未验证 提交 726c78f2 编写于 作者: X XiaoguangHu 提交者: GitHub

clean redundant API alias in 2.0 - part 1 (#29928)

* rm check_import_scipy, rm chunk_eval and mean_iou in paddle.metric.__init__.py

* Revert "rm check_import_scipy, rm chunk_eval and mean_iou in paddle.metric.__init__.py"

This reverts commit 179ba8c2b22bc31fe8d8a126e31820792cbd0f4e.

* delete paddle.metric.chunk_eval and paddle.metric.mean_iou

* delete paddle.nn.clip and paddle.nn.clip_by_norm

* delete paddle.nn.functional.activation.hard_sigmoid and paddle.nn.functional.activation.hard_swish

* delete paddle.nn.Pool2D, paddle.nn.BilinearTensorProduct, paddle.nn.RowConv, paddle.nn.functional.row_conv

* fix extension import error

* fix unittest for row_conv and Pool2D
上级 181ea187
......@@ -26,7 +26,7 @@ from paddle.fluid.contrib.slim.quantization import ImperativeQuantAware
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.nn import Sequential
from paddle.fluid.dygraph import Conv2D
from paddle.nn import Pool2D
from paddle.fluid.dygraph import Pool2D
from paddle.fluid.dygraph import Linear
from paddle.fluid.log_helper import get_logger
......
......@@ -12352,10 +12352,11 @@ def clip_by_norm(x, max_norm, name=None):
.. code-block:: python
import paddle
import numpy as np
import paddle.fluid as fluid
input = paddle.to_tensor(data=np.array([[0.1, 0.2], [0.3, 0.4]]), dtype="float32")
reward = paddle.nn.clip_by_norm(x=input, max_norm=1.0)
input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
# [[0.5, 0.5], [0.5, 0.5]]
"""
if in_dygraph_mode():
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import paddle.nn.functional as F
import unittest
class RowConvTestCase(unittest.TestCase):
def __init__(self,
methodName='runTest',
batch_size=4,
num_channels=8,
time_steps=12,
context_size=3,
act=None,
dtype="float32"):
super(RowConvTestCase, self).__init__(methodName=methodName)
self.batch_size = batch_size
self.num_channels = num_channels
self.time_steps = time_steps
self.context_size = context_size
self.act = act
self.dtype = dtype
def setUp(self):
input_shape = (self.batch_size, self.time_steps, self.num_channels)
self.input = np.random.uniform(size=input_shape).astype(self.dtype)
self.weight_shape = weight_shape = (self.context_size + 1,
self.num_channels)
self.weight = np.random.uniform(size=weight_shape).astype(self.dtype)
def fluid_layer(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
x = fluid.data(
"input", [-1, -1, self.num_channels], dtype=self.dtype)
y = fluid.layers.row_conv(
x,
self.context_size,
param_attr=I.NumpyArrayInitializer(self.weight),
act=self.act)
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return y_np
def functional_declarative(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
x = fluid.data(
"input", [-1, -1, self.num_channels], dtype=self.dtype)
w = fluid.data("weight", self.weight_shape, dtype=self.dtype)
y = F.extension.row_conv(x, w, act=self.act)
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main,
feed={"input": self.input,
"weight": self.weight},
fetch_list=[y])
return y_np
def functional_imperative(self, place):
with dg.guard(place):
x_var = dg.to_variable(self.input)
w_var = dg.to_variable(self.weight)
y_var = F.extension.row_conv(x_var, w_var, act=self.act)
y_np = y_var.numpy()
return y_np
def nn_layer(self, place):
with dg.guard(place):
x_var = dg.to_variable(self.input)
conv = nn.RowConv(
self.num_channels,
self.context_size,
param_attr=I.NumpyArrayInitializer(self.weight),
act=self.act,
