):
...
@@ -323,7 +371,9 @@ class PipelineParallel(MetaParallelBase):
inputs
=
None
inputs
=
None
def
_broadcast_final_loss
(
self
):
def
_broadcast_final_loss
(
self
):
if
self
.
is_last_stage
:
# Since the last backward run in interleave will set the virtual rank to 0,
# here we need to check last stage ignoring virtual stage.
if
self
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
assert
self
.
total_loss
is
not
None
,
"train_batch() in last stage should obtain vaild loss"
assert
self
.
total_loss
is
not
None
,
"train_batch() in last stage should obtain vaild loss"
loss
=
self
.
total_loss
.
detach
()
loss
=
self
.
total_loss
.
detach
()
is_fp32
=
paddle
.
to_tensor
(
is_fp32
=
paddle
.
to_tensor
(
...
@@ -364,3 +414,291 @@ class PipelineParallel(MetaParallelBase):
...
@@ -364,3 +414,291 @@ class PipelineParallel(MetaParallelBase):
self
.
optimizer
.
clear_grad
()
self
.
optimizer
.
clear_grad
()
if
self
.
lr_scheduler
:
if
self
.
lr_scheduler
:
self
.
lr_scheduler
.
step
()
self
.
lr_scheduler
.
step
()
class
PipelineParallelWithInterleave
(
PipelineParallel
):
# pipeline parallel with interleave scheduler
def
__init__
(
self
,
layers
,
hcg
,
strategy
):
super
(
PipelineParallelWithInterleave
,
self
).
__init__
(
layers
=
layers
,
hcg
=
hcg
,
strategy
=
strategy
)
assert
layers
.
get_num_virtual_stages
()
>
1
assert
framework
.
in_dygraph_mode
(
),
"virtual pipeline stage with interleave only support eager dygraph mode"
# setup for interleave scheduler
self
.
num_model_chunks
=
layers
.
get_num_virtual_stages
()
self
.
model_chunks
=
layers
.
get_model_chunks
()
assert
self
.
model_chunks
is
not
None
assert
len
(
self
.
model_chunks
)
==
self
.
num_model_chunks
self
.
_virtual_pp_world_size
=
self
.
num_model_chunks
self
.
_virtual_pp_rank
=
0
def
_get_virtual_pp_rank
(
self
,
micro_step
,
forward
):
virtual_pp_stage
=
micro_step
%
(
self
.
num_stages
*
self
.
num_model_chunks
)
virtual_pp_stage
=
virtual_pp_stage
//
self
.
num_stages
if
not
forward
:
virtual_pp_stage
=
(
self
.
num_model_chunks
-
virtual_pp_stage
-
1
)
return
virtual_pp_stage
def
_forward_step_helper
(
self
,
micro_step
):
virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
micro_step
,
forward
=
True
)
self
.
set_virtual_pipeline_rank
(
virtual_pp_rank
)
# some checkers
assert
hasattr
(
self
,
'input_tensors'
)
assert
hasattr
(
self
,
'output_tensors'
)
if
not
self
.
_forward_only
:
assert
hasattr
(
self
,
'output_tensor_grads'
)
if
self
.
is_pipeline_first_stage
():
if
len
(
self
.
input_tensors
[
virtual_pp_rank
])
==
len
(
self
.
output_tensors
[
virtual_pp_rank
]):
self
.
input_tensors
[
virtual_pp_rank
].
append
(
None
)
input_tensor
=
self
.
input_tensors
[
virtual_pp_rank
][
-
1
]
output_tensor
=
self
.
_forward_step
(
input_tensor
,
virtual_pp_rank
)
self
.
output_tensors
[
virtual_pp_rank
].
append
(
output_tensor
)
if
self
.
_forward_only
:
# no need to store tensor for backward
self
.
input_tensors
[
virtual_pp_rank
].
pop
()
self
.
output_tensors
[
virtual_pp_rank
].
pop
()
return
output_tensor
def
_backward_step_helper
(
self
,
micro_step
):
virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
micro_step
,
forward
=
False
)
self
.
set_virtual_pipeline_rank
(
virtual_pp_rank
)
# some checkers
assert
hasattr
(
self
,
'input_tensors'
)
assert
hasattr
(
self
,
'output_tensors'
)
assert
hasattr
(
self
,
'output_tensor_grads'
)
if
self
.
is_pipeline_last_stage
():
if
len
(
self
.
output_tensor_grads
[
virtual_pp_rank
])
==
0
:
self
.
output_tensor_grads
[
virtual_pp_rank
].
append
(
None
)
input_tensor
=
self
.
input_tensors
[
virtual_pp_rank
].
pop
(
0
)
output_tensor
=
self
.
output_tensors
[
virtual_pp_rank
].
pop
(
0
)
output_tensor_grad
=
self
.
output_tensor_grads
[
virtual_pp_rank
].
pop
(
0
)
input_tensor_grad
=
self
.
_backward_step
(
input_tensor
,
output_tensor
,
output_tensor_grad
)
return
input_tensor_grad
def
interleave_pipeline
(
self
,
data
,
scaler
,
forward_only
=
False
,
compute_loss
=
True
):
# use interleave scheduling strategy.
# this strategy is inspired by:
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/schedules.py
if
not
compute_loss
:
assert
not
forward_only
,
"compute_loss can only be set to False when forward_only is set to True"
# init some attributes for this batch run
self
.
scaler
=
scaler
self
.
data
=
data
self
.
total_loss
=
None
self
.
micro_batch_id
=
0
self
.
_forward_only
=
forward_only
# init some data buffers for interleave scheduler
self
.
input_tensors
=
[[]
for
_
in
range
(
self
.
num_model_chunks
)]
self
.
output_tensors
=
[[]
for
_
in
range
(
self
.
num_model_chunks
)]
self
.
output_tensor_grads
=
[[]
for
_
in
range
(
self
.
num_model_chunks
)]
num_steps
=
self
.
accumulate_steps
*
self
.
num_model_chunks
all_startup_steps
=
False
if
forward_only
:
# If only forward, since there is no backward during running, all steps are startup steps
startup_steps
=
num_steps
else
:
if
self
.
accumulate_steps
==
self
.
num_stages
:
startup_steps
=
num_steps
all_startup_steps
=
True
else
:
startup_steps
=
(
self
.
num_stages
-
self
.
stage_id
-
1
)
*
2
startup_steps
+=
(
self
.
num_model_chunks
-
1
)
*
self
.
num_stages
startup_steps
=
min
(
startup_steps
,
num_steps
)
steady_steps
=
num_steps
-
startup_steps
self
.
set_virtual_pipeline_rank
(
0
)
self
.
input_tensors
[
0
].
append
(
p2p
.
recv_forward
(
self
.
is_pipeline_first_stage
()))
# run startup steps
for
micro_step
in
range
(
startup_steps
):
output_tensor
=
self
.
