Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
70e206e8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
70e206e8
编写于
12月 08, 2016
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow yanfei's comments
上级
c6b13984
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
20 addition
and
26 deletion
+20
-26
doc_cn/concepts/use_concepts.rst
doc_cn/concepts/use_concepts.rst
+19
-25
doc_cn/faq/index.rst
doc_cn/faq/index.rst
+1
-1
未找到文件。
doc_cn/concepts/use_concepts.rst
浏览文件 @
70e206e8
...
@@ -4,9 +4,7 @@ PaddlePaddle 基本使用概念
...
@@ -4,9 +4,7 @@ PaddlePaddle 基本使用概念
PaddlePaddle是一个深度学习框架,支持单机模式和多机模式。
PaddlePaddle是一个深度学习框架,支持单机模式和多机模式。
单节模式用命令 ``paddle train`` 可以启动一个trainer进程,一个单机训练作业只包括一个trainer进程,单机的所有设备使用,均在单机进程内调度完成。
单机模式用命令 ``paddle train`` 可以启动一个trainer进程,单机训练通常只包括一个trainer进程。如果数据规模比较大,希望加速训练,可以启动分布式作业。一个分布式作业里包括若干trainer进程和若干Parameter Server(或称pserver)进程。用命令 ``paddle pserver`` 可以启动 pserver 进程,pserver进程用于协调多个trainer进程之间的通信。
如果数据规模比较大,希望加速训练,可以启动分布式作业。一个分布式作业里包括若干trainer进程和若干Parameter Server(或称pserver)进程。用命令 ``paddle pserver`` 可以启动 pserver 进程,pserver进程用于协调多个trainer进程之间的通信。
本文首先介绍trainer进程中的一些使用概念,然后介绍pserver进程中概念。
本文首先介绍trainer进程中的一些使用概念,然后介绍pserver进程中概念。
...
@@ -15,7 +13,7 @@ PaddlePaddle是一个深度学习框架,支持单机模式和多机模式。
...
@@ -15,7 +13,7 @@ PaddlePaddle是一个深度学习框架,支持单机模式和多机模式。
系统框图
系统框图
========
========
下图描述了用户使用框图,PaddlePaddle的trainer进程里内嵌了Python解释器,trainer进程可以利用这个解释器执行Python脚本,Python脚本里定义了模型配置、训练算法、以及数据读取函数。其中,数据读取程序往往定义在一个单独Python脚本文件里,被称为
DataProvider
,通常是一个Python函数。模型配置、训练算法通常定义在另一单独Python文件中, 称为训练配置文件。下面将分别介绍这两部分。
下图描述了用户使用框图,PaddlePaddle的trainer进程里内嵌了Python解释器,trainer进程可以利用这个解释器执行Python脚本,Python脚本里定义了模型配置、训练算法、以及数据读取函数。其中,数据读取程序往往定义在一个单独Python脚本文件里,被称为
数据提供器(DataProvider)
,通常是一个Python函数。模型配置、训练算法通常定义在另一单独Python文件中, 称为训练配置文件。下面将分别介绍这两部分。
.. graphviz::
.. graphviz::
...
@@ -34,8 +32,8 @@ PaddlePaddle是一个深度学习框架,支持单机模式和多机模式。
...
@@ -34,8 +32,8 @@ PaddlePaddle是一个深度学习框架,支持单机模式和多机模式。
py -> data_provider [dir="back"];
py -> data_provider [dir="back"];
}
}
DataProvider
数据提供器
==========
==
==========
DataProvider是PaddlePaddle系统的数据提供器,将用户的原始数据转换成系统可以识别的数据类型。每当系统需要新的数据训练时, trainer进程会调用DataProvider函数返回数据。当所有数据读取完一轮后,DataProvider返回空数据,通知系统一轮数据读取结束,并且系统每一轮训练开始时会重置DataProvider。需要注意的是,DataProvider是被系统调用,而不是新数据驱动系统,一些随机化噪声添加都应该在DataProvider中完成。
DataProvider是PaddlePaddle系统的数据提供器,将用户的原始数据转换成系统可以识别的数据类型。每当系统需要新的数据训练时, trainer进程会调用DataProvider函数返回数据。当所有数据读取完一轮后,DataProvider返回空数据,通知系统一轮数据读取结束,并且系统每一轮训练开始时会重置DataProvider。需要注意的是,DataProvider是被系统调用,而不是新数据驱动系统,一些随机化噪声添加都应该在DataProvider中完成。
...
