提交 70e60d73 编写于 作者: L Liu Yiqun

Merge branch 'develop' into core_add_fc_op

......@@ -21,7 +21,6 @@ addons:
- python
- python-pip
- python2.7-dev
- python-numpy
- python-wheel
- libboost-dev
- curl
......@@ -35,8 +34,8 @@ before_install:
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
- pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt
- pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker
- sudo pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt
- sudo pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker
- curl https://glide.sh/get | bash
- eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
- go get -u github.com/alecthomas/gometalinter
......
......@@ -65,8 +65,8 @@ if(NOT CMAKE_BUILD_TYPE)
endif()
if(ANDROID)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 21")
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
endif()
set(WITH_GPU OFF CACHE STRING
......
......@@ -86,12 +86,13 @@ def layer.fc(X):
We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example:
```
| C++ functions/functors | mul | add | | |
|------------------------|--------------|--------------|-------------|----------|
| C++ operator class | mulOp | addOp | FCOp | |
| Python binding | operator.mul | operator.add | operator.fc | |
| Python function | | | | layer.fc |
```
This is how we differentiate layer and operators in PaddlePaddle:
......
# Design Doc: Operation Graph Based Parameter Server
## Abstract
We propose an approach to implement the parameter server. In this
approach, there is no fundamental difference between the trainer and
the parameter server: they both run subgraphs, but subgraphs of
different purposes.
## Background
The previous implementations of the parameter server does not run a
subgraph. parameter initialization, optimizer computation, network
communication and checkpointing are implemented twice on both the
trainer and the parameter server.
It would be great if we can write code once and use them on both the
trainer and the parameter server: reduces code duplication and
improves extensibility. Given that after the current refactor, we are
representing everything as a computing graph on the
trainer. Representing everything as a computing graph on the parameter
server becomes a natural extension.
## Design
### Graph Converter
The *graph converter* converts the user-defined operation (OP) graph
into subgraphs to be scheduled on different nodes with the following
steps:
1. OP placement: the OPs will be placed on different nodes according
to heuristic that minimizes estimated total computation
time. Currently we will use a simple heuristic that puts parameter
varable on parameter server workers and everything else on trainer
workers.
1. Add communication OPs to enable the communication between nodes.
We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*.
Below is an example of converting the user defined graph to the
subgraphs for the trainer and the parameter server:
<img src="src/local-graph.png" width="300"/>
After converting:
<img src="src/dist-graph.png" width="700"/>
1. The parameter variable W and it's optimizer subgraph are placed on the parameter server.
1. Operators are added to the subgraphs.
- *Send* sends data to the connected *Recv* operator. The
scheduler on the receive node will only schedule *Recv* operator
to run when the *Send* operator has ran (the *Send* OP will mark
the *Recv* OP runnable automatically).
- *Enueue* enqueues the input variable, it can block until space
become available in the queue.
- *Dequeue* outputs configurable numbers of tensors from the
queue. It will block until the queue have the required number of
tensors.
### Benefits
- Model parallelism become easier to implement: it's an extension to
the trainer - parameter server approach. we already have the
communication OPs, but need to extend the graph converter's
placement functionality.
- User-defined optimizer is easier to add - user can now express it as
a subgraph.
- No more duplication logic inside the trainer and the parameter
server mentioned in the background section.
### Challenges
- It might be hard for the graph converter to cut a general graph
(without any hint for which subgraph is the optimizer). We may need
to label which subgraph inside the OP graph is the optimizer.
- It's important to balance the parameter shards of on multiple
parameter server. If a single parameter is very big (some
word-embedding, fully connected, softmax layer), we need to
automatically partition the single parameter onto different
parameter servers when possible (only element-wise optimizer depends
on the parameter variable).
### Discussion
- In the "Aync SGD" figure, the "W" variable on the parameter server
could be read and wrote concurrently, what is our locking strategy?
E.g., each variable have a lock cpp method to be invoked by every
OP, or, have a lock OP.
- Can the Enqueue OP be implemented under our current tensor design
(puts the input tensor into the queue tensor)?
- *Dequeue* OP will have variable numbers of output (depends on the
`min_count` attribute), does our current design support it? (similar
question for the *Add* OP)
### References:
[1] [TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf)
......@@ -45,7 +45,19 @@ class GreaterThanChecker {
public:
explicit GreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
void operator()(T& value) const {
PADDLE_ENFORCE(value > lower_bound_, "larger_than check fail");
PADDLE_ENFORCE(value > lower_bound_, "larger_than check fails.");
}
private:
T lower_bound_;
};
template <typename T>
class EqualGreaterThanChecker {
public:
explicit EqualGreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
void operator()(T& value) const {
PADDLE_ENFORCE_GE(value, lower_bound_, "equal_larger_than check fails.");
}
private:
......@@ -115,6 +127,11 @@ class TypedAttrChecker {
return *this;
}
TypedAttrChecker& EqualGreaterThan(const T& lower_bound) {
value_checkers_.push_back(EqualGreaterThanChecker<T>(lower_bound));
return *this;
}
// we can add more common limits, like LessThan(), Between()...
TypedAttrChecker& SetDefault(const T& default_value) {
......
......@@ -2,20 +2,20 @@
## Motivation
In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the fundmental gradient operators/expressions together with chain rule . Every forward network need a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the gradient operators/expressions together with the chain rule. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
## Backward Operator Registry
A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs and output gradients and then calculate its input gradients.
A backward network is built up with several backward operators. Backward operators take forward operators' inputs outputs, and output gradients and then calculate its input gradients.
| | forward operator | backward operator
| ---------------------- | ---------------- |------------------------- |
| **Operator::inputs_** | Inputs | Inputs, Outputs, OutputGradients |
| **Operator::outputs_** | Outputs | InputGradients |
In most cases, there is a one-to-one correspondence between forward and backward operators. These correspondences are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and make operators pluggable, the registry mechanism is introduced.
In most cases, there is a one-to-one correspondence between the forward and backward operators. These correspondences are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and make operators pluggable, the registry mechanism is introduced.
For example, we have got a `mul_op`, and we can register it's information and corresponding backward operator by the following macro:
For example, we have got a `mul_op`, and we can register its information and corresponding backward operator by the following macro:
```cpp
REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad);
......@@ -27,7 +27,7 @@ REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad);
## Backward Opeartor Creating
Given a certain forward operator, we can get its corresponding backward opeartor by calling:
Given a certain forward operator, we can get its corresponding backward operator by calling:
```cpp
OperatorBase* bwd_op = BuildGradOp(const OperatorBase* fwd_op);
......@@ -37,7 +37,7 @@ The function `BuildGradOp` will sequentially execute following processes:
1. Get the `type_` of given forward operator, and then get the corresponding backward operator's type by looking up the `OpInfoMap`.
2. Build two maps named `inputs` and `outputs` to temporary storage backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these are not necessary for gradient computing.
2. Build two maps named `inputs` and `outputs` to temporary storage backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these, are not necessary for gradient computing.
3. Add forward inputs' gradient variables into map `output`, adding forward outputs' gradient variables into map `input`.
......@@ -49,31 +49,31 @@ A backward network is a series of backward operators. The main idea of building
In our design, the network itself is also a kind of operator. So the operators contained by a big network may be some small network.
given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`,`InputGradients`.
given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`, `InputGradients`.
1. Op
when the input forward network is a Op, return its gradient Operator Immediately.
when the input forward network is an Op, return its gradient Operator Immediately.
2. NetOp
when the input forward network is a NetOp, it need to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to forward NetOp.
when the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp.
**shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwirte their shared input variable.
**shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwrite their shared input variable.
<p align="center">
<img src="./images/duplicate_op.png" width="70%" ><br/>
<img src="./images/duplicate_op.png" width="50%" ><br/>
1. shared variable in two operators.
1. Shared variable in operators.
</p>
Share variable between operators or same input variable used in multiple operators lead to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively, and add a generic add operator replace the overwirte links.
Share variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator replace the overwrite links.
<p align="center">
<img src="images/duplicate_op2.png" width="90%" ><br/>
<img src="images/duplicate_op2.png" width="50%" ><br/>
2. replace shared variable gradient with `Add` Operator
2. Replace shared variable's gradient with `Add` operator.
</p>
......
......@@ -283,5 +283,14 @@ std::ostream& operator<<(std::ostream& os, const DDim& ddim) {
DDim::DDim(std::initializer_list<int64_t> init_list) {
*this = make_ddim(init_list);
}
DDim flatten_to_2d(const DDim& src, int num_col_dims) {
int rank = src.size();
return make_ddim({product(slice_ddim(src, 0, num_col_dims)),
product(slice_ddim(src, num_col_dims, rank))});
}
DDim flatten_to_1d(const DDim& src) { return make_ddim({product(src)}); }
} // namespace framework
} // namespace paddle
......@@ -115,6 +115,12 @@ int arity(const DDim& ddim);
std::ostream& operator<<(std::ostream&, const DDim&);
// Reshape a tensor to a matrix. The matrix's first dimension(column length)
// will be the product of tensor's first `num_col_dims` dimensions.
DDim flatten_to_2d(const DDim& src, int num_col_dims);
DDim flatten_to_1d(const DDim& src);
} // namespace framework
} // namespace paddle
......
......@@ -63,20 +63,35 @@ struct EigenTensor {
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {};
struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {
static typename EigenMatrix::Type Reshape(Tensor& tensor, int num_col_dims) {
int rank = tensor.dims_.size();
PADDLE_ENFORCE(num_col_dims > 0 && num_col_dims < rank,
"`num_col_dims` must be between (0, rank_of_tensor).");
return EigenMatrix::From(tensor,
flatten_to_2d(tensor.dims(), num_col_dims));
}
static typename EigenMatrix::ConstType Reshape(const Tensor& tensor,
int num_col_dims) {
int rank = tensor.dims_.size();
PADDLE_ENFORCE(num_col_dims > 0 && num_col_dims < rank,
"`num_col_dims` must be between (0, rank_of_tensor).");
return EigenMatrix::From(tensor,
flatten_to_2d(tensor.dims(), num_col_dims));
}
};
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
// Flatten reshapes a Tensor into an EigenVector.
static typename EigenVector::Type Flatten(Tensor& tensor) {
return EigenVector::From(
tensor, make_ddim({static_cast<int>(product(tensor.dims_))}));
return EigenVector::From(tensor, {product(tensor.dims_)});
}
static typename EigenVector::ConstType Flatten(const Tensor& tensor) {
return EigenVector::From(
tensor, make_ddim({static_cast<int>(product(tensor.dims_))}));
return EigenVector::From(tensor, {product(tensor.dims_)});
}
};
......