_forward_step_helper
(
micro_step
)
# determine whether recv forward tensor or not
next_virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
micro_step
+
1
,
forward
=
True
)
recv_prev
=
True
if
self
.
is_pipeline_first_stage
(
ignore_virtual
=
True
):
if
next_virtual_pp_rank
==
0
:
# next chunk is the first chunk, not need to pre recv an input tensor
recv_prev
=
False
# last micro step, no next run
if
micro_step
==
(
num_steps
-
1
):
recv_prev
=
False
# last stage shouldn't send tensor to downstream
if
self
.
is_pipeline_last_stage
():
output_tensor
=
None
if
micro_step
==
(
startup_steps
-
1
)
and
not
forward_only
and
not
all_startup_steps
:
input_tensor_grad
=
None
recv_next
=
True
if
self
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
recv_next
=
False
# the last startup step needs on four direction comm to set up for steady 1f1b
input_tensor
,
output_tensor_grad
=
p2p
.
send_forward_backward_recv_forward_backward
(
output_tensor
,
input_tensor_grad
,
recv_prev
=
recv_prev
,
recv_next
=
recv_next
)
self
.
output_tensor_grads
[
self
.
num_model_chunks
-
1
].
append
(
output_tensor_grad
)
else
:
input_tensor
=
p2p
.
send_forward_recv_forward
(
output_tensor
,
recv_prev
=
recv_prev
)
self
.
input_tensors
[
next_virtual_pp_rank
].
append
(
input_tensor
)
# run 1f1b steady steps
for
micro_step
in
range
(
steady_steps
):
# forward
forward_micro_step_id
=
micro_step
+
startup_steps
output_tensor
=
self
.
_forward_step_helper
(
forward_micro_step_id
)
# backward
backward_micro_step_id
=
micro_step
input_tensor_grad
=
self
.
_backward_step_helper
(
backward_micro_step_id
)
# four directions comm
# send output tensor to downstream
# send input tensor grad to upstream
# recv input tensor from upstream
# recv output tensor grad from downstream
# last stage doesn't send rst to downstream
forward_virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
forward_micro_step_id
,
forward
=
True
)
self
.
set_virtual_pipeline_rank
(
forward_virtual_pp_rank
)
if
self
.
is_pipeline_last_stage
():
output_tensor
=
None
# first stage doesn't send grad to upstream
backward_virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
backward_micro_step_id
,
forward
=
False
)
self
.
set_virtual_pipeline_rank
(
backward_virtual_pp_rank
)
if
self
.
is_pipeline_first_stage
():
input_tensor_grad
=
None
# determine whether to recv input tensor from upstream
recv_prev
=
True
if
self
.
is_pipeline_first_stage
(
ignore_virtual
=
True
):
next_forward_virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
forward_micro_step_id
-
(
self
.
num_stages
-
1
),
forward
=
True
)
if
next_forward_virtual_pp_rank
==
(
self
.
num_model_chunks
-
1
):
# first pp stage and first virtual stage
recv_prev
=
False
next_forward_virtual_pp_rank
+=
1
else
:
next_forward_virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
forward_micro_step_id
+
1
,
forward
=
True
)
# last iteration doesn't need recv from upstream
if
micro_step
==
(
steady_steps
-
1
):
recv_prev
=
False
# determine whether to recv grad from downstream
recv_next
=
True
if
self
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
next_backward_virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
backward_micro_step_id
-
(
self
.
num_stages
-
1
),
forward
=
False
)
if
next_backward_virtual_pp_rank
==
0
:
# last pp stage and last virtual stage
recv_next
=
False
next_backward_virtual_pp_rank
-=
1
else
:
next_backward_virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
backward_micro_step_id
+
1
,
forward
=
False
)
input_tensor
,
output_tensor_grad
=
p2p
.
send_forward_backward_recv_forward_backward
(
output_tensor
,
input_tensor_grad
,
recv_prev
=
recv_prev
,
recv_next
=
recv_next
)
if
recv_prev
:
self
.
input_tensors
[
next_forward_virtual_pp_rank
].
append
(
input_tensor
)
if
recv_next
:
self
.
output_tensor_grads
[
next_backward_virtual_pp_rank
].
append
(
output_tensor_grad
)
# remaining backward steps
if
not
forward_only
:
if
all_startup_steps
:
self
.
output_tensor_grads
[
self
.
num_model_chunks
-
1
].
append
(
p2p
.
recv_backward
(
self
.
is_pipeline_last_stage
()))
for
micro_step
in
range
(
steady_steps
,
num_steps
):
# cooldown loop
input_tensor_grad
=
self
.
_backward_step_helper
(
micro_step
)
next_backward_virtual_pp_rank
=
self
.
_get_virtual_pp_rank
(
micro_step
+
1
,
forward
=
False
)
recv_next
=
True
if
self
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
if
next_backward_virtual_pp_rank
==
(
self
.
num_model_chunks
-
1
):
recv_next
=
False
if
micro_step
==
(
num_steps
-
1
):
recv_next
=
False
self
.
output_tensor_grads
[
next_backward_virtual_pp_rank
].
append
(
p2p
.
send_backward_recv_backward
(
input_tensor_grad
,
recv_next
=
recv_next
))
self
.
_layers
.
allreduce_shared_weight_gradients
()
if
compute_loss
:
# return loss if compute loss
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
train_loss
=
self
.
_broadcast_final_loss
()
else
:
# else just return all intermediate output tensor for all micro steps
train_loss
=
self
.
output_tensors
return
train_loss
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
,
scaler
=
None
):
data
=
self
.
_prepare_training
(
data
,
optimizer
,
lr_scheduler
)
# interleave scheduler for pipeline parallel
train_loss
=
self
.
interleave_pipeline
(
data
,
scaler
)
# optimizer
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
self
.
_optimizer_step
()
return
train_loss
def
eval_batch
(
self
,
data
,
compute_loss
=
False
):
# reset the virtual pp rank for each run
self
.
set_virtual_pipeline_rank
(
0
)
self
.
_layers
.
eval
()
self
.
_compute_loss
=
compute_loss
return
self
.
interleave_pipeline
(
data
,
None
,
forward_only
=
True
)
python/paddle/distributed/fleet/meta_parallel/pp_utils/p2p_communication.py
浏览文件 @
72b5b5bf
...
@@ -54,7 +54,7 @@ class SendRecvMeta:
...
@@ -54,7 +54,7 @@ class SendRecvMeta:
def
_recv_shape_dtype
(
self
,
group
):
def
_recv_shape_dtype
(
self
,
group
):
# recv len(shape)
# recv len(shape)
dims
=
paddle
.
to_tensor
([
0
])
dims
=
paddle
.
to_tensor
([
0
])
src_rank
=
group
.
ranks
[
0
]
src_rank
=
_hcg
.