dtype=self.dtype)
y_var = conv(x_var)
y_np = y_var.numpy()
return y_np
def _test_equivalence(self, place):
result1 = self.fluid_layer(place)
result2 = self.functional_declarative(place)
result3 = self.functional_imperative(place)
result4 = self.nn_layer(place)
np.testing.assert_array_almost_equal(result1, result2)
np.testing.assert_array_almost_equal(result2, result3)
np.testing.assert_array_almost_equal(result3, result4)
def runTest(self):
place = fluid.CPUPlace()
self._test_equivalence(place)
if fluid.core.is_compiled_with_cuda():
palce = fluid.CUDAPlace(0)
self._test_equivalence(place)
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
suite.addTest(RowConvTestCase(methodName="runTest"))
suite.addTest(RowConvTestCase(methodName="runTest", act="sigmoid"))
suite.addTest(
RowConvTestCase(
methodName="runTest", context_size=5, act="sigmoid"))
return suite
if __name__ == "__main__":
unittest.main()
......@@ -15,9 +15,4 @@
from .metrics import *
from . import metrics
from ..fluid.layers.nn import chunk_eval, mean_iou
__all__ = metrics.__all__ + [
'chunk_eval',
'mean_iou',
]
__all__ = metrics.__all__
......@@ -34,9 +34,6 @@ __all__ += weight_norm_hook.__all__
from .clip import ClipGradByGlobalNorm #DEFINE_ALIAS
from .clip import ClipGradByNorm #DEFINE_ALIAS
from .clip import ClipGradByValue #DEFINE_ALIAS
# from .clip import set_gradient_clip #DEFINE_ALIAS
from .clip import clip #DEFINE_ALIAS
from .clip import clip_by_norm #DEFINE_ALIAS
# from .control_flow import cond #DEFINE_ALIAS
# from .control_flow import DynamicRNN #DEFINE_ALIAS
# from .control_flow import StaticRNN #DEFINE_ALIAS
......@@ -71,8 +68,6 @@ from .layer.activation import Tanhshrink #DEFINE_ALIAS
from .layer.activation import ThresholdedReLU #DEFINE_ALIAS
from .layer.activation import LogSoftmax #DEFINE_ALIAS
from .layer.activation import Maxout #DEFINE_ALIAS
from .layer.common import BilinearTensorProduct #DEFINE_ALIAS
from .layer.common import Pool2D #DEFINE_ALIAS
from .layer.common import Pad1D #DEFINE_ALIAS
from .layer.common import Pad2D #DEFINE_ALIAS
from .layer.common import Pad3D #DEFINE_ALIAS
......@@ -108,7 +103,6 @@ from .layer.conv import Conv2DTranspose #DEFINE_ALIAS
from .layer.conv import Conv3DTranspose #DEFINE_ALIAS
# from .layer.conv import TreeConv #DEFINE_ALIAS
# from .layer.conv import Conv1D #DEFINE_ALIAS
from .layer.extension import RowConv #DEFINE_ALIAS
from .layer.common import Linear
# from .layer.loss import NCELoss #DEFINE_ALIAS
from .layer.loss import BCEWithLogitsLoss #DEFINE_ALIAS
......
......@@ -16,16 +16,5 @@
from ..fluid.clip import ClipGradByGlobalNorm #DEFINE_ALIAS
from ..fluid.clip import ClipGradByNorm #DEFINE_ALIAS
from ..fluid.clip import ClipGradByValue #DEFINE_ALIAS
from ..fluid.layers import clip #DEFINE_ALIAS
from ..fluid.layers import clip_by_norm #DEFINE_ALIAS
__all__ = [
# 'ErrorClipByValue',
'ClipGradByGlobalNorm',
'ClipGradByNorm',
'ClipGradByValue',
# 'set_gradient_clip',
'clip',
'clip_by_norm'
]
__all__ = ['ClipGradByGlobalNorm', 'ClipGradByNorm', 'ClipGradByValue']
......@@ -88,7 +88,6 @@ from .conv import conv3d_transpose #DEFINE_ALIAS
# from .extension import multiclass_nms #DEFINE_ALIAS
# from .extension import polygon_box_transform #DEFINE_ALIAS
# from .extension import random_crop #DEFINE_ALIAS
# from .extension import row_conv #DEFINE_ALIAS
# from .extension import rpn_target_assign #DEFINE_ALIAS
# from .extension import similarity_focus #DEFINE_ALIAS
# from .extension import target_assign #DEFINE_ALIAS
......