......@@ -108,5 +108,24 @@ TEST(Eigen, Matrix) {
}
}
TEST(Eigen, MatrixReshape) {
Tensor t;
float* p = t.mutable_data<float>({2, 3, 6, 4}, platform::CPUPlace());
for (int i = 0; i < 2 * 3 * 6 * 4; ++i) {
p[i] = static_cast<float>(i);
}
EigenMatrix<float>::Type em = EigenMatrix<float>::Reshape(t, 2);
ASSERT_EQ(2 * 3, em.dimension(0));
ASSERT_EQ(6 * 4, em.dimension(1));
for (int i = 0; i < 2 * 3; i++) {
for (int j = 0; j < 6 * 4; j++) {
ASSERT_NEAR(i * 6 * 4 + j, em(i, j), 1e-6f);
}
}
}
} // namespace framework
} // namespace paddle
......@@ -123,6 +123,15 @@ OperatorBase::OperatorBase(const std::string& type,
CheckAllInputOutputSet();
}
std::vector<std::string> OperatorBase::InputVars() const {
std::vector<std::string> ret_val;
for (auto& o : outputs_) {
ret_val.reserve(ret_val.size() + o.second.size());
ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
}
return ret_val;
}
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
std::vector<std::string> ret_val;
if (has_intermediate) {
......
......@@ -94,11 +94,14 @@ class OperatorBase {
const VariableNameMap& Inputs() const { return inputs_; }
const VariableNameMap& Outputs() const { return outputs_; }
//! Get a input with argument's name described in `op_proto`
std::string Input(const std::string& name) const;
//! Get a input which has multiple variables.
const std::vector<std::string>& Inputs(const std::string& name) const;
std::vector<std::string> InputVars() const;
//! Get a output with argument's name described in `op_proto`
std::string Output(const std::string& name) const;
//! Get an output which has multiple variables.
......@@ -311,9 +314,9 @@ class InferShapeContext {
}
template <typename T>
std::vector<const T*> MultiOutput(const std::string& name) const {
std::vector<T*> MultiOutput(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<const T*> res;
std::vector<T*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
......
......@@ -43,6 +43,9 @@ class Tensor {
template <typename T, size_t D, int MajorType, typename IndexType>
friend struct EigenTensor;
template <typename T, int MajorType, typename IndexType>
friend struct EigenMatrix;
template <typename T, int MajorType, typename IndexType>
friend struct EigenVector;
......
......@@ -148,5 +148,13 @@ inline Tensor& Tensor::Resize(const DDim& dims) {
inline const DDim& Tensor::dims() const { return dims_; }
template <typename T>
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
Tensor res;
res.ShareDataWith<T>(src);
res.Resize(flatten_to_2d(src.dims(), num_col_dims));
return res;
}
} // namespace framework
} // namespace paddle
......@@ -262,3 +262,16 @@ TEST(Tensor, CopyFrom) {
}
#endif
}
TEST(Tensor, ReshapeToMatrix) {
using namespace paddle::framework;
using namespace paddle::platform;
Tensor src;
int* src_ptr = src.mutable_data<int>({2, 3, 4, 9}, CPUPlace());
for (int i = 0; i < 2 * 3 * 4 * 9; ++i) {
src_ptr[i] = i;
}
Tensor res = ReshapeToMatrix<int>(src, 2);
ASSERT_EQ(res.dims()[0], 2 * 3);
ASSERT_EQ(res.dims()[1], 4 * 9);
}
\ No newline at end of file
......@@ -62,14 +62,18 @@ void BatchNormBaseLayer::calFeatureMapSize() {
const ImageConfig& conf = config_.inputs(0).image_conf();
imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
imageD_ = inputLayers_[0]->getOutput().getFrameDepth();
if (0 == imageD_) imageD_ = conf.img_size_z();
if (imageH_ == 0 && imageW_ == 0) {
imageH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
imageW_ = conf.img_size();
} else {
getOutput().setFrameHeight(imageH_);
getOutput().setFrameWidth(imageW_);
getOutput().setFrameDepth(imageD_);
}
imgPixels_ = imageH_ * imageW_;
imgPixels_ = imageH_ * imageW_ * imageD_;
}
} // namespace paddle
......@@ -80,6 +80,7 @@ protected:
/// Height or width of input image feature.
/// Both of them are 1 if the input is fully-connected layer.
int imageD_;
int imageH_;
int imageW_;
/// Height * Width.
......
......@@ -37,7 +37,7 @@ bool CudnnBatchNormLayer::init(const LayerMap& layerMap,
}
void CudnnBatchNormLayer::reshape(int batchSize) {
hl_tensor_reshape(ioDesc_, batchSize, channels_, imageH_, imageW_);
hl_tensor_reshape(ioDesc_, batchSize, channels_, imageH_ * imageD_, imageW_);
}
void CudnnBatchNormLayer::forward(PassType passType) {
......@@ -104,7 +104,7 @@ void CudnnBatchNormLayer::forward(PassType passType) {
EPS,
batchSize,
channels_,
imageH_,
imageH_ * imageD_,
imageW_);
}
}
......
......@@ -139,7 +139,13 @@ void DetectionOutputLayer::forward(PassType passType) {
allDecodedBBoxes,
&allIndices);
if (numKept > 0) {
resetOutput(numKept, 7);
} else {
MatrixPtr outV = getOutputValue();
outV = NULL;
return;
}
MatrixPtr outV = getOutputValue();
getDetectionOutput(confBuffer_->getData(),
numKept,
......
......@@ -469,7 +469,7 @@ size_t getDetectionIndices(
const size_t numClasses,
const size_t backgroundId,
const size_t batchSize,
const size_t confThreshold,
const real confThreshold,
const size_t nmsTopK,
const real nmsThreshold,
const size_t keepTopK,
......
......@@ -275,7 +275,7 @@ size_t getDetectionIndices(
const size_t numClasses,
const size_t backgroundId,
const size_t batchSize,
const size_t confThreshold,
const real confThreshold,
const size_t nmsTopK,
const real nmsThreshold,
const size_t keepTopK,
......
......@@ -24,19 +24,21 @@ bool SwitchOrderLayer::init(const LayerMap& layerMap,
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
auto& img_conf = config_.inputs(0).image_conf();
size_t inD = img_conf.img_size_z();
size_t inH =
img_conf.has_img_size_y() ? img_conf.img_size_y() : img_conf.img_size();
size_t inW = img_conf.img_size();
size_t inC = img_conf.channels();
inH = inH * inD;
inDims_ = TensorShape({0, inC, inH, inW});
outDims_ = TensorShape(4);
auto& reshape_conf = config_.reshape_conf();
for (size_t i = 0; i < reshape_conf.heightaxis_size(); i++) {
heightAxis_.push_back(reshape_conf.heightaxis(i));
for (int i = 0; i < reshape_conf.height_axis_size(); i++) {
heightAxis_.push_back(reshape_conf.height_axis(i));
}
for (size_t i = 0; i < reshape_conf.widthaxis_size(); i++) {
widthAxis_.push_back(reshape_conf.widthaxis(i));
for (int i = 0; i < reshape_conf.width_axis_size(); i++) {
widthAxis_.push_back(reshape_conf.width_axis(i));
}
createFunction(nchw2nhwc_, "NCHW2NHWC", FuncConfig());
createFunction(nhwc2nchw_, "NHWC2NCHW", FuncConfig());
......@@ -64,9 +66,10 @@ void SwitchOrderLayer::setInDims() {
MatrixPtr input = inputLayers_[0]->getOutputValue();
size_t batchSize = input->getHeight();
inDims_.setDim(0, batchSize);
int d = inputLayers_[0]->getOutput().getFrameDepth();
d = (d == 0 ? 1 : d);
int h = inputLayers_[0]->getOutput().getFrameHeight();
if (h != 0) inDims_.setDim(2, h);
if (h != 0) inDims_.setDim(2, h * d);
int w = inputLayers_[0]->getOutput().getFrameWidth();
if (w != 0) inDims_.setDim(3, w);
int totalCount = input->getElementCnt();
......
......@@ -1703,6 +1703,55 @@ TEST(Layer, BatchNormalizationLayer) {
#endif
}
void testBatchNorm3DLayer(const string& type, bool trans, bool useGpu) {
TestConfig config;
const int CHANNELS = 10;
const int IMG_SIZE = 16;
const int IMG_SIZE_Y = 8;
const int IMG_SIZE_Z = 8;
size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y * IMG_SIZE_Z;
config.layerConfig.set_type(type);
config.layerConfig.set_size(size);
config.layerConfig.set_active_type("sigmoid");
config.biasSize = CHANNELS;
config.inputDefs.push_back({INPUT_DATA,
"layer_0",
/* dim= */ size,
/* paraSize= */ CHANNELS});
config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS});
config.inputDefs.back().isStatic = true;
config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS});
config.inputDefs.back().isStatic = true;
LayerInputConfig* input = config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
ImageConfig* img_conf = input->mutable_image_conf();
img_conf->set_channels(CHANNELS);
img_conf->set_img_size(IMG_SIZE);
img_conf->set_img_size_y(IMG_SIZE_Y);
img_conf->set_img_size_z(IMG_SIZE_Z);
testLayerGrad(config,
"batch_norm",
64,
/* trans= */ trans,
useGpu,
/* useWeight */ true);
}
TEST(Layer, testBatchNorm3DLayer) {
testBatchNorm3DLayer("batch_norm", false, false);
#ifndef PADDLE_ONLY_CPU
testBatchNorm3DLayer("batch_norm", false, true);
if (hl_get_cudnn_lib_version() >= int(4000)) {
testBatchNorm3DLayer("cudnn_batch_norm", false, true);
}
#endif
}
void testConvOperator(bool isDeconv) {
TestConfig config;
const int NUM_FILTERS = 16;
......@@ -2019,10 +2068,10 @@ TEST(Layer, SwitchOrderLayer) {
img->set_img_size_y(16);
ReshapeConfig* reshape = config.layerConfig.mutable_reshape_conf();
reshape->add_heightaxis(0);
reshape->add_heightaxis(1);
reshape->add_heightaxis(2);
reshape->add_widthaxis(3);
reshape->add_height_axis(0);
reshape->add_height_axis(1);
reshape->add_height_axis(2);
reshape->add_width_axis(3);
// config softmax layer
config.layerConfig.set_type("switch_order");
......