_get_p2p_prev_rank
()
paddle
.
distributed
.
recv
(
dims
,
src
=
src_rank
,
group
=
group
)
paddle
.
distributed
.
recv
(
dims
,
src
=
src_rank
,
group
=
group
)
dims
=
dims
.
item
()
dims
=
dims
.
item
()
...
@@ -74,7 +74,7 @@ class SendRecvMeta:
...
@@ -74,7 +74,7 @@ class SendRecvMeta:
def
recv_meta
(
self
,
group
):
def
recv_meta
(
self
,
group
):
tensor_type
=
paddle
.
to_tensor
([
0
])
tensor_type
=
paddle
.
to_tensor
([
0
])
src_rank
=
group
.
ranks
[
0
]
src_rank
=
_hcg
.
_get_p2p_prev_rank
()
paddle
.
distributed
.
recv
(
tensor_type
,
src
=
src_rank
,
group
=
group
)
paddle
.
distributed
.
recv
(
tensor_type
,
src
=
src_rank
,
group
=
group
)
tensor_type
=
tensor_type
.
item
()
tensor_type
=
tensor_type
.
item
()
...
@@ -105,7 +105,7 @@ class SendRecvMeta:
...
@@ -105,7 +105,7 @@ class SendRecvMeta:
def
_send_dims_shape_dtype
(
self
,
tensor
,
group
):
def
_send_dims_shape_dtype
(
self
,
tensor
,
group
):
# send len(shape)
# send len(shape)
dims
=
paddle
.
to_tensor
(
len
(
tensor
.
shape
))
dims
=
paddle
.
to_tensor
(
len
(
tensor
.
shape
))
dst_rank
=
group
.
ranks
[
1
]
dst_rank
=
_hcg
.
_get_p2p_next_rank
()
paddle
.
distributed
.
send
(
dims
,
dst
=
dst_rank
,
group
=
group
)
paddle
.
distributed
.
send
(
dims
,
dst
=
dst_rank
,
group
=
group
)
...
@@ -122,7 +122,7 @@ class SendRecvMeta:
...
@@ -122,7 +122,7 @@ class SendRecvMeta:
paddle
.
distributed
.
send
(
stop_grad
,
dst
=
dst_rank
,
group
=
group
)
paddle
.
distributed
.
send
(
stop_grad
,
dst
=
dst_rank
,
group
=
group
)
def
send_meta
(
self
,
tensor
,
group
):
def
send_meta
(
self
,
tensor
,
group
):
dst_rank
=
group
.
ranks
[
1
]
dst_rank
=
_hcg
.
_get_p2p_next_rank
()
if
isinstance
(
tensor
,
(
paddle
.
Tensor
,
core
.
eager
.
Tensor
)):
if
isinstance
(
tensor
,
(
paddle
.
Tensor
,
core
.
eager
.
Tensor
)):
tensor_type
=
paddle
.
to_tensor
([
0
])
tensor_type
=
paddle
.
to_tensor
([
0
])
...
@@ -165,20 +165,17 @@ def _is_valid_send_recv_partial(tensor, mp_degree):
...
@@ -165,20 +165,17 @@ def _is_valid_send_recv_partial(tensor, mp_degree):
def
_partial_send_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
dst
,
nranks
,
def
_partial_send_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
dst
,
nranks
,
rank_id
):
rank_id
):
dst_rank_in_group
=
dst
if
group
is
None
else
group
.
get_group_rank
(
dst
)
if
_in_legacy_dygraph
():
if
_in_legacy_dygraph
():
return
_legacy_C_ops
.
partial_send
(
tensor
.
detach
(),
'use_calc_stream'
,
return
_legacy_C_ops
.
partial_send
(
tensor
.
detach
(),
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
dst
,
'num'
,
nranks
,
'id
'
,
'peer'
,
dst
_rank_in_group
,
'num
'
,
rank_id
)
nranks
,
'id'
,
rank_id
)
elif
in_dygraph_mode
():
elif
in_dygraph_mode
():
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
)
if
group
is
None
else
group
)
if
group
is
None
else
group
task
=
group
.
process_group
.
send_partial
(
tensor
,
dst
,
nranks
,
rank_id
)
return
group
.
process_group
.
send_partial
(
tensor
,
dst_rank_in_group
,
if
use_calc_stream
:
nranks
,
rank_id
)
task
.
wait
()
return
None
else
:
return
task
def
send_partial
(
tensor
,
def
send_partial
(
tensor
,
...
@@ -192,33 +189,35 @@ def send_partial(tensor,
...
@@ -192,33 +189,35 @@ def send_partial(tensor,
return
return
ring_id
=
0
if
group
is
None
else
group
.
id
ring_id
=
0
if
group
is
None
else
group
.
id
dst_rank
=
_hcg
.
_get_p2p_next_rank
(
)
if
dst
==
1
else
_hcg
.
_get_p2p_prev_rank
()
if
_is_valid_send_recv_partial
(
tensor
,
nranks
):
if
_is_valid_send_recv_partial
(
tensor
,
nranks
):
return
_partial_send_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
dst
,
return
_partial_send_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
nranks
,
rank_id
)
dst_rank
,
nranks
,
rank_id
)
else
:
else
:
return
paddle
.
distributed
.
send
(
tensor
.
detach
(),
if
_in_legacy_dygraph
():
dst
=
group
.
ranks
[
dst
],
send_op
=
paddle
.
distributed
.
send
group
=
group
,
elif
in_dygraph_mode
():
use_calc_stream
=
use_calc_stream
)
send_op
=
paddle
.
distributed
.
isend
return
send_op
(
tensor
.
detach
(),
dst
=
dst_rank
,
group
=
group
)
def
_partial_recv_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
src
,
nranks
,
def
_partial_recv_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
src
,
nranks
,
rank_id
):
rank_id
):
src_rank_in_group
=
src
if
group
is
None
else
group
.
get_group_rank
(
src
)
if
_in_legacy_dygraph
():
if
_in_legacy_dygraph
():
return
_legacy_C_ops
.
partial_recv
(
tensor
.
detach
(),
'use_calc_stream'
,
return
_legacy_C_ops
.
partial_recv
(
tensor
.
detach
(),
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
src
,
'num'
,
nranks
,
'id'
,
'peer'
,
src_rank_in_group
,
'num'
,
rank_id
,
'dtype'
,
tensor
.
dtype
,
nranks
,
'id'
,
rank_id
,
'dtype'
,
'out_shape'
,
tensor
.
shape
)
tensor
.
dtype
,
'out_shape'
,
tensor
.
shape
)
elif
in_dygraph_mode
():
elif
in_dygraph_mode
():
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
)
if
group
is
None
else
group
)
if
group
is
None
else
group
task
=
group
.
process_group
.
recv_partial
(
tensor
,
src
,
nranks
,
rank_id
)
return
group
.
process_group
.
recv_partial
(
tensor
,
src_rank_in_group
,
if
use_calc_stream
:
nranks
,
rank_id
)
task
.
wait
()
return
None
else
:
return
task
def
recv_partial
(
tensor
,
def
recv_partial
(
tensor
,
...
