<dd><ahref="#id12"><spanclass="problematic"id="id13">`Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
<dd><aclass="reference external"href="https://arxiv.org/abs/1406.4729">Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition</a></dd>
<aclass="reference external"href="https://arxiv.org/pdf/1312.6082v4.pdf">Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks</a></dd>
<ahref="#id16"><spanclass="problematic"id="id17">`Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
<dd><p>Response normalization across feature maps.</p>
<dd><p>Response normalization across feature maps.</p>
<dlclass="docutils">
<dlclass="docutils">
<dt>Reference:</dt>
<dt>Reference:</dt>
<dd><ahref="#id18"><spanclass="problematic"id="id19">`ImageNet Classification with Deep Convolutional Neural Networks
<dd><aclass="reference external"href="http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf">ImageNet Classification with Deep Convolutional Neural Networks</a></dd>
<dd><p>A cost Layer for learning to rank using gradient descent.</p>
<dd><p>A cost Layer for learning to rank using gradient descent.</p>
<dlclass="docutils">
<dlclass="docutils">
<dt>Reference:</dt>
<dt>Reference:</dt>
<dd><ahref="#id22"><spanclass="problematic"id="id23">`Learning to Rank using Gradient Descent
<dd><aclass="reference external"href="http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf">Learning to Rank using Gradient Descent</a></dd>
<dd><ahref="#id28"><spanclass="problematic"id="id29">`A fast and simple algorithm for training neural probabilistic language
<dd><aclass="reference external"href="https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf">A fast and simple algorithm for training neural probabilistic language
\[\begin{split}z_i &\quad if \quad z_i > 0 \\
\[\begin{split}z_i &\quad if \quad z_i > 0 \\
...
@@ -4588,11 +4579,10 @@ details.</li>
...
@@ -4588,11 +4579,10 @@ details.</li>
<dd><p>The gated unit layer implements a simple gating mechanism over the input.
<dd><p>The gated unit layer implements a simple gating mechanism over the input.
The input <spanclass="math">\(X\)</span> is first projected into a new space <spanclass="math">\(X'\)</span>, and
The input <spanclass="math">\(X\)</span> is first projected into a new space <spanclass="math">\(X'\)</span>, and
it is also used to produce a gate weight <spanclass="math">\(\sigma\)</span>. Element-wise
it is also used to produce a gate weight <spanclass="math">\(\sigma\)</span>. Element-wise
product between <ahref="#id10"><spanclass="problematic"id="id11">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
product between <ahref="#id11"><spanclass="problematic"id="id12">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
<dlclass="docutils">
<dlclass="docutils">
<dt>Reference:</dt>
<dt>Reference:</dt>
<dd><ahref="#id34"><spanclass="problematic"id="id35">`Language Modeling with Gated Convolutional Networks
<dd><aclass="reference external"href="https://arxiv.org/abs/1612.08083">Language Modeling with Gated Convolutional Networks</a></dd>
<dd><ahref="#id12"><spanclass="problematic"id="id13">`Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
<dd><aclass="reference external"href="https://arxiv.org/abs/1406.4729">Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition</a></dd>
<aclass="reference external"href="https://arxiv.org/pdf/1312.6082v4.pdf">Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks</a></dd>
<ahref="#id16"><spanclass="problematic"id="id17">`Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
<dd><p>Response normalization across feature maps.</p>
<dd><p>Response normalization across feature maps.</p>
<dlclass="docutils">
<dlclass="docutils">
<dt>Reference:</dt>
<dt>Reference:</dt>
<dd><ahref="#id18"><spanclass="problematic"id="id19">`ImageNet Classification with Deep Convolutional Neural Networks
<dd><aclass="reference external"href="http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf">ImageNet Classification with Deep Convolutional Neural Networks</a></dd>
<dd><p>A cost Layer for learning to rank using gradient descent.</p>
<dd><p>A cost Layer for learning to rank using gradient descent.</p>
<dlclass="docutils">
<dlclass="docutils">
<dt>Reference:</dt>
<dt>Reference:</dt>
<dd><ahref="#id22"><spanclass="problematic"id="id23">`Learning to Rank using Gradient Descent
<dd><aclass="reference external"href="http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf">Learning to Rank using Gradient Descent</a></dd>
<dd><ahref="#id28"><spanclass="problematic"id="id29">`A fast and simple algorithm for training neural probabilistic language
<dd><aclass="reference external"href="https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf">A fast and simple algorithm for training neural probabilistic language
\[\begin{split}z_i &\quad if \quad z_i > 0 \\
\[\begin{split}z_i &\quad if \quad z_i > 0 \\
...
@@ -4589,11 +4580,10 @@ details.</li>
...
@@ -4589,11 +4580,10 @@ details.</li>
<dd><p>The gated unit layer implements a simple gating mechanism over the input.
<dd><p>The gated unit layer implements a simple gating mechanism over the input.
The input <spanclass="math">\(X\)</span> is first projected into a new space <spanclass="math">\(X'\)</span>, and
The input <spanclass="math">\(X\)</span> is first projected into a new space <spanclass="math">\(X'\)</span>, and
it is also used to produce a gate weight <spanclass="math">\(\sigma\)</span>. Element-wise
it is also used to produce a gate weight <spanclass="math">\(\sigma\)</span>. Element-wise
product between <ahref="#id10"><spanclass="problematic"id="id11">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
product between <ahref="#id11"><spanclass="problematic"id="id12">:match:`X’`</span></a> and <spanclass="math">\(\sigma\)</span> is finally returned.</p>
<dlclass="docutils">
<dlclass="docutils">
<dt>Reference:</dt>
<dt>Reference:</dt>
<dd><ahref="#id34"><spanclass="problematic"id="id35">`Language Modeling with Gated Convolutional Networks
<dd><aclass="reference external"href="https://arxiv.org/abs/1612.08083">Language Modeling with Gated Convolutional Networks</a></dd>