......@@ -25,18 +25,27 @@ class MulOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto dim0 = ctx.Input<Tensor>("X")->dims();
auto dim1 = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_EQ(dim0.size(), 2,
"input X(%s) should be a tensor with 2 dims, a matrix",
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
int x_num_col_dims = Attr<int>("x_num_col_dims");
int y_num_col_dims = Attr<int>("y_num_col_dims");
PADDLE_ENFORCE(x_dims.size() > x_num_col_dims,
"The rank of input tensor X(%s) should be larger than "
"`mul_op`'s `x_num_col_dims`.",
ctx.op().Input("X"));
PADDLE_ENFORCE_EQ(dim1.size(), 2,
"input Y(%s) should be a tensor with 2 dims, a matrix",
PADDLE_ENFORCE(y_dims.size() > y_num_col_dims,
"The rank of input tensor Y(%s) should be larger than "
"`mul_op`'s `y_num_col_dims`.",
ctx.op().Input("Y"));
auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
PADDLE_ENFORCE_EQ(
dim0[1], dim1[0],
x_mat_dims[1], y_mat_dims[0],
"First matrix's width must be equal with second matrix's height.");
ctx.Output<Tensor>("Out")->Resize({dim0[0], dim1[1]});
ctx.Output<Tensor>("Out")->Resize({x_mat_dims[0], y_mat_dims[1]});
}
};
......@@ -47,6 +56,23 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "The first input of mul op");
AddInput("Y", "The second input of mul op");
AddOutput("Out", "The output of mul op");
AddAttr<int>(
"x_num_col_dims",
R"DOC(mul_op can take tensors with more than two dimensions as input `X`,
in that case, tensors will be reshaped to a matrix. The matrix's first
dimension(column length) will be the product of tensor's last
`num_col_dims` dimensions, and the matrix's second dimension(row length)
will be the product of tensor's first `rank - num_col_dims` dimensions.
)DOC")
.SetDefault(1)
.EqualGreaterThan(1);
AddAttr<int>(
"y_num_col_dims",
R"DOC(mul_op can take tensors with more than two dimensions as input `Y`,
in that case, tensors will be reshaped to a matrix. Just like input `X`.
)DOC")
.SetDefault(1)
.EqualGreaterThan(1);
AddComment(R"DOC(
Two Element Mul Operator.
......@@ -70,10 +96,20 @@ class MulOpGrad : public framework::OperatorWithKernel {
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE(x_dims[0] == out_dims[0],
"Out@GRAD M X N must equal to X dims 0, M ");
PADDLE_ENFORCE(y_dims[1] == out_dims[1],
"Out@GRAD M X N must equal to Y dims 1, N ");
auto x_mat_dims =
framework::flatten_to_2d(x_dims, Attr<int>("x_num_col_dims"));
auto y_mat_dims =
framework::flatten_to_2d(y_dims, Attr<int>("y_num_col_dims"));
PADDLE_ENFORCE_EQ(
x_mat_dims[0], out_dims[0],
"The first dimension of Out@GRAD must equal to the first dimension of "
"the first operand.");
PADDLE_ENFORCE_EQ(
y_mat_dims[1], out_dims[1],
"The second dimension of Out@GRAD must equal to the second "
"dimension of the second operand.");
if (x_grad) x_grad->Resize(x_dims);
if (y_grad) y_grad->Resize(y_dims);
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
......@@ -31,13 +31,25 @@ template <typename Place, typename T>
class MulKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* y = context.Input<Tensor>("Y");
auto* z = context.Output<Tensor>("Out");
const Tensor* x = context.Input<Tensor>("X");
const Tensor* y = context.Input<Tensor>("Y");
Tensor* z = context.Output<Tensor>("Out");
const Tensor x_matrix =
x->dims().size() > 2
? framework::ReshapeToMatrix<T>(
*x, context.template Attr<int>("x_num_col_dims"))
: *x;
const Tensor y_matrix =
y->dims().size() > 2
? framework::ReshapeToMatrix<T>(
*y, context.template Attr<int>("y_num_col_dims"))
: *y;
z->mutable_data<T>(context.GetPlace());
auto* device_context =
const_cast<platform::DeviceContext*>(context.device_context_);
math::matmul<Place, T>(*x, false, *y, false, 1, z, 0, device_context);
math::matmul<Place, T>(x_matrix, false, y_matrix, false, 1, z, 0,
device_context);
}
};
......@@ -45,23 +57,39 @@ template <typename Place, typename T>
class MulGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
const Tensor* x = ctx.Input<Tensor>("X");
const Tensor* y = ctx.Input<Tensor>("Y");
const Tensor x_matrix =
x->dims().size() > 2 ? framework::ReshapeToMatrix<T>(*x, x_num_col_dims)
: *x;
const Tensor y_matrix =
y->dims().size() > 2 ? framework::ReshapeToMatrix<T>(*y, y_num_col_dims)
: *y;
const Tensor* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
Tensor* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
Tensor* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto* device_context =
const_cast<platform::DeviceContext*>(ctx.device_context_);
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix<T>(
*dx, x_num_col_dims)
: *dx;
// dx = dout * y'. dx: M x K, dout : M x N, y : K x N
math::matmul<Place, T>(*dout, false, *y, true, 1, dx, 0, device_context);
math::matmul<Place, T>(*dout, false, y_matrix, true, 1, &dx_matrix, 0,
device_context);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
Tensor dy_matrix = dy->dims().size() > 2 ? framework::ReshapeToMatrix<T>(
*dy, y_num_col_dims)
: *dy;
// dy = x' * dout. dy K x N, dout : M x N, x : M x K
math::matmul<Place, T>(*x, true, *dout, false, 1, dy, 0, device_context);
math::matmul<Place, T>(x_matrix, true, *dout, false, 1, &dy_matrix, 0,
device_context);
}
}
};
......
......@@ -25,14 +25,19 @@ class RowwiseAddOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto dim0 = ctx.Input<Tensor>("X")->dims();
auto dim1 = ctx.Input<Tensor>("b")->dims();
PADDLE_ENFORCE(dim0.size() == 2, "Input 0 must be matrix");
PADDLE_ENFORCE(dim1.size() == 1, "The second input must be vector");
PADDLE_ENFORCE(dim0[1] == dim1[0], "The width of two input must be same");
PADDLE_ENFORCE(ctx.OutputSize("Out") == 1, "The output size must be 1");
ctx.Output<Tensor>("Out")->Resize(ctx.Input<Tensor>("X")->dims());
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto b_dims = ctx.Input<Tensor>("b")->dims();
PADDLE_ENFORCE_GT(
x_dims.size(), b_dims.size(),
"The rank of input `X` must be larger than the one of input `b`.");
int num_col_dims = x_dims.size() - b_dims.size();
PADDLE_ENFORCE_EQ(
framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
"The width of two operands must be same");
PADDLE_ENFORCE_EQ(ctx.OutputSize("Out"), 1, "The output size must be 1");
ctx.Output<Tensor>("Out")->Resize(x_dims);
}
};
......@@ -61,13 +66,20 @@ class RowwiseAddGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("b"), "b should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto dims0 = ctx.Input<Tensor>("X")->dims();
auto dims1 = ctx.Input<Tensor>("b")->dims();
PADDLE_ENFORCE_EQ(1, dims1.size(), "b dims should be 1")
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto b_dims = ctx.Input<Tensor>("b")->dims();
PADDLE_ENFORCE_GT(
x_dims.size(), b_dims.size(),
"The rank of input `X` must be larger than the one of input `b`.");
int num_col_dims = x_dims.size() - b_dims.size();
PADDLE_ENFORCE_EQ(
framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
"The width of two operands must be same");
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *db = ctx.Output<Tensor>(framework::GradVarName("b"));
if (dx) dx->Resize(dims0);
if (db) db->Resize(dims1);
if (dx) dx->Resize(x_dims);
if (db) db->Resize(b_dims);
}
};
......
......@@ -33,10 +33,12 @@ class RowwiseAddKernel : public framework::OpKernel {
void Compute(const framework::ExecutionContext& context) const override {
auto out = context.Output<Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
auto input = EigenMatrix<T>::From(*context.Input<Tensor>("X"));
auto bias = EigenVector<T>::From(*context.Input<Tensor>("b"));
auto output = EigenMatrix<T>::From(*out);
int num_col_dims = context.Input<Tensor>("X")->dims().size() -
context.Input<Tensor>("b")->dims().size();
auto input =
EigenMatrix<T>::Reshape(*context.Input<Tensor>("X"), num_col_dims);
auto bias = EigenVector<T>::Flatten(*context.Input<Tensor>("b"));
auto output = EigenMatrix<T>::Reshape(*out, num_col_dims);
const int bias_size = bias.dimension(0);
const int rest_size = input.size() / bias_size;
......@@ -54,12 +56,15 @@ class RowwiseAddGradKernel : public framework::OpKernel {
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
auto* db = context.Output<Tensor>(framework::GradVarName("b"));
int num_col_dims = context.Input<Tensor>("X")->dims().size() -
context.Input<Tensor>("b")->dims().size();
auto out_grad = EigenMatrix<T>::From(*dout);
auto out_grad = EigenMatrix<T>::Reshape(*dout, num_col_dims);
auto place = context.GetEigenDevice<Place>();
if (dx) {
dx->mutable_data<T>(context.GetPlace());
EigenMatrix<T>::From(*dx).device(place) = out_grad;
EigenMatrix<T>::Reshape(*dx, num_col_dims).device(place) = out_grad;
}
if (db) {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sum_op.h"
#include <vector>
namespace paddle {
namespace operators {
using framework::Tensor;
class SumOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto *out = ctx.Output<framework::Tensor>("Out");
int N = ins.size();
auto in_dim = ins[0]->dims();
PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
for (int i = 1; i < N; i++) {
auto dim = ins[i]->dims();
PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape");
}
out->Resize(in_dim);
}
};
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input tensors of sum operator.").AsDuplicable();
AddOutput("Out", "the output tensor of sum operator.");
AddComment(R"DOC(
Sum the input tensors.