@@ -232,14 +231,18 @@ def recv_partial(tensor,
...
@@ -232,14 +231,18 @@ def recv_partial(tensor,
return
return
ring_id
=
0
if
group
is
None
else
group
.
id
ring_id
=
0
if
group
is
None
else
group
.
id
src_rank
=
_hcg
.
_get_p2p_prev_rank
(
)
if
src
==
0
else
_hcg
.
_get_p2p_next_rank
()
if
_is_valid_send_recv_partial
(
tensor
,
nranks
):
if
_is_valid_send_recv_partial
(
tensor
,
nranks
):
return
_partial_recv_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
src
,
return
_partial_recv_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
nranks
,
rank_id
)
src_rank
,
nranks
,
rank_id
)
else
:
else
:
return
paddle
.
distributed
.
recv
(
tensor
.
detach
(),
if
_in_legacy_dygraph
():
src
=
group
.
ranks
[
src
],
recv_op
=
paddle
.
distributed
.
recv
group
=
group
,
elif
in_dygraph_mode
():
use_calc_stream
=
use_calc_stream
)
recv_op
=
paddle
.
distributed
.
irecv
return
recv_op
(
tensor
.
detach
(),
src
=
src_rank
,
group
=
group
)
def
_partial_allgather_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
nranks
,
def
_partial_allgather_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
nranks
,
...
@@ -253,13 +256,8 @@ def _partial_allgather_op(tensor, group, use_calc_stream, ring_id, nranks,
...
@@ -253,13 +256,8 @@ def _partial_allgather_op(tensor, group, use_calc_stream, ring_id, nranks,
elif
in_dygraph_mode
():
elif
in_dygraph_mode
():
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
)
if
group
is
None
else
group
)
if
group
is
None
else
group
task
=
group
.
process_group
.
all_gather_partial
(
tensor
,
tensor
,
nranks
,
return
group
.
process_group
.
all_gather_partial
(
tensor
,
tensor
,
nranks
,
rank_id
)
rank_id
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
def
allgather_partial
(
tensor
,
def
allgather_partial
(
tensor
,
...
@@ -268,9 +266,9 @@ def allgather_partial(tensor,
...
@@ -268,9 +266,9 @@ def allgather_partial(tensor,
group
=
None
,
group
=
None
,
use_calc_stream
=
True
):
use_calc_stream
=
True
):
if
not
_is_valid_send_recv_partial
(
tensor
,
nranks
):
if
not
_is_valid_send_recv_partial
(
tensor
,
nranks
):
return
tensor
return
None
if
group
is
not
None
and
not
group
.
is_member
():
if
group
is
not
None
and
not
group
.
is_member
():
return
return
None
ring_id
=
0
if
group
is
None
else
group
.
id
ring_id
=
0
if
group
is
None
else
group
.
id
return
_partial_allgather_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
return
_partial_allgather_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
...
@@ -323,105 +321,124 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
...
@@ -323,105 +321,124 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
tensor_recv_next
=
paddle
.
empty
(
tensor_recv_next
=
paddle
.
empty
(
shape
=
send_shape_msg
,
dtype
=
number_2_dtype
(
send_dtype_msg
))
shape
=
send_shape_msg
,
dtype
=
number_2_dtype
(
send_dtype_msg
))
# TODO(Yuang Liu): use batch_isend_irecv replace all these comm ops
tasks
=
[]
# start to p2p communicate
# start to p2p communicate
if
tensor_send_prev
is
not
None
:
if
tensor_send_prev
is
not
None
:
if
isinstance
(
tensor_send_prev
,
tuple
):
if
isinstance
(
tensor_send_prev
,
tuple
):
for
d
in
tensor_send_prev
:
for
d
in
tensor_send_prev
:
paddle
.
distributed
.
wait
(
d
,
use_calc_stream
=
True
)
paddle
.
distributed
.
wait
(
d
,
use_calc_stream
=
True
)
send_partial
(
d
,
tasks
.
append
(
send_partial
(
d
,
dst
=
0
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
send_prev_group
,
use_calc_stream
=
False
))
else
:
paddle
.
distributed
.
wait
(
tensor_send_prev
,
use_calc_stream
=
True
)
tasks
.
append
(
send_partial
(
tensor_send_prev
,
dst
=
0
,
dst
=
0
,
nranks
=
mp_degree
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
rank_id
=
mp_rank
,
group
=
_hcg
.
send_prev_group
,
group
=
_hcg
.
send_prev_group
,
use_calc_stream
=
False
)
use_calc_stream
=
False
))
else
:
paddle
.
distributed
.
wait
(
tensor_send_prev
,
use_calc_stream
=
True
)
send_partial
(
tensor_send_prev
,
dst
=
0
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
send_prev_group
,
use_calc_stream
=
False
)
if
tensor_recv_prev
is
not
None
:
if
tensor_recv_prev
is
not
None
:
if
isinstance
(
tensor_recv_prev
,
tuple
):
if
isinstance
(
tensor_recv_prev
,
tuple
):
for
d
in
tensor_recv_prev
:
for
d
in
tensor_recv_prev
:
recv_partial
(
d
,
tasks
.
append
(
recv_partial
(
d
,
src
=
0
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
recv_prev_group
,
use_calc_stream
=
True
))
tasks
.
append
(
allgather_partial
(
d
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
mp_group
,
use_calc_stream
=
True
))
else
:
tasks
.
append
(
recv_partial
(
tensor_recv_prev
,
src
=
0
,
src
=
0
,
nranks
=
mp_degree
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
rank_id
=
mp_rank
,
group
=
_hcg
.
recv_prev_group
,
group
=
_hcg
.
recv_prev_group
,
use_calc_stream
=
True
)
use_calc_stream
=
True
))
allgather_partial
(
d
,
tasks
.
append
(
allgather_partial
(
tensor_recv_prev
,
nranks
=
mp_degree
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
rank_id
=
mp_rank
,
group
=
mp_group
,
group
=
mp_group
,
use_calc_stream
=
True
)
use_calc_stream
=
True
))
else
:
recv_partial
(
tensor_recv_prev
,
src
=
0
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
recv_prev_group
,
use_calc_stream
=
True
)
allgather_partial
(
tensor_recv_prev
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
mp_group
,
use_calc_stream
=
True
)
if
tensor_send_next
is
not
None
:
if
tensor_send_next
is
not
None
:
if
isinstance
(
tensor_send_next
,
tuple
):
if
isinstance
(
tensor_send_next
,
tuple
):
for
d
in
tensor_send_next
:
for
d
in
tensor_send_next
:
paddle
.
distributed
.
wait
(
d
,
use_calc_stream
=
True
)
paddle
.
distributed
.
wait
(
d
,
use_calc_stream
=
True
)
send_partial
(
d
,
tasks
.
