Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7215ca10
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7215ca10
编写于
3月 15, 2021
作者:
W
WangXi
提交者:
sandyhouse
3月 22, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
offload optimize fp32 param
上级
767422ee
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
159 addition
and
1 deletion
+159
-1
python/paddle/distributed/fleet/meta_optimizers/sharding/offload_helper.py
...tributed/fleet/meta_optimizers/sharding/offload_helper.py
+158
-1
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+1
-0
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/sharding/offload_helper.py
浏览文件 @
7215ca10
...
...
@@ -13,7 +13,7 @@
# limitations under the License.
from
..common
import
is_optimizer_op
,
OP_ROLE_KEY
,
OpRole
from
paddle.fluid
import
unique_name
from
paddle.fluid
import
core
,
unique_name
class
OffloadHelper
(
object
):
...
...
@@ -27,6 +27,27 @@ class OffloadHelper(object):
"1: dst is on CUDAPlace. "
"2: dst is on CUDAPinnedPlace. "
def
_insert_cast_op
(
self
,
block
,
idx
,
src_name
,
dst_name
):
src_var
=
block
.
var
(
src_name
)
if
not
block
.
has_var
(
dst_name
):
block
.
create_var
(
name
=
dst_name
,
shape
=
src_var
.
shape
,
dtype
=
core
.
VarDesc
.
VarType
.
FP16
,
persistable
=
True
)
dst_var
=
block
.
var
(
dst_name
)
assert
dst_var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP16
block
.
_insert_op_without_sync
(
idx
,
type
=
'cast'
,
inputs
=
{
'X'
:
src_var
},
outputs
=
{
'Y'
:
dst_var
},
attrs
=
{
'in_dtype'
:
src_var
.
dtype
,
'out_dtype'
:
dst_var
.
dtype
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
def
_insert_memcpy_op
(
self
,
block
,
idx
,
src_name
,
dst_name
,
dst_place_type
):
src_var
=
block
.
var
(
src_name
)
dst_var
=
block
.
var
(
dst_name
)
...
...
@@ -61,6 +82,139 @@ class OffloadHelper(object):
dtype
=
var
.
dtype
,
persistable
=
True
)
def
offload_fp32param
(
self
,
block
,
startup_block
):
"""
(p_fp16) = cast(p)
(p_fp16_recompute) = cast(p)
(pout,) = adam(p)
===========================>
rename(p_fp16_recompute, p_fp16)
(p,) = prefetch(p@offload)
(pout,) = adam(p)
(p_fp16) = cast(p)
(p@offload) = memcpy(p)
"""
param_to_idx
=
dict
()
param_to_fp16
=
dict
()
# recompute_var which need rename to fp16_param
fp16_param_to_recompute
=
dict
()
recompute_to_fp16
=
dict
()
def
remove_param
(
input_name
):
param_to_idx
.
pop
(
input_name
)
if
input_name
in
param_to_fp16
:
fp16_param
=
param_to_fp16
.
pop
(
input_name
)
if
fp16_param
in
fp16_param_to_recompute
:
recompute
=
fp16_param_to_recompute
.
pop
(
fp16_param
)
recompute_to_fp16
.
pop
(
recompute
)
# step1: record param
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
op
.
type
in
(
'adam'
,
'momentum'
,
'lars'
,
'lamb'
):
param
=
op
.
desc
.
input
(
"Param"
)[
0
]
param_to_idx
[
param
]
=
idx
# step2: remove param which can't offload
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
break
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
not
in
param_to_idx
:
continue
# param is real used by fp32 op
if
op
.
type
!=
'cast'
:
remove_param
(
input_name
)
continue
# param is only used by cast op,
# which to cast fp32_param to fp16_param
output_name
=
op
.
output_arg_names
[
0
]
if
'cast_fp16'
not
in
output_name
:
remove_param
(
input_name
)
continue
if
'subprog'
not
in
output_name
:
assert
output_name
==
input_name
+
'.cast_fp16'
assert
input_name
not
in
param_to_fp16
,
\
"There must be only one cast op from fp32 param to fp16 param."