)DOC");
}
};
class SumGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto outputs = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
auto dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
for (auto output : outputs) {
output->Resize(dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(sum, ops::SumOp, ops::SumOpMaker, sum_grad, ops::SumGradOp);
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(sum_grad,
ops::SumGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sum_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(sum_grad,
ops::SumGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T>
class SumKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto ins = context.MultiInput<Tensor>("X");
auto* out = context.Output<Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
auto place = context.GetEigenDevice<Place>();
auto result = EigenVector<T>::Flatten(*out);
int N = ins.size();
auto in = EigenVector<T>::Flatten(*(ins[0]));
result.device(place) = in;
for (int i = 1; i < N; i++) {
auto in = EigenVector<T>::Flatten(*(ins[i]));
result.device(place) = result + in;
}
}
};
template <typename Place, typename T>
class SumGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<Tensor>(framework::GradVarName("Out"));
auto outs = context.MultiOutput<Tensor>(framework::GradVarName("X"));
for (auto out : outs) {
out->mutable_data<T>(context.GetPlace());
}
auto place = context.GetEigenDevice<Place>();
auto in = EigenVector<T>::Flatten(*input);
for (auto out : outs) {
auto result = EigenVector<T>::Flatten(*out);
result.device(place) = in;
}
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/top_k_op.h"
namespace paddle {
namespace operators {
class TopkOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input of TopkOP must be initialized.");
auto *input = ctx.Input<framework::Tensor>("X");
const int k = static_cast<int>(ctx.Attr<int>("k"));
PADDLE_ENFORCE_GE(k, 1, "k must >= 1");
PADDLE_ENFORCE_GE(input->dims().size(), 1, "input must have >= 1d shape");
PADDLE_ENFORCE_GE(input->dims()[input->dims().size() - 1], k,
"input must have >= k columns");
framework::DDim dims = input->dims();
dims[dims.size() - 1] = k;
ctx.Output<Tensor>("Out")->Resize(dims);
ctx.Output<Tensor>("Indices")->Resize(dims);
}
};
class TopkOpMaker : public framework::OpProtoAndCheckerMaker {
public:
TopkOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input of Topk op");
AddOutput("Out", "The output tensor of Topk op");
AddOutput("Indices", "The indices of Topk elements of input");
AddComment(
R"DOC(If the input is a vector (1d tensor), finds the k largest entries in the vector and outputs their values and indices as vectors. Thus values[j] is the j-th largest entry in input, and its index is indices[j].
For matrices, computes the top k entries in each row. )DOC");
AddAttr<int>("k",
"Number of top elements to look for along the last "
"dimension (along each row for matrices).")
.SetDefault(1);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(top_k, ops::TopkOp, ops::TopkOpMaker);
REGISTER_OP_CPU_KERNEL(top_k,
ops::TopkKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/platform/assert.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
struct Pair {
__device__ __forceinline__ Pair() {}
__device__ __forceinline__ Pair(T value, int id) : v(value), id(id) {}
__device__ __forceinline__ void set(T value, int id) {
v = value;
id = id;
}
__device__ __forceinline__ void operator=(const Pair<T>& in) {
v = in.v;
id = in.id;
}
__device__ __forceinline__ bool operator<(const T value) const {
return (v < value);
}
__device__ __forceinline__ bool operator<(const Pair<T>& in) const {
return (v < in.v) || ((v == in.v) && (id > in.id));
}
__device__ __forceinline__ bool operator>(const Pair<T>& in) const {
return (v > in.v) || ((v == in.v) && (id < in.id));
}
T v;
int id;
};
template <typename T>
__device__ __forceinline__ void AddTo(Pair<T> topk[], const Pair<T>& p,
int beam_size) {
for (int k = beam_size - 2; k >= 0; k--) {
if (topk[k] < p) {
topk[k + 1] = topk[k];
} else {
topk[k + 1] = p;
return;
}
}
topk[0] = p;
}
template <typename T, int beam_size>
__device__ __forceinline__ void AddTo(Pair<T> topk[], const Pair<T>& p) {
for (int k = beam_size - 2; k >= 0; k--) {
if (topk[k] < p) {
topk[k + 1] = topk[k];
} else {
topk[k + 1] = p;
return;
}
}
topk[0] = p;
}
template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
int dim, int beam_size) {
while (idx < dim) {
if (topk[beam_size - 1] < src[idx]) {
Pair<T> tmp(src[idx], idx);
AddTo<T>(topk, tmp, beam_size);
}
idx += BlockSize;
}
}
template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
int dim, const Pair<T>& max,
int beam_size) {
while (idx < dim) {
if (topk[beam_size - 1] < src[idx]) {
Pair<T> tmp(src[idx], idx);
if (tmp < max) {
AddTo<T>(topk, tmp, beam_size);
}
}
idx += BlockSize;
}
}
template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* val, int* col,
int idx, int dim, int beam_size) {
while (idx < dim) {
if (topk[beam_size - 1] < val[idx]) {
Pair<T> tmp(val[idx], col[idx]);
AddTo<T>(topk, tmp, beam_size);
}
idx += BlockSize;
}
}
template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* val, int* col,
int idx, int dim, const Pair<T>& max,
int beam_size) {
while (idx < dim) {
if (topk[beam_size - 1] < val[idx]) {
Pair<T> tmp(val[idx], col[idx]);
if (tmp < max) {
AddTo<T>(topk, tmp, beam_size);
}
}
idx += BlockSize;
}
}
template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int& beam,
int beam_size, const T* src,
bool& firstStep, bool& is_empty,
Pair<T>& max, int dim,
const int tid) {
if (beam > 0) {
int length = beam < beam_size ? beam : beam_size;
if (firstStep) {
firstStep = false;
GetTopK<T, BlockSize>(topk, src, tid, dim, length);
} else {
for (int k = 0; k < MaxLength; k++) {
if (k < MaxLength - beam) {
topk[k] = topk[k + beam];
} else {
topk[k].set(-INFINITY, -1);
}
}
if (!is_empty) {
GetTopK<T, BlockSize>(topk + MaxLength - beam, src, tid, dim, max,
length);
}
}
max = topk[MaxLength - 1];
if (max.v == -1) is_empty = true;
beam = 0;
}
}
template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int& beam,
int beam_size, const T* val,
int* col, bool& firstStep,
bool& is_empty, Pair<T>& max,
int dim, const int tid) {
if (beam > 0) {
int length = beam < beam_size ? beam : beam_size;
if (firstStep) {
firstStep = false;
GetTopK<T, BlockSize>(topk, val, col, tid, dim, length);
} else {
for (int k = 0; k < MaxLength; k++) {
if (k < MaxLength - beam) {
topk[k] = topk[k + beam];
} else {
topk[k].set(-INFINITY, -1);
}
}
if (!is_empty) {
GetTopK<T, BlockSize>(topk + MaxLength - beam, val, col, tid, dim, max,
length);
}
}
max = topk[MaxLength - 1];
if (max.v == -1) is_empty = true;
beam = 0;
}
}
template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
Pair<T> topk[], T** topVal,
int** topIds, int& beam, int& k,
const int tid, const int warp) {
while (true) {
__syncthreads();
if (tid < BlockSize / 2) {
if (sh_topk[tid] < sh_topk[tid + BlockSize / 2]) {
maxid[tid] = tid + BlockSize / 2;
} else {
maxid[tid] = tid;
}
}
__syncthreads();
for (int stride = BlockSize / 4; stride > 0; stride = stride / 2) {
if (tid < stride) {
if (sh_topk[maxid[tid]] < sh_topk[maxid[tid + stride]]) {
maxid[tid] = maxid[tid + stride];
}
}
__syncthreads();
}
__syncthreads();
if (tid == 0) {
**topVal = sh_topk[maxid[0]].v;
**topIds = sh_topk[maxid[0]].id;
(*topVal)++;
(*topIds)++;
}
if (tid == maxid[0]) beam++;
if (--k == 0) break;
__syncthreads();
if (tid == maxid[0]) {
if (beam < MaxLength) {
sh_topk[tid] = topk[beam];
}
}
if (maxid[0] / 32 == warp) {
if (__shfl(beam, (maxid[0]) % 32, 32) == MaxLength) break;
}
}
}
/**
* Each block compute one sample.
* In a block:
* 1. every thread get top MaxLength value;
* 2. merge to sh_topk, block reduce and get max value;
* 3. go to the second setp, until one thread's topk value is null;
* 4. go to the first setp, until get the topk value.
*/
template <typename T, int MaxLength, int BlockSize>
__global__ void KeMatrixTopK(T* output, int output_stride, int* indices,
const T* src, int lds, int dim, int k) {
__shared__ Pair<T> sh_topk[BlockSize];
__shared__ int maxid[BlockSize / 2];
const int tid = threadIdx.x;
const int warp = threadIdx.x / 32;
output += blockIdx.x * output_stride;
indices += blockIdx.x * k;
Pair<T> topk[MaxLength];
int beam = MaxLength;
Pair<T> max;
bool is_empty = false;
bool firststep = true;
for (int k = 0; k < MaxLength; k++) {
topk[k].set(-INFINITY, -1);
}
while (k) {
ThreadGetTopK<T, MaxLength, BlockSize>(topk, beam, k,
src + blockIdx.x * lds, firststep,
is_empty, max, dim, tid);
sh_topk[tid] = topk[0];
BlockReduce<T, MaxLength, BlockSize>(sh_topk, maxid, topk, &output,
&indices, beam, k, tid, warp);
}
}
template <typename T>
class TopkOpCUDAKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
auto* indices = ctx.Output<Tensor>("Indices");
size_t k = static_cast<int>(ctx.Attr<int>("k"));
const T* input_data = input->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace());
// FIXME(typhoonzero): data is always converted to type T?
int* indices_data = indices->mutable_data<int>(ctx.GetPlace());
size_t input_height = input->dims()[0];
size_t input_width = input->dims()[1];
if (k > input_width) k = input_width;
// NOTE: pass lds and dim same to input width.