......@@ -15,8 +15,6 @@
# TODO: define activation functions of neural network
from ...fluid.layers import brelu #DEFINE_ALIAS
# from ...fluid.layers import erf #DEFINE_ALIAS
from ...fluid.layers import hard_sigmoid #DEFINE_ALIAS
from ...fluid.layers import hard_swish #DEFINE_ALIAS
from ...fluid.layers import maxout #DEFINE_ALIAS
# from ...fluid.layers import soft_relu #DEFINE_ALIAS
from ...fluid.layers import swish #DEFINE_ALIAS
......@@ -24,6 +22,7 @@ from ...fluid.layers import sigmoid #DEFINE_ALIAS
from ...tensor.math import tanh #DEFINE_ALIAS
__all__ = [
'brelu',
'elu',
'gelu',
'hardshrink',
......
......@@ -14,7 +14,7 @@
# TODO: define the extention functions
__all__ = ['diag_embed', 'row_conv']
__all__ = ['diag_embed']
import numpy as np
from ...fluid.data_feeder import check_dtype
......@@ -138,64 +138,3 @@ def diag_embed(input, offset=0, dim1=-2, dim2=-1):
outputs={'Out': [out]})
out.stop_gradient = True
return out
@templatedoc()
def row_conv(input, weight, act=None):
"""
${comment}
Args:
input (Tensor): the input(X) is a LodTensor or tensor, LodTensor(X)
supports variable time-length input sequences. The underlying
tensor in this LoDTensor is a matrix with shape (T, D), where
T is the total time steps in this mini-batch and D is the input
data dimension.
If the input is a padded minibatch, the shape of the input is
(N, T, D), N is batch size, T is the max time steps in the batch,
D is the input data dimension.
weight (Tensor): The weight. A Tensor with shape
(future_context_size + 1, D), where future_context_size is the
context size of the RowConv operator.
act (str): Non-linear activation to be applied to output variable.
Returns:
${out_comment}.
Examples:
.. code-block:: python
from paddle import fluid, nn
import paddle.nn.functional as F
import numpy as np
batch_size = 4
time_steps = 8
feature_size = 6
context_size = 4
x = np.random.randn(batch_size, time_steps, feature_size).astype(np.float32)
weight = np.random.randn(context_size + 1, feature_size).astype(np.float32)
x_var = paddle.to_tensor(x)
w_var = paddle.to_tensor(weight)
y_var = F.extension.row_conv(x_var, w_var)
print(y_var.shape)
# [4, 8, 6]
"""
if in_dygraph_mode():
pre_act = core.ops.row_conv(input, weight)
out = dygraph_utils._append_activation_in_dygraph(pre_act, act)
return out
else:
helper = LayerHelper('row_conv', **locals())
dtype = helper.input_dtype()
inputs = {'X': [input], 'Filter': [weight]}
pre_act = helper.create_variable_for_type_inference(dtype)
outputs = {'Out': [pre_act]}
helper.append_op(type='row_conv', inputs=inputs, outputs=outputs)
out = helper.append_activation(pre_act)
return out
......@@ -17,7 +17,6 @@
from . import activation
from . import loss
from . import conv
from . import extension
from . import activation
from . import norm
from . import rnn
......@@ -28,7 +27,6 @@ from . import transformer
from .activation import *
from .loss import *
from .conv import *
from .extension import *
from .activation import *
from .norm import *
from .rnn import *
......@@ -41,9 +39,7 @@ from .activation import LeakyReLU #DEFINE_ALIAS
from .activation import Sigmoid #DEFINE_ALIAS
from .activation import Softmax #DEFINE_ALIAS
from .activation import LogSoftmax #DEFINE_ALIAS
from .common import BilinearTensorProduct #DEFINE_ALIAS
from .common import Bilinear #DEFINE_ALIAS
from .common import Pool2D #DEFINE_ALIAS
from .common import Pad1D #DEFINE_ALIAS
from .common import Pad2D #DEFINE_ALIAS