@@ -45,7 +43,7 @@ DataProvider是PaddlePaddle系统的数据提供器,将用户的原始数据
...
@@ -45,7 +43,7 @@ DataProvider是PaddlePaddle系统的数据提供器,将用户的原始数据
训练配置文件
训练配置文件
============
============
训练配置文件主要包括数据
传入接口定义(DataConfig)、优化算法(OptimizationConfig)、网络结构(ModelConfig)。 其中数据传入接口定义与DataProvider的关系是:DataProvider里定义数据读取函数,配置文件的DataConfig里
指定DataProvider文件名字、生成数据函数接口,请不要混淆。
训练配置文件主要包括数据
源、优化算法、网络结构配置三部分。 其中数据源配置与DataProvider的关系是:DataProvider里定义数据读取函数,训练配置文件的数据源配置中
指定DataProvider文件名字、生成数据函数接口,请不要混淆。
一个简单的训练配置文件为:
一个简单的训练配置文件为:
...
@@ -54,26 +52,22 @@ DataProvider是PaddlePaddle系统的数据提供器,将用户的原始数据
...
@@ -54,26 +52,22 @@ DataProvider是PaddlePaddle系统的数据提供器,将用户的原始数据
文件开头 ``from paddle.trainer_config_helpers import *`` ,是因为PaddlePaddle配置文件与C++模块通信的最基础协议是protobuf,为了避免用户直接写复杂的protobuf string,我们为用户定以Python接口来配置网络,该Python代码可以生成protobuf包,这就是`trainer_config_helpers`_的作用。因此,在文件的开始,需要import这些函数。 这个包里面包含了模型配置需要的各个模块。
文件开头 ``from paddle.trainer_config_helpers import *`` ,是因为PaddlePaddle配置文件与C++模块通信的最基础协议是protobuf,为了避免用户直接写复杂的protobuf string,我们为用户定以Python接口来配置网络,该Python代码可以生成protobuf包,这就是`trainer_config_helpers`_的作用。因此,在文件的开始,需要import这些函数。 这个包里面包含了模型配置需要的各个模块。
需要注意的是,这个 ``paddle.trainer_config_helpers`` 包是标准的 Python 包,这意味着用户可以选择自己喜欢的 IDE 或者编辑器来编写配置文件,这个 Python 包注释文档比较完善,并且考虑了 IDE 的代码提示与类型注释
。
下面分别介绍数据源配置、优化算法配置、网络结构配置这三部分该概念
。
下面分别介绍DataConfig、OptimizationConfig、ModelConfig这三部分该概念。
数据源配置
DataConfig
----------
----------
使用 `PyDataProvider`_ 的函数 ``define_py_data_sources2`` 配置数据源,后缀 2 是Paddle历史遗留问题,因为Paddle之前使用的PyDataProvider性能问题,重构了一个新的 `PyDataProvider`_ 。
使用 `PyDataProvider`_ 的函数 ``define_py_data_sources2`` 配置数据源。``define_py_data_sources2`` 里通过train_list和test_list指定是训练文件列表和测试文件列表。 如果传入字符串的话,是指一个数据列表文件。这个数据列表文件中包含的是每一个训练或者测试文件的路径。如果传入一个list的话,则会默认生成一个list文件,再传入给train.list或者test.list。
``define_py_data_sources2`` 里通过train_list和test_list指定是训练文件列表和测试文件列表。 如果传入字符串的话,是指一个数据列表文件。这个数据列表文件中包含的是每一个训练或者测试文件的路径。如果传入一个list的话,则会默认生成一个list文件,再传入给train.list或者test.list。
``module`` 和 ``obj`` 指定了DataProvider的文件名和返回数据的函数名。更详细的使用,请参考 `PyDataProvider`_ 。
``module`` 和 ``obj`` 指定了DataProvider的文件名和返回数据的函数名。更详细的使用,请参考 `PyDataProvider`_ 。
OptimizationConfig
优化算法配置
------------
------
------------
通过`settings`_ 接口设置神经网络所使用的训练参数和 `优化算法`_ ,包括学习率、batch_size、优化算法、正则方法等,具体的使用方法请参考 `settings`_ 文档。
通过
`settings`_ 接口设置神经网络所使用的训练参数和 `优化算法`_ ,包括学习率、batch_size、优化算法、正则方法等,具体的使用方法请参考 `settings`_ 文档。
ModelConfig
网络结构配置
-----------
-----------
-
神经网络配置主要包括网络连接、激活函数、损失函数、评估器。
神经网络配置主要包括网络连接、激活函数、损失函数、评估器。
...