// NOTE: old matrix implementation of stride is different to eigen.
// TODO(typhoonzero): launch kernel on specified stream.
// TODO(typhoonzero): refine this kernel.
dim3 threads(256, 1);
dim3 grid(input_height, 1);
KeMatrixTopK<T, 5, 256><<<grid, threads>>>(
output_data, output->dims()[1], indices_data, input_data, input_width,
input_width, int(k));
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_GPU_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <iostream>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename Place, typename T>
class TopkKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
// Get the top k elements of each row of input tensor
// FIXME: only deal with matrix(2d tensor).
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
auto* indices = ctx.Output<Tensor>("Indices");
// k is determined by Attr
const size_t k = static_cast<int>(ctx.Attr<int>("k"));
T* output_data = output->mutable_data<T>(ctx.GetPlace());
T* indices_data = indices->mutable_data<T>(ctx.GetPlace());
auto eg_input = EigenMatrix<T>::From(*input);
// reshape input to a flattern matrix(like flat_inner_dims)
framework::DDim inputdims = input->dims();
const size_t row = framework::product(
framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
const size_t col = inputdims[inputdims.size() - 1];
Eigen::DSizes<int, 2> flat2dims(row, col);
// NOTE: eigen shape doesn't affect paddle tensor.
eg_input.reshape(flat2dims);
for (size_t i = 0; i < row; i++) {
std::vector<std::pair<T, size_t>> vec;
for (size_t j = 0; j < col; j++) {
vec.push_back(std::pair<T, size_t>(eg_input(i, j), j));
}
std::partial_sort(
vec.begin(), vec.begin() + k, vec.end(),
[](const std::pair<T, size_t>& l, const std::pair<T, size_t>& r) {
return l.first > r.first;
});
for (size_t j = 0; j < k; j++) {
output_data[i * k + j] = vec[j].first;
indices_data[i * k + j] = vec[j].second;
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -25,10 +25,6 @@ limitations under the License. */
#include "paddle/string/printf.h"
#include "paddle/string/to_string.h"
#ifdef __GNUC__
#include <cxxabi.h> // for __cxa_demangle
#endif
#ifndef PADDLE_ONLY_CPU
#include "paddle/platform/dynload/cublas.h"
......@@ -46,19 +42,6 @@ limitations under the License. */
namespace paddle {
namespace platform {
namespace {
#ifdef __GNUC__
inline std::string demangle(std::string name) {
int status = -4; // some arbitrary value to eliminate the compiler warning
std::unique_ptr<char, void (*)(void*)> res{
abi::__cxa_demangle(name.c_str(), NULL, NULL, &status), std::free};
return (status == 0) ? res.get() : name;
}
#else
inline std::string demangle(std::string name) { return name; }
#endif
}
struct EnforceNotMet : public std::exception {
std::exception_ptr exp_;
std::string err_str_;
......@@ -79,7 +62,7 @@ struct EnforceNotMet : public std::exception {
Dl_info info;
for (int i = 0; i < size; ++i) {
if (dladdr(call_stack[i], &info)) {
auto demangled = demangle(info.dli_sname);
auto demangled = info.dli_sname;
auto addr_offset = static_cast<char*>(call_stack[i]) -
static_cast<char*>(info.dli_saddr);
sout << string::Sprintf("%-3d %*0p %s + %zd\n", i,
......
......@@ -50,7 +50,9 @@ USE_OP(minus);
USE_OP(cos_sim);
USE_CPU_ONLY_OP(gather);
USE_CPU_ONLY_OP(scatter);
USE_OP(top_k);
USE_OP(squared_l2_distance);
USE_OP(sum);
namespace paddle {
namespace framework {
......@@ -216,7 +218,10 @@ All parameter, weight, gradient are variables in Paddle.
-> std::map<std::string, std::vector<std::string>> {
return op.Outputs();
})
.def("output_vars",
[](const OperatorBase &op) { return op.OutputVars(true); })
.def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
.def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
.def("__str__", &OperatorBase::DebugString)
.def("no_intermediate_outputs",
[](const OperatorBase &op) { return op.OutputVars(false); })
......
......@@ -30,6 +30,8 @@ Configuring cmake in /paddle/build ...
-DCMAKE_BUILD_TYPE=Release
-DWITH_DOC=OFF
-DWITH_GPU=${WITH_GPU:-OFF}
-DWITH_MKLDNN=${WITH_MKLDNN:-ON}
-DWITH_MKLML=${WITH_MKLML:-ON}
-DWITH_AVX=${WITH_AVX:-OFF}
-DWITH_GOLANG=${WITH_GOLANG:-ON}
-DWITH_SWIG_PY=ON
......@@ -37,7 +39,7 @@ Configuring cmake in /paddle/build ...
-DWITH_PYTHON=${WITH_PYTHON:-ON}
-DWITH_SWIG_PY=${WITH_SWIG_PY:-ON}
-DCUDNN_ROOT=/usr/
-DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
-DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-ON}
-DWITH_TESTING=${WITH_TESTING:-ON}
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
========================================
......@@ -50,6 +52,8 @@ cmake .. \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_DOC=OFF \
-DWITH_GPU=${WITH_GPU:-OFF} \
-DWITH_MKLDNN=${WITH_MKLDNN:-ON} \
-DWITH_MKLML=${WITH_MKLML:-ON} \
-DWITH_AVX=${WITH_AVX:-OFF} \
-DWITH_GOLANG=${WITH_GOLANG:-ON} \
-DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} \
......
......@@ -320,6 +320,9 @@ void loadFileList(const std::string& fileListFileName,
}
double getMemoryUsage() {
#if defined(__ANDROID__)
return 0.0;
#else
FILE* fp = fopen("/proc/meminfo", "r");
CHECK(fp) << "failed to fopen /proc/meminfo";
size_t bufsize = 256 * sizeof(char);
......@@ -357,6 +360,7 @@ double getMemoryUsage() {
delete[] buf;
double usedMem = 1.0 - 1.0 * (freeMem + bufMem + cacheMem) / totalMem;
return usedMem;
#endif
}
SyncThreadPool* getGlobalSyncThreadPool() {
......
......@@ -33,6 +33,13 @@ limitations under the License. */
#include "Flags.h"
#include "hl_gpu.h"
#if defined(__ANDROID__) && (__ANDROID_API__ < 21)
inline int rand_r(unsigned int* seedp) {
(void)seedp;
return rand();
}
#endif
/**
* Loop over the elements in a container
* TODO(yuyang18): It's this foreach useful? Why not use C++ 11 foreach,
......
......@@ -271,6 +271,7 @@ message ImageConfig {
// The size of input feature map.
required uint32 img_size = 8;
optional uint32 img_size_y = 9;
optional uint32 img_size_z = 10 [ default = 1 ];
}
message PriorBoxConfig {
......@@ -288,8 +289,8 @@ message PadConfig {
}
message ReshapeConfig {
repeated uint32 heightAxis = 1;
repeated uint32 widthAxis = 2;
repeated uint32 height_axis = 1;
repeated uint32 width_axis = 2;
}
message MultiBoxLossConfig {
......@@ -519,6 +520,7 @@ message LayerConfig {
// for HuberRegressionLoss
optional double delta = 57 [ default = 1.0 ];
// for 3D data
optional uint64 depth = 58 [ default = 1 ];
// for switch order layer
......
......@@ -1332,6 +1332,12 @@ def parse_image(image, input_layer_name, image_conf):
get_img_size(input_layer_name, image_conf.channels)
def parse_image3d(image, input_layer_name, image_conf):
image_conf.channels = image.channels
image_conf.img_size, image_conf.img_size_y, image_conf.img_size_z = \
get_img3d_size(input_layer_name, image_conf.channels)
def parse_norm(norm, input_layer_name, norm_conf):
norm_conf.norm_type = norm.norm_type
config_assert(
......@@ -2365,9 +2371,11 @@ class BatchNormLayer(LayerBase):
name,
inputs,
bias=True,
img3D=False,
use_global_stats=True,
moving_average_fraction=0.9,
batch_norm_type=None,
mean_var_names=None,
**xargs):
if inputs is None:
inputs = []
......@@ -2409,24 +2417,69 @@ class BatchNormLayer(LayerBase):
input_layer = self.get_input_layer(0)
image_conf = self.config.inputs[0].image_conf
if img3D:
parse_image3d(self.inputs[0].image, input_layer.name, image_conf)
# Only pass the width and height of input to batch_norm layer
# when either of it is non-zero.
if input_layer.width != 0 or input_layer.height != 0:
self.set_cnn_layer(
input_layer_name=name,
depth=image_conf.img_size_z,
height=image_conf.img_size_y,
width=image_conf.img_size,
channels=image_conf.channels,
is_print=True)
else:
self.set_layer_size(input_layer.size)
else:
parse_image(self.inputs[0].image, input_layer.name, image_conf)