append
(
send_partial
(
d
,
dst
=
1
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
send_next_group
,
use_calc_stream
=
False
))
else
:
paddle
.
distributed
.
wait
(
tensor_send_next
,
use_calc_stream
=
True
)
tasks
.
append
(
send_partial
(
tensor_send_next
,
dst
=
1
,
dst
=
1
,
nranks
=
mp_degree
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
rank_id
=
mp_rank
,
group
=
_hcg
.
send_next_group
,
group
=
_hcg
.
send_next_group
,
use_calc_stream
=
False
)
use_calc_stream
=
False
))
else
:
paddle
.
distributed
.
wait
(
tensor_send_next
,
use_calc_stream
=
True
)
send_partial
(
tensor_send_next
,
dst
=
1
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
send_next_group
,
use_calc_stream
=
False
)
if
tensor_recv_next
is
not
None
:
if
tensor_recv_next
is
not
None
:
if
isinstance
(
tensor_recv_next
,
tuple
):
if
isinstance
(
tensor_recv_next
,
tuple
):
for
d
in
tensor_recv_next
:
for
d
in
tensor_recv_next
:
recv_partial
(
d
,
tasks
.
append
(
recv_partial
(
d
,
src
=
1
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
recv_next_group
,
use_calc_stream
=
True
))
tasks
.
append
(
allgather_partial
(
d
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
mp_group
,
use_calc_stream
=
True
))
else
:
tasks
.
append
(
recv_partial
(
tensor_recv_next
,
src
=
1
,
src
=
1
,
nranks
=
mp_degree
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
rank_id
=
mp_rank
,
group
=
_hcg
.
recv_next_group
,
group
=
_hcg
.
recv_next_group
,
use_calc_stream
=
True
)
use_calc_stream
=
True
))
allgather_partial
(
d
,
tasks
.
append
(
allgather_partial
(
tensor_recv_next
,
nranks
=
mp_degree
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
rank_id
=
mp_rank
,
group
=
mp_group
,
group
=
mp_group
,
use_calc_stream
=
True
)
use_calc_stream
=
True
))
if
in_dygraph_mode
():
else
:
# wait tasks in new dygraph mode with new comm library
recv_partial
(
tensor_recv_next
,
for
task
in
tasks
:
src
=
1
,
if
task
is
not
None
:
nranks
=
mp_degree
,
task
.
wait
()
rank_id
=
mp_rank
,
group
=
_hcg
.
recv_next_group
,
use_calc_stream
=
True
)
allgather_partial
(
tensor_recv_next
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
mp_group
,
use_calc_stream
=
True
)
return
tensor_recv_prev
,
tensor_recv_next
return
tensor_recv_prev
,
tensor_recv_next
def
recv_forward
():
def
recv_forward
(
pp_first_stage
):
if
_hcg
.
is
_first_stage
:
if
pp
_first_stage
:
input_tensor
=
None
input_tensor
=
None
else
:
else
:
if
not
_send_recv_meta
.
has_recv_meta
:
if
not
_send_recv_meta
.
has_recv_meta
:
...
@@ -435,8 +452,8 @@ def recv_forward():
...
@@ -435,8 +452,8 @@ def recv_forward():
return
input_tensor
return
input_tensor
def
recv_backward
():
def
recv_backward
(
pp_last_stage
):
if
_hcg
.
is
_last_stage
:
if
pp
_last_stage
:
output_tensor_grad
=
None
output_tensor_grad
=
None
else
:
else
:
_
,
output_tensor_grad
=
_p2p_helper
(
tensor_send_next
=
None
,
_
,
output_tensor_grad
=
_p2p_helper
(
tensor_send_next
=
None
,
...
@@ -446,8 +463,8 @@ def recv_backward():
...
@@ -446,8 +463,8 @@ def recv_backward():
return
output_tensor_grad
return
output_tensor_grad
def
send_forward
(
output_tensor
):
def
send_forward
(
output_tensor
,
pp_last_stage
):
if
not
_hcg
.
is
_last_stage
:
if
not
pp
_last_stage
:
if
not
_send_recv_meta
.
has_send_meta
:
if
not
_send_recv_meta
.
has_send_meta
:
_send_recv_meta
.
set_send_message
(
output_tensor
)
_send_recv_meta
.
set_send_message
(
output_tensor
)
_send_recv_meta
.
send_meta
(
output_tensor
,
_hcg
.
send_next_group
)
_send_recv_meta
.
send_meta
(
output_tensor
,
_hcg
.
send_next_group
)
...
@@ -459,16 +476,16 @@ def send_forward(output_tensor):
...
@@ -459,16 +476,16 @@ def send_forward(output_tensor):
recv_next
=
False
)
recv_next
=
False
)
def
send_backward
(
input_tensor_grad
):
def
send_backward
(
input_tensor_grad
,
pp_first_stage
):
if
not
_hcg
.
is
_first_stage
:
if
not
pp
_first_stage
:
_p2p_helper
(
tensor_send_next
=
None
,
_p2p_helper
(
tensor_send_next
=
None
,
tensor_send_prev
=
input_tensor_grad
,
tensor_send_prev
=
input_tensor_grad
,
recv_prev
=
False
,
recv_prev
=
False
,
recv_next
=
False
)
recv_next
=
False
)
def
send_forward_recv_backward
(
output_tensor
):
def
send_forward_recv_backward
(
output_tensor
,
pp_last_stage
):
if
_hcg
.
is
_last_stage
:
if
pp
_last_stage
:
output_tensor_grad
=
None
output_tensor_grad
=
None
else
:
else
:
_
,
output_tensor_grad
=
_p2p_helper
(
tensor_send_next
=
output_tensor
,
_
,
output_tensor_grad
=
_p2p_helper
(
tensor_send_next
=
output_tensor
,
...
@@ -478,8 +495,8 @@ def send_forward_recv_backward(output_tensor):
...
@@ -478,8 +495,8 @@ def send_forward_recv_backward(output_tensor):
return
output_tensor_grad
return
output_tensor_grad
def
send_backward_recv_forward
(
input_tensor_grad
):
def
send_backward_recv_forward
(
input_tensor_grad
,
pp_first_stage
):
if
_hcg
.
is
_first_stage
:
if
pp
_first_stage
:
input_tensor
=
None
input_tensor
=
None
else
:
else
:
input_tensor
,
_
=
_p2p_helper
(
tensor_send_next
=
None
,
input_tensor
,
_
=
_p2p_helper
(
tensor_send_next
=
None
,
...
@@ -487,3 +504,48 @@ def send_backward_recv_forward(input_tensor_grad):
...