param_to_fp16
[
input_name
]
=
output_name
else
:
# fp16-->recompute_var
assert
input_name
in
param_to_fp16
,
\
"param must first be cast to fp16"
fp16_param
=
param_to_fp16
[
input_name
]
fp16_param_to_recompute
[
fp16_param
]
=
output_name
recompute_to_fp16
[
output_name
]
=
fp16_param
param_name_to_offload_name
=
dict
()
# step3: main_block add offload, cast op
# change recompute to fp16, remove cast(param) to fp16
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
op
.
type
in
(
'adam'
,
'momentum'
,
'lars'
,
'lamb'
):
param
=
op
.
desc
.
input
(
"Param"
)[
0
]
if
param
not
in
param_to_idx
:
continue
# step3.1: create offload_var
offload_var_name
=
self
.
_get_offload_var_name
(
param
)
param_name_to_offload_name
[
param
]
=
offload_var_name
self
.
_create_offload_var
(
param
,
offload_var_name
,
[
block
,
startup_block
])
# step3.2: insert cast op and offload op
self
.
_insert_offload_op
(
block
,
idx
+
1
,
param
,
offload_var_name
)
assert
param
in
param_to_fp16
fp16_param_name
=
param_to_fp16
[
param
]
fp16_param_var
=
block
.
var
[
fp16_param_name
]
fp16_param_var
.
persistable
=
True
self
.
_insert_cast_op
(
block
,
idx
+
1
,
param
,
param_to_fp16
[
param
])
# step3.3: insert fetch op
self
.
_insert_fetch_op
(
block
,
idx
,
offload_var_name
,
param
)
continue
# step3.4: remove cast op
if
op
.
type
==
'cast'
:
input_name
=
op
.
desc
.
input_arg_names
[
0
]
if
input_name
in
param_to_idx
:
block
.
_remove_op
(
idx
,
sync
=
False
)
continue
# step3.5: change recompute_param to fp16_param
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
in
recompute_to_fp16
:
op
.
_rename_input
(
input_name
,
recompute_to_fp16
[
input_name
])
for
output_name
in
op
.
desc
.
output_arg_names
():
if
output_name
in
recompute_to_fp16
:
op
.
_rename_output
(
output_name
,
recompute_to_fp16
[
output_name
])
# step4: remove recompute_param
for
name
in
recompute_to_fp16
.
keys
():
block
.
_remove_var
(
name
,
sync
=
False
)
# step5: startup_block add offload
visited_vars
=
set
()
for
idx
,
op
in
reversed
(
list
(
enumerate
(
startup_block
.
ops
))):
for
out_name
in
op
.
output_arg_names
:
if
out_name
in
visited_vars
:
continue
if
out_name
in
param_name_to_offload_name
:
var_name
=
out_name
offload_var_name
=
param_name_to_offload_name
[
var_name
]
self
.
_insert_offload_op
(
startup_block
,
idx
+
1
,
var_name
,
offload_var_name
)
self
.
_insert_cast_op
(
startup_block
,
idx
+
1
,
var_name
,
param_to_fp16
[
var_name
])
visited_vars
.
add
(
out_name
)
block
.
_sync_with_cpp
()
startup_block
.
_sync_with_cpp
()
def
offload
(
self
,
block
,
startup_block
):
"""
(m1, m2) = prefetch(m1@offload, m2@offload)
...
...
@@ -122,3 +276,6 @@ class OffloadHelper(object):
self
.
_insert_offload_op
(
startup_block
,
idx
+
1
,
var_name
,
offload_var_name
)
visited_vars
.
add
(
out_name
)
block
.
_sync_with_cpp
()
startup_block
.
_sync_with_cpp
()
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
7215ca10
...
...
@@ -224,6 +224,7 @@ class ShardingOptimizer(MetaOptimizerBase):
logging
.
info
(
"Sharding with optimize offload !"
)
offload_helper
=
OffloadHelper
()
offload_helper
.
offload
(
main_block
,
startup_block
)
offload_helper
.
offload_fp32param
(
main_block
,
startup_block
)
with
open
(
"start_sharding_%d"
%
self
.
role_maker
.
_worker_index
(),
'w'
)
as
f
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录