# Only pass the width and height of input to batch_norm layer
# when either of it is non-zero.
if input_layer.width != 0 or input_layer.height != 0:
self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
image_conf.channels, False)
self.set_cnn_layer(
input_layer_name=name,
height=image_conf.img_size_y,
width=image_conf.img_size,
channels=image_conf.channels,
is_print=True)
else:
self.set_layer_size(input_layer.size)
psize = self.calc_parameter_size(image_conf)
dims = [1, psize]
if mean_var_names is not None:
assert len(mean_var_names) == 2
self.inputs[1].parameter_name = mean_var_names[0]
self.inputs[2].parameter_name = mean_var_names[1]
self.create_input_parameter(0, psize)
self.create_input_parameter(1, psize, dims)
self.create_input_parameter(2, psize, dims)
self.create_bias_parameter(bias, psize)
def set_cnn_layer(self,
input_layer_name,
depth=None,
height=None,
width=None,
channels=None,
is_print=True):
depthIsNone = False
if depth is None:
depth = 1
depthIsNone = True
size = depth * height * width * channels
self.set_layer_size(size)
self.set_layer_height_width(height, width)
self.set_layer_depth(depth)
if is_print and depthIsNone:
print("output for %s: c = %d, h = %d, w = %d, size = %d" %
(input_layer_name, channels, height, width, size))
elif is_print:
print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
(input_layer_name, channels, depth, height, width, size))
def calc_parameter_size(self, image_conf):
return image_conf.channels
......@@ -2688,9 +2741,20 @@ class AddToLayer(LayerBase):
super(AddToLayer, self).__init__(
name, 'addto', 0, inputs=inputs, **xargs)
config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
if len(self.inputs) > 1:
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
assert self.get_input_layer(0).height == self.get_input_layer(
input_index).height
assert self.get_input_layer(0).width == self.get_input_layer(
input_index).width
assert self.get_input_layer(0).depth == self.get_input_layer(
input_index).depth
self.set_layer_size(self.get_input_layer(0).size)
self.set_layer_height_width(self.get_input_layer(0).height, \
self.get_input_layer(0).width)
self.set_layer_depth(self.get_input_layer(0).depth)
self.create_bias_parameter(bias, self.config.size)
......@@ -3370,11 +3434,20 @@ class ConcatenateLayer(LayerBase):
name, 'concat', 0, inputs=inputs, **xargs)
size = 0
for input_index in xrange(len(self.inputs)):
assert self.get_input_layer(0).height == self.get_input_layer(
input_index).height
assert self.get_input_layer(0).width == self.get_input_layer(
input_index).width
assert self.get_input_layer(0).depth == self.get_input_layer(
input_index).depth
input_layer = self.get_input_layer(input_index)
input = self.inputs[input_index]
if self.config.size == 0:
size += input_layer.size
self.set_layer_height_width(self.get_input_layer(0).height, \
self.get_input_layer(0).width)
self.set_layer_depth(self.get_input_layer(0).depth)
self.set_layer_size(size)
......@@ -3675,8 +3748,8 @@ class SwitchOrderLayer(LayerBase):
def __init__(self, name, inputs, reshape, **xargs):
super(SwitchOrderLayer, self).__init__(
name, 'switch_order', 0, inputs=inputs, **xargs)
self.config.reshape_conf.heightAxis.extend(reshape['height'])
self.config.reshape_conf.widthAxis.extend(reshape['width'])
self.config.reshape_conf.height_axis.extend(reshape['height'])
self.config.reshape_conf.width_axis.extend(reshape['width'])
# Deprecated, use a new layer specific class instead
......
......@@ -354,6 +354,10 @@ class LayerOutput(object):
def height(self):
return cp.g_layer_map[self.full_name].height
@property
def depth(self):
return cp.g_layer_map[self.full_name].depth
def set_input(self, input):
"""
Set the input for a memory layer. Can only be used for memory layer
......@@ -1219,7 +1223,8 @@ def detection_output_layer(input_loc,
name=None):
"""
Apply the NMS to the output of network and compute the predict bounding
box location.
box location. The output of this layer could be None if there is no valid
bounding box.
:param name: The Layer Name.
:type name: basestring
......@@ -2953,13 +2958,15 @@ def img_cmrnorm_layer(input,
def batch_norm_layer(input,
act=None,
name=None,
img3D=False,
num_channels=None,
bias_attr=None,
param_attr=None,
layer_attr=None,
batch_norm_type=None,
moving_average_fraction=0.9,
use_global_stats=None):
use_global_stats=None,
mean_var_names=None):
"""
Batch Normalization Layer. The notation of this layer as follow.
......@@ -3026,6 +3033,8 @@ def batch_norm_layer(input,
:math:`runningMean = newMean*(1-factor)
+ runningMean*factor`
:type moving_average_fraction: float.
:param mean_var_names: [mean name, variance name]
:type mean_var_names: string list
:return: LayerOutput object.
:rtype: LayerOutput
"""
......@@ -3039,6 +3048,7 @@ def batch_norm_layer(input,
(batch_norm_type == "cudnn_batch_norm")
l = Layer(
name=name,
img3D=img3D,
inputs=Input(
input.name, image=Image(channels=num_channels), **param_attr.attr),
active_type=act.name,
......@@ -3047,6 +3057,7 @@ def batch_norm_layer(input,
bias=ParamAttr.to_bias(bias_attr),
moving_average_fraction=moving_average_fraction,
use_global_stats=use_global_stats,
mean_var_names=mean_var_names,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
......@@ -6410,7 +6421,7 @@ def gated_unit_layer(input,
@wrap_name_default('switch_order')
def switch_order_layer(input,
name=None,
reshape=None,
reshape_axis=None,
act=None,
layer_attr=None):
"""
......@@ -6421,8 +6432,9 @@ def switch_order_layer(input,
The example usage is:
.. code-block:: python
reshape_axis = 3
switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
reshape = {'height':[ 0, 1, 2], 'width':[3]}
switch = switch_order(input=layer, name='switch', reshape=reshape)
:param input: The input layer.
:type input: LayerOutput
......@@ -6434,6 +6446,11 @@ def switch_order_layer(input,
:rtype: LayerOutput
"""
assert isinstance(input, LayerOutput)
assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
height = [ele for ele in xrange(reshape_axis)]
width = [ele for ele in range(reshape_axis, 4)]
reshape = {'height': height, 'width': width}
l = Layer(
name=name,
inputs=input.name,
......@@ -6444,6 +6461,7 @@ def switch_order_layer(input,
return LayerOutput(
name=name,
layer_type=LayerType.SWITCH_ORDER_LAYER,
activation=act,
parents=input,
size=l.config.size)
......
......@@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer)
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D)
export whole_configs=(test_split_datasource)
......@@ -62,6 +62,7 @@ layers {
moving_average_fraction: 0.9
height: 227
width: 227
depth: 1
}
layers {
name: "__crmnorm_0__"
......
......@@ -62,6 +62,7 @@ layers {
moving_average_fraction: 0.9
height: 256
width: 256
depth: 1
}
layers {
name: "__crmnorm_0__"
......
type: "nn"
layers {
name: "data3D"
type: "data"
size: 360
active_type: ""
height: 6
width: 20
depth: 3
}
layers {
name: "__batch_norm_0__"
type: "batch_norm"
size: 360
active_type: "relu"
inputs {
input_layer_name: "data3D"
input_parameter_name: "___batch_norm_0__.w0"
image_conf {
channels: 1
img_size: 20
img_size_y: 6
img_size_z: 3
}
}
inputs {
input_layer_name: "data3D"
input_parameter_name: "___batch_norm_0__.w1"
}
inputs {
input_layer_name: "data3D"
input_parameter_name: "___batch_norm_0__.w2"
}
bias_parameter_name: "___batch_norm_0__.wbias"
moving_average_fraction: 0.9
height: 6
width: 20
depth: 3
}
parameters {
name: "___batch_norm_0__.w0"
size: 1
initial_mean: 1.0
initial_std: 0.0
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___batch_norm_0__.w1"
size: 1
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.w2"
size: 1
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.wbias"
size: 1
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data3D"
output_layer_names: "__batch_norm_0__"
sub_models {
name: "root"
layer_names: "data3D"
layer_names: "__batch_norm_0__"
input_layer_names: "data3D"
output_layer_names: "__batch_norm_0__"
is_recurrent_layer_group: false
}
......@@ -74,6 +74,9 @@ layers {
inputs {
input_layer_name: "__bidirectional_gru_0___bw"
}
height: 0
width: 0
depth: 1
}
parameters {
name: "___bidirectional_gru_0___fw_transform.w0"
......
......@@ -16,6 +16,9 @@ layers {
inputs {
input_layer_name: "data"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_1__"
......@@ -28,6 +31,9 @@ layers {
inputs {
input_layer_name: "__addto_0__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_2__"
......@@ -40,6 +46,9 @@ layers {
inputs {
input_layer_name: "__addto_1__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_3__"
......@@ -52,6 +61,9 @@ layers {
inputs {
input_layer_name: "__addto_2__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_4__"
......@@ -64,6 +76,9 @@ layers {
inputs {
input_layer_name: "__addto_3__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_5__"
......@@ -76,6 +91,9 @@ layers {
inputs {
input_layer_name: "__addto_4__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_6__"
......@@ -88,6 +106,9 @@ layers {
inputs {
input_layer_name: "__addto_5__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_7__"
......@@ -100,6 +121,9 @@ layers {
inputs {
input_layer_name: "__addto_6__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_8__"
......@@ -112,6 +136,9 @@ layers {
inputs {
input_layer_name: "__addto_7__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_9__"
......@@ -124,6 +151,9 @@ layers {
inputs {
input_layer_name: "__addto_8__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_10__"
......@@ -136,6 +166,9 @@ layers {
inputs {
input_layer_name: "__addto_9__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_11__"
......@@ -148,6 +181,9 @@ layers {
inputs {
input_layer_name: "__addto_10__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_12__"
......@@ -160,6 +196,9 @@ layers {
inputs {
input_layer_name: "__addto_11__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_13__"
......@@ -172,6 +211,9 @@ layers {
inputs {
input_layer_name: "__addto_12__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_14__"
......@@ -184,6 +226,9 @@ layers {
inputs {
input_layer_name: "__addto_13__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_15__"
......@@ -196,6 +241,9 @@ layers {
inputs {
input_layer_name: "__addto_14__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_16__"
......@@ -208,6 +256,9 @@ layers {
inputs {
input_layer_name: "__addto_15__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_17__"
......@@ -220,6 +271,9 @@ layers {
inputs {
input_layer_name: "__addto_16__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_18__"
......@@ -232,6 +286,9 @@ layers {
inputs {
input_layer_name: "__addto_17__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_19__"
......@@ -244,6 +301,9 @@ layers {
inputs {
input_layer_name: "__addto_18__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_20__"
......@@ -256,6 +316,9 @@ layers {
inputs {
input_layer_name: "__addto_19__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_21__"
......@@ -268,6 +331,9 @@ layers {
inputs {
input_layer_name: "__addto_20__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_22__"
......@@ -280,6 +346,9 @@ layers {
inputs {
input_layer_name: "__addto_21__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_23__"
......@@ -292,6 +361,9 @@ layers {
inputs {
input_layer_name: "__addto_22__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_24__"
......@@ -304,6 +376,9 @@ layers {
inputs {
input_layer_name: "__addto_23__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_25__"
......@@ -316,6 +391,9 @@ layers {
inputs {
input_layer_name: "__addto_24__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_26__"
......@@ -328,6 +406,9 @@ layers {
inputs {
input_layer_name: "__addto_25__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_27__"
......@@ -340,6 +421,9 @@ layers {
inputs {
input_layer_name: "__addto_26__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_28__"
......@@ -352,6 +436,9 @@ layers {
inputs {
input_layer_name: "__addto_27__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_29__"
......@@ -364,6 +451,9 @@ layers {
inputs {
input_layer_name: "__addto_28__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_30__"
......@@ -376,6 +466,9 @@ layers {
inputs {
input_layer_name: "__addto_29__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__addto_31__"
......@@ -388,6 +481,9 @@ layers {
inputs {
input_layer_name: "__addto_30__"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__fc_layer_0__"
......