@@ -487,3 +504,48 @@ def send_backward_recv_forward(input_tensor_grad):
recv_prev
=
True
,
recv_prev
=
True
,
recv_next
=
False
)
recv_next
=
False
)
return
input_tensor
return
input_tensor
def
send_forward_backward_recv_forward_backward
(
output_tensor
,
input_tensor_grad
,
recv_prev
,
recv_next
):
# always have to send dytpe info to downstream
if
not
_send_recv_meta
.
has_send_meta
:
_send_recv_meta
.
set_send_message
(
output_tensor
)
_send_recv_meta
.
send_meta
(
output_tensor
,
_hcg
.
send_next_group
)
_send_recv_meta
.
has_send_meta
=
_use_cache
if
recv_prev
and
not
_send_recv_meta
.
has_recv_meta
:
_send_recv_meta
.
recv_meta
(
_hcg
.
recv_prev_group
)
_send_recv_meta
.
has_recv_meta
=
_use_cache
input_tensor
,
output_tensor_grad
=
_p2p_helper
(
tensor_send_next
=
output_tensor
,
tensor_send_prev
=
input_tensor_grad
,
recv_prev
=
recv_prev
,
recv_next
=
recv_next
)
return
input_tensor
,
output_tensor_grad
def
send_forward_recv_forward
(
output_tensor
,
recv_prev
):
# always have to send dytpe info to downstream
if
not
_send_recv_meta
.
has_send_meta
:
_send_recv_meta
.
set_send_message
(
output_tensor
)
_send_recv_meta
.
send_meta
(
output_tensor
,
_hcg
.
send_next_group
)
_send_recv_meta
.
has_send_meta
=
_use_cache
if
recv_prev
and
not
_send_recv_meta
.
has_recv_meta
:
_send_recv_meta
.
recv_meta
(
_hcg
.
recv_prev_group
)
_send_recv_meta
.
has_recv_meta
=
_use_cache
input_tensor
,
_
=
_p2p_helper
(
tensor_send_next
=
output_tensor
,
tensor_send_prev
=
None
,
recv_prev
=
recv_prev
,
recv_next
=
False
)
return
input_tensor
def
send_backward_recv_backward
(
input_tensor_grad
,
recv_next
):
_
,
output_tensor_grad
=
_p2p_helper
(
tensor_send_next
=
None
,
tensor_send_prev
=
input_tensor_grad
,
recv_prev
=
False
,
recv_next
=
recv_next
)
return
output_tensor_grad
python/paddle/distributed/fleet/model.py
浏览文件 @
72b5b5bf
...
@@ -18,7 +18,7 @@ import numpy as np
...
@@ -18,7 +18,7 @@ import numpy as np
from
.base
import
topology
as
tp
from
.base
import
topology
as
tp
from
.base.topology
import
ParallelMode
from
.base.topology
import
ParallelMode
from
.meta_parallel
import
TensorParallel
,
model_parallel_random_seed
from
.meta_parallel
import
TensorParallel
,
model_parallel_random_seed
from
.meta_parallel
import
PipelineParallel
,
ShardingParallel
from
.meta_parallel
import
PipelineParallel
,
ShardingParallel
,
PipelineParallelWithInterleave
,
PipelineLayer
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.distributed.fleet.utils.recompute
import
LegacyRecomputeFunction
from
paddle.distributed.fleet.utils.recompute
import
LegacyRecomputeFunction
from
paddle.fluid.dygraph.varbase_patch_methods
import
_grad_scalar
from
paddle.fluid.dygraph.varbase_patch_methods
import
_grad_scalar
...
@@ -185,6 +185,16 @@ def distributed_model(model):
...
@@ -185,6 +185,16 @@ def distributed_model(model):
elif
fleet_env
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
TENSOR_PARALLEL
:
elif
fleet_env
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
TENSOR_PARALLEL
:
model
=
TensorParallel
(
model
,
fleet_env
.
_hcg
,
strategy
=
strategy
)
model
=
TensorParallel
(
model
,
fleet_env
.
_hcg
,
strategy
=
strategy
)
elif
fleet_env
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
PIPELINE_PARALLEL
:
elif
fleet_env
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
PIPELINE_PARALLEL
:
model
=
PipelineParallel
(
model
,
fleet_env
.
_hcg
,
strategy
=
strategy
)
assert
isinstance
(
model
,
PipelineLayer
),
"For pipeline parallel, the model should an instance of PipelineLayer"
if
model
.
get_num_virtual_stages
()
==
1
:
# 1f1b pipeline
model
=
PipelineParallel
(
model
,
fleet_env
.
_hcg
,
strategy
=
strategy
)
else
:
# interleave pipeline
model
=
PipelineParallelWithInterleave
(
model
,
fleet_env
.
_hcg
,
strategy
=
strategy
)
return
model
return
model
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
72b5b5bf
...
@@ -27,8 +27,6 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_dataparallel)
...
@@ -27,8 +27,6 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_dataparallel)
list
(
APPEND DIST_TEST_OPS test_static_model_parallel_fused_feedforward
)
list
(
APPEND DIST_TEST_OPS test_static_model_parallel_fused_feedforward
)
list
(
APPEND DIST_TEST_OPS test_static_model_parallel_fused_attention
)
list
(
APPEND DIST_TEST_OPS test_static_model_parallel_fused_attention
)
list
(
APPEND DIST_TEST_OPS test_static_model_parallel_fused_multi_transformer
)
list
(
APPEND DIST_TEST_OPS test_static_model_parallel_fused_multi_transformer
)
list
(
APPEND DIST_TEST_OPS
test_parallel_dygraph_pipeline_parallel_with_virtual_stage
)
list
(
APPEND DIST_TEST_OPS test_auto_parallel_data_unshard
)
list
(
APPEND DIST_TEST_OPS test_auto_parallel_data_unshard
)
list
(
APPEND DIST_TEST_OPS test_auto_parallel_save_load
)
list
(
APPEND DIST_TEST_OPS test_auto_parallel_save_load
)
list
(
APPEND DIST_TEST_OPS test_auto_parallel_autoconvert
)
list
(
APPEND DIST_TEST_OPS test_auto_parallel_autoconvert
)
...
@@ -178,8 +176,6 @@ if((NOT WITH_GPU) AND (NOT WITH_ROCM))
...
@@ -178,8 +176,6 @@ if((NOT WITH_GPU) AND (NOT WITH_ROCM))
# TODO(shenliang03): batch_fc_op support CPU device in future
# TODO(shenliang03): batch_fc_op support CPU device in future
# TODO(Yancey1989): parallel dygraph support CPU device in future
# TODO(Yancey1989): parallel dygraph support CPU device in future
list
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_dataparallel
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_dataparallel
)
list
(
REMOVE_ITEM TEST_OPS
test_parallel_dygraph_pipeline_parallel_with_virtual_stage
)
list
(
REMOVE_ITEM TEST_OPS test_fleet_base_single
)
list
(
REMOVE_ITEM TEST_OPS test_fleet_base_single
)
list
(
REMOVE_ITEM TEST_OPS test_auto_parallel_partitioner
)
list
(
REMOVE_ITEM TEST_OPS test_auto_parallel_partitioner
)
list
(
REMOVE_ITEM TEST_OPS test_auto_parallel_partitioner_gpt
)
list
(
REMOVE_ITEM TEST_OPS test_auto_parallel_partitioner_gpt
)
...