from .common import Pad3D #DEFINE_ALIAS
......@@ -79,7 +75,6 @@ from .conv import Conv2DTranspose #DEFINE_ALIAS
from .conv import Conv3DTranspose #DEFINE_ALIAS
# from .conv import TreeConv #DEFINE_ALIAS
# from .conv import Conv1D #DEFINE_ALIAS
from .extension import RowConv #DEFINE_ALIAS
# from .loss import NCELoss #DEFINE_ALIAS
from .loss import BCEWithLogitsLoss #DEFINE_ALIAS
from .loss import CrossEntropyLoss #DEFINE_ALIAS
......
......@@ -14,16 +14,12 @@
# TODO: define the common classes to build a neural network
import paddle
from ...fluid.dygraph import BilinearTensorProduct #DEFINE_ALIAS
from ...fluid.dygraph import Pool2D #DEFINE_ALIAS
from ...fluid.dygraph import Flatten #DEFINE_ALIAS
from ...fluid.dygraph import layers
from .. import functional as F
from ...fluid.framework import _dygraph_tracer
__all__ = [
'BilinearTensorProduct',
'Pool2D',
'Embedding',
'Linear',
'Upsample',
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['RowConv']
from ...fluid.dygraph import layers
from .. import functional as F
class RowConv(layers.Layer):
"""
**Row-convolution operator**
The row convolution is called lookahead convolution. This operator was
introduced in the following paper for
`DeepSpeech2 <http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf>`_.
The main motivation is that a bidirectional RNN, useful in DeepSpeech like
speech models, learns representation for a sequence by performing a
forward and a backward pass through the entire sequence. However, unlike
unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
and low-latency setting. The lookahead convolution incorporates information
from future subsequences in a computationally efficient manner to improve
unidirectional recurrent neural networks. The row convolution operator is
different from the 1D sequence convolution, and is computed as follows:
Given an input sequence X of length t and input dimension D, and a filter
(W) of size context * D.
More details about row_conv please refer to the design document
`<https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645>`_ .
Parameters:
num_channels (int): input data's feature size.
future_context_size (int): Future context size. Please note, the shape
of convolution kernel is [future_context_size + 1, D].
param_attr (ParamAttr): Attributes of parameters, including
name, initializer etc. Default: None.
act (str): Non-linear activation to be applied to output tensor. Default: None.
dtype (str, optional): Data type, it can be "float32". Default: "float32".
Attributes:
weight (Parameter): shape [future_context_size + 1, D], the learnable
weight (convolution kernel) of this layer.
Returns:
None
Examples:
.. code-block:: python
from paddle import nn
import paddle.nn.functional as F
import numpy as np
batch_size = 4
time_steps = 8
feature_size = 6
context_size = 4
x = np.random.randn(batch_size, time_steps, feature_size).astype(np.float32)
x = paddle.to_tensor(x)
conv = nn.RowConv(feature_size, context_size)
y = conv(x)
print(y.shape)
# [4, 8, 6]
"""
def __init__(self,
num_channels,
future_context_size,
param_attr=None,
act=None,
dtype="float32"):
super(RowConv, self).__init__()
self._dtype = dtype
self._param_attr = param_attr
self._act = act
filter_shape = [future_context_size + 1, num_channels]
self.weight = self.create_parameter(
filter_shape, attr=param_attr, dtype=dtype)
def forward(self, input):
out = F.extension.row_conv(input, self.weight, act=self._act)
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册