......@@ -22,6 +22,9 @@ layers {
inputs {
input_layer_name: "b"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__concat_0__"
......@@ -34,6 +37,9 @@ layers {
inputs {
input_layer_name: "b"
}
height: 0
width: 0
depth: 1
}
layers {
name: "__concat_1__"
......
from paddle.trainer_config_helpers import *
settings(batch_size=1000, learning_rate=1e-4)
#data = data_layer(name='data', size=180, width=30, height=6)
#batchNorm = batch_norm_layer(data, num_channels=1)
#outputs(batchNorm)
data3D = data_layer(name='data3D', size=120 * 3, width=20, height=6, depth=3)
batchNorm3D = batch_norm_layer(data3D, num_channels=1, img3D=True)
outputs(batchNorm3D)
......@@ -53,10 +53,13 @@ class BeginPass(object):
class EndPass(WithMetric):
"""
Event On One Pass Training Complete.
To get the output of a specific layer, add "event.gm.getLayerOutputs('predict_layer')"
in your event_handler call back
"""
def __init__(self, pass_id, evaluator):
def __init__(self, pass_id, evaluator, gm):
self.pass_id = pass_id
self.gm = gm
WithMetric.__init__(self, evaluator)
......@@ -73,10 +76,13 @@ class BeginIteration(object):
class EndIteration(WithMetric):
"""
Event On One Batch Training Complete.
To get the output of a specific layer, add "event.gm.getLayerOutputs('predict_layer')"
in your event_handler call back
"""
def __init__(self, pass_id, batch_id, cost, evaluator):
def __init__(self, pass_id, batch_id, cost, evaluator, gm):
self.pass_id = pass_id
self.batch_id = batch_id
self.cost = cost
self.gm = gm
WithMetric.__init__(self, evaluator)
......@@ -142,8 +142,8 @@ def create_op_creation_method(op_proto):
return OpInfo(
method=__impl__,
name=op_proto.type,
inputs=[var.name for var in op_proto.inputs],
outputs=[var.name for var in op_proto.outputs],
inputs=[(var.name, var.duplicable) for var in op_proto.inputs],
outputs=[(var.name, var.duplicable) for var in op_proto.outputs],
attrs=[attr.name for attr in op_proto.attrs])
......@@ -180,9 +180,15 @@ class OperatorFactory(object):
return self.op_methods.get(t)
def get_op_input_names(self, type):
return map(lambda x: x[0], self.get_op_info(type).inputs)
def get_op_inputs(self, type):
return self.get_op_info(type).inputs
def get_op_output_names(self, type):
return map(lambda x: x[0], self.get_op_info(type).outputs)
def get_op_outputs(self, type):
return self.get_op_info(type).outputs
def get_op_attr_names(self, type):
......
......@@ -19,6 +19,7 @@ py_test(test_scatter_op SRCS test_scatter_op.py)
py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py)
py_test(test_fc_op SRCS test_fc_op.py)
py_test(test_minus_op SRCS test_minus_op.py)
py_test(test_top_k_op SRCS test_top_k_op.py)
py_test(gradient_checker SRCS gradient_checker.py)
......@@ -34,5 +35,6 @@ py_test(test_sgd_op SRCS test_sgd_op.py)
py_test(test_gradient_checker SRCS test_gradient_checker.py)
py_test(test_lookup_table SRCS test_lookup_table.py)
py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py)
py_test(test_sum_op SRCS test_sum_op.py)
py_test(mnist SRCS mnist.py)
py_test(test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py)
import unittest
import numpy as np
import itertools
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
def grad_var_name(var_name):
return var_name + "@GRAD"
def create_op(scope, op_type, inputs, outputs, attrs=None):
kwargs = dict()
for in_name, in_dup in Operator.get_op_inputs(op_type):
if in_name in inputs:
kwargs[in_name] = []
if in_dup:
sub_in = inputs[in_name]
for sub_in_name in sub_in:
var = scope.new_var(sub_in_name)
kwargs[in_name].append(sub_in_name)
else:
var = scope.new_var(in_name)
kwargs[in_name].append(in_name)
for out_name, out_dup in Operator.get_op_outputs(op_type):
if out_name in outputs:
kwargs[out_name] = []
if out_dup:
sub_in = outputs[out_name]
for sun_in_name in sub_in:
var = scope.new_var(sun_in_name)
kwargs[out_name].append(sun_in_name)
else:
var = scope.new_var(out_name)
kwargs[out_name].append(out_name)
for attr_name in Operator.get_op_attr_names(op_type):
kwargs[attr_name] = attrs[attr_name]
return Operator(op_type, **kwargs)
def set_input(scope, op, inputs, place):
for in_name, in_dup in Operator.get_op_inputs(op.type()):
if in_name in inputs:
if in_dup:
sub_in = inputs[in_name]
for sub_in_name in sub_in:
var = scope.find_var(sub_in_name)
tensor = var.get_tensor()
arr = sub_in[sub_in_name]
tensor.set_dims(arr.shape)
tensor.set(arr, place)
else:
var = scope.find_var(in_name)
tensor = var.get_tensor()
arr = inputs[in_name]
tensor.set_dims(arr.shape)
tensor.set(arr, place)
def set_output_grad(scope, op, outputs, place):
for out_name, out_dup in Operator.get_op_outputs(op.type()):
if out_name in outputs:
if out_dup:
sub_out = outputs[out_name]
for sub_out_name in sub_out:
out_tensor = scope.find_var(sub_out_name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(
sub_out_name)).get_tensor()
grad_tensor.set_dims(out_tensor.shape())
data = np.ones(out_tensor.shape(), dtype=np.float32)
grad_tensor.set(data, place)
else:
out_tensor = scope.find_var(out_name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(out_name)).get_tensor(
)
grad_tensor.set_dims(out_tensor.shape())
data = np.ones(out_tensor.shape(), dtype=np.float32)
grad_tensor.set(data, place)
def get_numeric_gradient(scope,
op,
inputs,
input_to_check,
output_name,
delta=0.005,
in_place=False):
set_input(scope, op, inputs, core.CPUPlace())
op.infer_shape(scope)
tensor_to_check = scope.find_var(input_to_check).get_tensor()
def product(dim):
return reduce(lambda a, b: a * b, dim, 1)
ctx = core.DeviceContext.create(core.CPUPlace())
def get_output():
op.run(scope, ctx)
return np.array(scope.find_var(output_name).get_tensor()).sum()
tensor_to_check = scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.get_dims())
gradient_flat = np.zeros(shape=(tensor_size, ), dtype='float32')
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
if in_place:
set_input(op, inputs, core.CPUPlace())
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
if in_place:
set_input(op, inputs, core.CPUPlace())
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
tensor_to_check.set_float_element(i, origin)
gradient_flat[i] = (y_pos - y_neg) / delta / 2
return gradient_flat.reshape(tensor_to_check.get_dims())
def get_backward_op(scope, op, no_grad_set):
backward_op = core.Operator.backward(op, no_grad_set)
for input in backward_op.input_vars():
var = scope.new_var(input)
var.get_tensor()
for output in backward_op.output_vars():
var = scope.new_var(output)
var.get_tensor()
return backward_op
def get_gradient(scope, op, inputs, outputs, grad_name, place,
no_grad_set=None):
ctx = core.DeviceContext.create(place)
set_input(scope, op, inputs, place)
op.infer_shape(scope)
op.run(scope, ctx)
if no_grad_set is None:
no_grad_set = set()
backward_op = get_backward_op(scope, op, no_grad_set)
set_output_grad(scope, op, outputs, place)
backward_op.infer_shape(scope)
backward_op.run(scope, ctx)
out = np.array(scope.find_var(grad_name).get_tensor())
return out
class OpTest(unittest.TestCase):
def check_output_with_place(self, place):
self.scope = core.Scope()
self.op = create_op(self.scope, self.op_type, self.inputs, self.outputs)
if isinstance(place, core.GPUPlace) and not self.op.support_gpu():
return
set_input(self.scope, self.op, self.inputs, place)
self.op.infer_shape(self.scope)
ctx = core.DeviceContext.create(place)
self.op.run(self.scope, ctx)
for out_name, out_dup in Operator.get_op_outputs(self.op.type()):
if out_dup:
sub_out = self.outputs[out_name]
for sub_out_name in sub_out:
actual = np.array(
self.scope.find_var(sub_out_name).get_tensor())
expect = sub_out[sub_out_name]
self.assertTrue(
np.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")
else:
actual = np.array(self.scope.find_var(out_name).get_tensor())
expect = self.outputs[out_name]
self.assertTrue(
np.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")
def check_output(self):
places = [core.CPUPlace()]
if core.is_compile_gpu():
places.append(core.GPUPlace(0))
for place in places:
self.check_output_with_place(place)
def __assert_is_close(self, numeric_grads, analytic_grads, names,
max_relative_error, msg_prefix):
for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
abs_a = np.abs(a)
abs_a[abs_a < 1e-3] = 1
diff_mat = np.abs(a - b) / abs_a
max_diff = np.max(diff_mat)
def err_msg():
offset = np.argmax(diff_mat > max_relative_error)
return "%s Variable %s max gradient diff %f over limit %f, the first " \
"error element is %d" % (
msg_prefix, name, max_diff, max_relative_error, offset)
self.assertLessEqual(max_diff, max_relative_error, err_msg())
def check_grad(self,
inputs_to_check,
output_name,
no_grad_set=None,
in_place=False,
max_relative_error=0.005):
self.scope = core.Scope()
self.op = create_op(self.scope, self.op_type, self.inputs, self.outputs)