@@ -1178,9 +1174,6 @@ set_tests_properties(test_graph_send_uv_op PROPERTIES TIMEOUT 60)
...
@@ -1178,9 +1174,6 @@ set_tests_properties(test_graph_send_uv_op PROPERTIES TIMEOUT 60)
if
(
WITH_DISTRIBUTE
if
(
WITH_DISTRIBUTE
AND WITH_GPU
AND WITH_GPU
AND WITH_NCCL
)
AND WITH_NCCL
)
set_tests_properties
(
test_parallel_dygraph_pipeline_parallel_with_virtual_stage
PROPERTIES TIMEOUT 500
)
set_tests_properties
(
test_auto_parallel_data_unshard PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_auto_parallel_data_unshard PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_auto_parallel_save_load PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_auto_parallel_save_load PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_auto_parallel_autoconvert PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_auto_parallel_autoconvert PROPERTIES TIMEOUT 120
)
...
...
python/paddle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
浏览文件 @
72b5b5bf
...
@@ -204,6 +204,20 @@ if((WITH_GPU) AND LOCAL_ALL_PLAT)
...
@@ -204,6 +204,20 @@ if((WITH_GPU) AND LOCAL_ALL_PLAT)
set_tests_properties
(
test_parallel_dygraph_pipeline_parallel
set_tests_properties
(
test_parallel_dygraph_pipeline_parallel
PROPERTIES TIMEOUT
"500"
)
PROPERTIES TIMEOUT
"500"
)
endif
()
endif
()
if
((
WITH_GPU
)
AND LOCAL_ALL_PLAT
)
bash_test_modules
(
test_parallel_dygraph_pipeline_parallel_with_virtual_stage
START_BASH
../../dist_test.sh
LABELS
"RUN_TYPE=DIST"
ENVS
"PADDLE_DIST_UT_PORT=21282;http_proxy=;https_proxy=;PYTHONPATH=../..:
${
PADDLE_BINARY_DIR
}
/python"
)
set_tests_properties
(
test_parallel_dygraph_pipeline_parallel_with_virtual_stage
PROPERTIES TIMEOUT
"500"
RUN_SERIAL 1
)
endif
()
if
((
WITH_GPU
if
((
WITH_GPU
OR WITH_XPU
OR WITH_XPU
OR WITH_ASCEND
OR WITH_ASCEND
...
...
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_layer_with_virtual_stage.py
→
python/paddle/fluid/tests/unittests/
collective/fleet/
hybrid_parallel_pp_layer_with_virtual_stage.py
浏览文件 @
72b5b5bf
...
@@ -19,7 +19,7 @@ import paddle
...
@@ -19,7 +19,7 @@ import paddle
from
paddle.distributed
import
fleet
from
paddle.distributed
import
fleet
import
paddle.nn
as
nn
import
paddle.nn
as
nn
from
paddle.fluid.dygraph.layers
import
Layer
from
paddle.fluid.dygraph.layers
import
Layer
from
paddle.distributed.fleet.meta_parallel
import
LayerDesc
,
PipelineLayer
from
paddle.distributed.fleet.meta_parallel
import
LayerDesc
,
PipelineLayer
,
PipelineParallelWithInterleave
import
paddle.nn.functional
as
F
import
paddle.nn.functional
as
F
...
@@ -87,7 +87,8 @@ class TestPipeLayerAPI(unittest.TestCase):
...
@@ -87,7 +87,8 @@ class TestPipeLayerAPI(unittest.TestCase):
try
:
try
:
model_chunks
[
0
](
paddle
.
to_tensor
([
1.
,
2.
]))
model_chunks
[
0
](
paddle
.
to_tensor
([
1.
,
2.
]))
except
NotImplementedError
:
raise
NotImplementedError
except
PermissionError
:
pass
pass
# fake call for the forward function of virtual pipeline layer
# fake call for the forward function of virtual pipeline layer
...
@@ -102,6 +103,7 @@ class TestPipeLayerAPI(unittest.TestCase):
...
@@ -102,6 +103,7 @@ class TestPipeLayerAPI(unittest.TestCase):
# just make sure the model can be wrapped with distributed model
# just make sure the model can be wrapped with distributed model
dist_model
=
fleet
.
distributed_model
(
pipe_model
)
dist_model
=
fleet
.
distributed_model
(
pipe_model
)
assert
isinstance
(
dist_model
,
PipelineParallelWithInterleave
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_pp_transformer_with_virtual_stage.py
0 → 100644
浏览文件 @
72b5b5bf
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
paddle
import
numpy
as
np
import
random
import
paddle.distributed
as
dist
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid
import
layers
import
paddle.nn.functional
as
F
from
paddle.distributed.fleet.meta_parallel
import
PipelineLayer
,
LayerDesc
from
paddle.fluid.dygraph.layers
import
Layer
import
paddle.nn
as
nn
def
set_random_seed
(
seed
,
dp_id
,
rank_id
):
"""Set random seed for reproducability."""
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
+
dp_id
)
paddle
.
seed
(
seed
+
dp_id
)
batch_size
=
8
length
=
8
micro_batch_size
=
2
num_virtual_pipeline_stages
=
2
vocab_size
=
128
hidden_size
=
16
d_model
=
hidden_size
dim_feedforward
=
4
*
d_model
class
EmbeddingNet
(
Layer
):
def
__init__
(
self
):
super
(
EmbeddingNet
,
self
).
__init__
()
self
.
word_embeddings
=
nn
.
Embedding
(
vocab_size
,
hidden_size
)
self
.
position_embeddings
=
nn
.
Embedding
(
vocab_size
,
hidden_size
)
def
forward
(
self
,
x
):
attention_mask
=
paddle
.
tensor
.
triu
((
paddle
.
ones
(
(
length
,
length
),
dtype
=
"float32"
)
*
-
1e9
),
1
)
no_used
=
paddle
.
ones
((
3
,
3
),
dtype
=
"int32"
)
w_emb
=
self
.
word_embeddings
(
x
)
p_emb
=
self
.
position_embeddings
(
x
)
w_emb
=
w_emb
+
p_emb
attention_mask
.
stop_gradient
=
True
no_used
.
stop_gradient
=
True
# need to fix bug of backward()
return
w_emb
,
attention_mask
,
no_used
,
p_emb
class
TransformerNet
(
Layer
):
def
__init__
(
self
):
super
(
TransformerNet
,
self
).
__init__
()
self
.
linear1
=
nn
.
Linear
(
d_model
,
dim_feedforward
)
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
)
self
.
q_proj
=
nn
.
Linear
(
d_model
,
d_model
)
self
.
k_proj
=
nn
.
Linear
(
d_model
,
d_model
)
self
.
v_proj
=
nn
.