if no_grad_set is None:
no_grad_set = set()
numeric_grads = [
get_numeric_gradient(
self.scope,
self.op,
self.inputs,
input_to_check,
output_name,
in_place=in_place) for input_to_check in inputs_to_check
]
grad_names = [
grad_var_name(input_to_check) for input_to_check in inputs_to_check
]
cpu_place = core.CPUPlace()
cpu_analytic_grads = [
get_gradient(self.scope, self.op, self.inputs, self.outputs,
grad_name, cpu_place, no_grad_set)
for grad_name in grad_names
]
self.__assert_is_close(numeric_grads, cpu_analytic_grads, grad_names,
max_relative_error,
"Gradient Check On %s" % str(cpu_place))
if core.is_compile_gpu() and self.op.support_gpu():
gpu_place = core.GPUPlace(0)
gpu_analytic_grads = [
get_gradient(self.scope, self.op, self.inputs, self.outputs,
grad_name, gpu_place, no_grad_set)
for grad_name in grad_names
]
self.__assert_is_close(numeric_grads, gpu_analytic_grads,
grad_names, max_relative_error,
"Gradient Check On %s" % str(gpu_place))
for c_grad, g_grad, name in itertools.izip(
cpu_analytic_grads, gpu_analytic_grads, grad_names):
self.assertTrue(
np.allclose(
c_grad, g_grad, atol=1e-4),
"output name: " + name + " has diff")
import unittest
import numpy
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
from op_test import OpTest
class TestCrossEntropy(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestCrossEntropy(OpTest):
def setUp(self):
self.type = "onehot_cross_entropy"
self.op_type = "onehot_cross_entropy"
batch_size = 30
class_num = 10
X = numpy.random.random((batch_size, class_num)).astype("float32")
label = 5 * numpy.ones(batch_size).astype("int32")
X = numpy.random.uniform(0.1, 1.0,
[batch_size, class_num]).astype("float32")
label = (class_num / 2) * numpy.ones(batch_size).astype("int32")
self.inputs = {'X': X, 'label': label}
Y = []
for i in range(0, batch_size):
Y.append(-numpy.log(X[i][label[i]]))
self.outputs = {'Y': numpy.array(Y).astype("float32")}
def test_check_output(self):
self.check_output()
class CrossEntropyGradOpTest(GradientChecker):
def test_check_grad(self):
op = create_op("onehot_cross_entropy")
batch_size = 30
class_num = 10
inputs = {
"X": numpy.random.uniform(
0.1, 1.0, [batch_size, class_num]).astype("float32"),
"label": (class_num / 2) * numpy.ones(batch_size).astype("int32")
}
self.check_grad(op, inputs, set("X"), "Y")
self.check_grad(["X"], "Y")
if __name__ == "__main__":
......
......@@ -4,7 +4,7 @@ from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
class TestSigmoidOp(unittest.TestCase):
class TestLookupTableOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
......@@ -15,7 +15,7 @@ class TestSigmoidOp(unittest.TestCase):
self.outputs = {'Out': table[ids]}
class TestSigmoidGradOp(GradientChecker):
class TestLookupTableGradOp(GradientChecker):
def test_grad(self):
op = create_op('lookup_table')
table = np.random.random((17, 31)).astype('float32')
......
......@@ -2,6 +2,7 @@ import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
from paddle.v2.framework.op import Operator
class TestMulOp(unittest.TestCase):
......@@ -16,6 +17,22 @@ class TestMulOp(unittest.TestCase):
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
class TestMulOp2(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "mul"
self.inputs = {
'X': np.random.random((15, 4, 12, 10)).astype("float32"),
'Y': np.random.random((4, 30, 8, 2, 9)).astype("float32")
}
self.attrs = {'x_num_col_dims': 2, 'y_num_col_dims': 2}
self.outputs = {
'Out': np.dot(self.inputs['X'].reshape(15 * 4, 12 * 10),
self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9))
}
class TestMulGradOp(GradientChecker):
def setUp(self):
self.op = create_op("mul")
......@@ -49,7 +66,38 @@ class TestMulGradOp(GradientChecker):
no_grad_set={"Y"})
# TODO(dzh,qijun) : mulgrad test case need transpose feature of blas library
class TestMulGradTest2(GradientChecker):
def setUp(self):
self.op = Operator(
"mul", X="X", Y="Y", Out="Out", x_num_col_dims=2, y_num_col_dims=2)
self.inputs = {
"X": np.random.random((15, 4, 12, 10)).astype("float32"),
"Y": np.random.random((4, 30, 8, 2, 9)).astype("float32")
}
def test_cpu_gpu_compare(self):
self.compare_grad(self.op, self.inputs)
def test_normal(self):
self.check_grad(
self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.5)
def test_ignore_x(self):
self.check_grad(
self.op,
self.inputs, ["Y"],
"Out",
max_relative_error=0.5,
no_grad_set={"X"})
def test_ignore_y(self):
self.check_grad(
self.op,
self.inputs, ["X"],
"Out",
max_relative_error=0.5,
no_grad_set={"Y"})
if __name__ == '__main__':
unittest.main()
......@@ -16,6 +16,18 @@ class TestRowwiseAddOp(unittest.TestCase):
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
class TestRowwiseAddOp2(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "rowwise_add"
self.inputs = {
'X': np.random.random((13, 6, 7, 8)).astype("float32"),
'b': np.random.random((7, 8)).astype("float32")
}
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
class TestRowwiseAddGradOp(GradientChecker):
def setUp(self):
self.op = create_op("rowwise_add")
......@@ -34,5 +46,23 @@ class TestRowwiseAddGradOp(GradientChecker):
self.check_grad(self.op, self.inputs, ["b"], "Out", no_grad_set={"X"})
class TestRowwiseAddGradOp2(GradientChecker):
def setUp(self):
self.op = create_op("rowwise_add")
self.inputs = {
"X": np.random.uniform(0.1, 1, [2, 3, 2, 5]).astype("float32"),
"b": np.random.uniform(0.1, 1, [2, 5]).astype("float32")
}
def test_normal(self):
self.check_grad(self.op, self.inputs, ["X", "b"], "Out")
def test_ignore_b(self):
self.check_grad(self.op, self.inputs, ["X"], "Out", no_grad_set={"b"})
def test_ignore_x(self):
self.check_grad(self.op, self.inputs, ["b"], "Out", no_grad_set={"X"})
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
from op_test import OpTest
class TestSigmoidOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestSigmoid(OpTest):
def setUp(self):
self.type = "sigmoid"
self.inputs = {'X': np.random.random((15, 31)).astype("float32")}
self.op_type = "sigmoid"
self.inputs = {
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
}
self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))}
def test_check_output(self):
self.check_output()
class TestSigmoidGradOp(GradientChecker):
def test_grad(self):
op = create_op("sigmoid")
inputs = {"X": np.random.uniform(0.1, 1, [11, 17]).astype("float32")}
# compare gpu and cpu results for backward op.
# this test will be skiped if only compiling CPU version.
self.compare_grad(op, inputs)
# check gradients
self.check_grad(op, inputs, set("X"), "Y", max_relative_error=0.007)
def test_check_grad(self):
self.check_grad(["X"], "Y", max_relative_error=0.007)
if __name__ == '__main__':
......
import unittest
import numpy as np
from op_test import OpTest
class TestSumOp(OpTest):
def setUp(self):
self.op_type = "sum"
x0 = np.random.random((3, 4)).astype('float32')
x1 = np.random.random((3, 4)).astype('float32')
x2 = np.random.random((3, 4)).astype('float32')
self.inputs = {"X": {"x0": x0, "x1": x1, "x2": x2}}
y = x0 + x1 + x2
self.outputs = {'Out': y}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["x0"], "Out")
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
class TestTopkOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "top_k"
k = 1
input = np.random.random((32, 84)).astype("float32")
output = np.ndarray((32, k))
indices = np.ndarray((32, k))
self.inputs = {'X': input}
self.attrs = {'k': k}
for rowid in xrange(32):
row = input[rowid]
output[rowid] = np.sort(row)[-k:]
indices[rowid] = row.argsort()[-k:]
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp3d(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "top_k"
k = 1
input = np.random.random((32, 2, 84)).astype("float32")
input_flat_2d = input.reshape(64, 84)
output = np.ndarray((64, k))
indices = np.ndarray((64, k)).astype("int")
# FIXME: should use 'X': input for a 3d input
self.inputs = {'X': input_flat_2d}
self.attrs = {'k': k}
for rowid in xrange(64):
row = input_flat_2d[rowid]
output[rowid] = np.sort(row)[-k:]
indices[rowid] = row.argsort()[-k:]
self.outputs = {'Out': output, 'Indices': indices}
if __name__ == '__main__':
unittest.main()
......@@ -174,13 +174,18 @@ class SGD(object):
pass_id=pass_id,
batch_id=batch_id,
cost=cost,
evaluator=batch_evaluator))
evaluator=batch_evaluator,
gm=self.__gradient_machine__))
self.__parameter_updater__.finishBatch(cost)
batch_evaluator.finish()
self.__parameter_updater__.finishPass()
pass_evaluator.finish()
event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
event_handler(
v2_event.EndPass(
pass_id,
evaluator=pass_evaluator,
gm=self.__gradient_machine__))
self.__gradient_machine__.finish()
def test(self, reader, feeding=None):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册