Linear
(
d_model
,
d_model
)
self
.
norm1
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
def
forward
(
self
,
x
,
mask
):
q
=
self
.
q_proj
(
x
)
k
=
self
.
k_proj
(
x
)
v
=
self
.
v_proj
(
x
)
product
=
layers
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
d_model
**-
0.5
)
weights
=
F
.
softmax
(
product
+
mask
)
tgt
=
layers
.
matmul
(
weights
,
v
)
residual
=
tgt
tgt
=
self
.
norm1
(
tgt
)
tgt
=
residual
+
tgt
out
=
self
.
linear2
(
F
.
gelu
(
self
.
linear1
(
tgt
),
approximate
=
True
))
return
out
class
EmbeddingPipe
(
EmbeddingNet
):
def
forward
(
self
,
x
):
return
super
().
forward
(
x
)
class
TransformerNetPipe
(
TransformerNet
):
def
forward
(
self
,
args
):
x
,
mask
,
no_used
,
p_emb
=
args
[
0
],
args
[
1
],
args
[
2
],
args
[
3
]
output
=
super
().
forward
(
x
,
mask
)
output
=
output
+
p_emb
mask
.
stop_gradient
=
True
return
output
,
mask
,
no_used
,
p_emb
class
CriterionPipe
(
Layer
):
def
__init__
(
self
):
super
(
CriterionPipe
,
self
).
__init__
()
def
forward
(
self
,
out
,
label
):
loss
=
out
.
mean
()
return
loss
class
ModelPipe
(
PipelineLayer
):
def
__init__
(
self
,
topology
):
self
.
descs
=
[]
self
.
descs
.
append
(
LayerDesc
(
EmbeddingPipe
))
for
x
in
range
(
8
):
self
.
descs
.
append
(
LayerDesc
(
TransformerNetPipe
))
self
.
descs
.
append
(
lambda
x
:
x
[
0
])
super
().
__init__
(
layers
=
self
.
descs
,
loss_fn
=
CriterionPipe
(),
topology
=
topology
,
num_virtual_pipeline_stages
=
num_virtual_pipeline_stages
,
seg_method
=
"layer:TransformerNetPipe"
)
class
TestDistPPTraning
(
unittest
.
TestCase
):
def
setUp
(
self
):
strategy
=
fleet
.
DistributedStrategy
()
self
.
model_parallel_size
=
1
self
.
data_parallel_size
=
1
self
.
pipeline_parallel_size
=
2
strategy
.
hybrid_configs
=
{
"dp_degree"
:
self
.
data_parallel_size
,
"mp_degree"
:
self
.
model_parallel_size
,
"pp_degree"
:
self
.
pipeline_parallel_size
,
}
strategy
.
pipeline_configs
=
{
"accumulate_steps"
:
batch_size
//
micro_batch_size
,
"micro_batch_size"
:
micro_batch_size
}
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
def
test_pp_model
(
self
):
hcg
=
fleet
.
get_hybrid_communicate_group
()
word_size
=
hcg
.
get_model_parallel_world_size
()
dp_id
=
hcg
.
get_data_parallel_rank
()
pp_id
=
hcg
.
get_stage_id
()
rank_id
=
dist
.
get_rank
()
topology
=
hcg
.
topology
()
set_random_seed
(
1024
,
dp_id
,
rank_id
)
model
=
ModelPipe
(
topology
)
scheduler
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
[
2
],
values
=
[
0.001
,
0.002
],
verbose
=
True
)
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
scheduler
,
parameters
=
model
.
parameters
())
model
=
fleet
.
distributed_model
(
model
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
for
step_id
in
range
(
5
):
x_data
=
np
.
random
.
randint
(
0
,
vocab_size
,
size
=
[
batch_size
,
length
])
x
=
paddle
.
to_tensor
(
x_data
)
x
.
stop_gradient
=
True
e_loss
=
model
.
eval_batch
([
x
,
x
],
True
)
loss
=
model
.
train_batch
([
x
,
x
],
optimizer
,
scheduler
)
np
.
testing
.
assert_allclose
(
loss
.
numpy
(),
e_loss
.
numpy
())
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_dygraph_pipeline_parallel_with_virtual_stage.py
→
python/paddle/fluid/tests/unittests/
collective/fleet/
test_parallel_dygraph_pipeline_parallel_with_virtual_stage.py
浏览文件 @
72b5b5bf
...
@@ -25,8 +25,10 @@ class TestHybridPipeParallelWithVirtualStage(TestMultipleGpus):
...
@@ -25,8 +25,10 @@ class TestHybridPipeParallelWithVirtualStage(TestMultipleGpus):
def
test_hybrid_parallel_pp_layer_with_virtual_stage
(
self
):
def
test_hybrid_parallel_pp_layer_with_virtual_stage
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_layer_with_virtual_stage.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_layer_with_virtual_stage.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_layer_with_virtual_stage.py'
,
eager_mode
=
False
)
def
test_hybrid_parallel_pp_transformer_with_virtual_stage
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_transformer_with_virtual_stage.py'
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/collective/fleet/testslist.csv
浏览文件 @
72b5b5bf
...
@@ -16,6 +16,7 @@ test_fleet_graph_execution_meta_optimizer,,GPU;XPU;ASCEND;ASCEND_CL,,DIST,../../
...
@@ -16,6 +16,7 @@ test_fleet_graph_execution_meta_optimizer,,GPU;XPU;ASCEND;ASCEND_CL,,DIST,../../
test_communicator_half_async,,,120,DIST,test_runner.py,2,,FLAGS_communicator_send_queue_size=1;FLAGS_communicator_max_merge_var_num=1;http_proxy=;https_proxy=;PYTHONPATH=../..,WITH_NCCL
test_communicator_half_async,,,120,DIST,test_runner.py,2,,FLAGS_communicator_send_queue_size=1;FLAGS_communicator_max_merge_var_num=1;http_proxy=;https_proxy=;PYTHONPATH=../..,WITH_NCCL
test_fleet_graph_executor,,GPU;XPU;ASCEND;ASCEND_CL,,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_fleet_graph_executor,,GPU;XPU;ASCEND;ASCEND_CL,,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_parallel_dygraph_pipeline_parallel,,GPU,500,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_parallel_dygraph_pipeline_parallel,,GPU,500,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_parallel_dygraph_pipeline_parallel_with_virtual_stage,,GPU,500,DIST,../../dist_test.sh,2,1,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_fleet_localsgd_meta_optimizer,LINUX,GPU;XPU;ASCEND;ASCEND_CL,,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_fleet_localsgd_meta_optimizer,LINUX,GPU;XPU;ASCEND;ASCEND_CL,,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_parallel_class_center_sample,,GPU,120,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,WITH_NCCL
test_parallel_class_center_sample,,GPU,120,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,WITH_NCCL
test_pipeline,,,120,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_pipeline,,,120,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录