@@ -126,11 +120,11 @@ PaddlePaddle多机采用经典的 Parameter Server 架构对多个节点的 trai
...
@@ -126,11 +120,11 @@ PaddlePaddle多机采用经典的 Parameter Server 架构对多个节点的 trai
.. code-block:: bash
.. code-block:: bash
paddle pserver --port=5000 --num_gradient_servers=4 --nics='eth0'
paddle pserver --port=5000 --num_gradient_servers=4 --
tcp_rdma='tcp' --
nics='eth0'
* 指定 pserver 进程端口是 5000 。
*
``--port=5000`` :
指定 pserver 进程端口是 5000 。
*
有四个训练进程(即 ``--gradient_servers=4`` ,PaddlePaddle同时将 trainer 称作 GradientServer 。
因为其为负责提供Gradient) 。
*
``--gradient_servers=4`` : 有四个训练进程(PaddlePaddle 将 trainer 也称作 GradientServer ,
因为其为负责提供Gradient) 。
*
指定以太网类型为TCP网络
。
*
``--tcp_rdma='tcp' --nics=`eth0```: 指定以太网类型为TCP网络,指定网络接口名字为eth0
。
启动之后 pserver 进程之后,需要启动 trainer 训练进程,在各个机器上运行如下命令\:
启动之后 pserver 进程之后,需要启动 trainer 训练进程,在各个机器上运行如下命令\:
...
@@ -140,8 +134,8 @@ PaddlePaddle多机采用经典的 Parameter Server 架构对多个节点的 trai
...
@@ -140,8 +134,8 @@ PaddlePaddle多机采用经典的 Parameter Server 架构对多个节点的 trai
对于简单的多机协同训练使用上述方式即可。另外,pserver/train 通常在高级情况下,还需要设置下面两个参数\:
对于简单的多机协同训练使用上述方式即可。另外,pserver/train 通常在高级情况下,还需要设置下面两个参数\:
* --ports_num\: 一个 pserver 进程共绑定多少个端口用来做稠密更新
。默认是1
* --ports_num\: 一个 pserver 进程共绑定多少个端口用来做稠密更新
,默认是1。
* --ports_num_for_sparse\: 一个pserver进程共绑定多少端口用来做稀疏更新,默认是0
* --ports_num_for_sparse\: 一个pserver进程共绑定多少端口用来做稀疏更新,默认是0
。
使用手工指定端口数量,是因为Paddle的网络通信中,使用了 int32 作为消息长度,比较容易在大模型下溢出。所以,在 pserver 进程中可以启动多个子线程去接受 trainer 的数据,这样单个子线程的长度就不会溢出了。但是这个值不可以调的过大,因为增加这个值,对性能尤其是内存占用有一定的开销,另外稀疏更新的端口如果太大的话,很容易导致某一个参数服务器没有分配到任何参数。
使用手工指定端口数量,是因为Paddle的网络通信中,使用了 int32 作为消息长度,比较容易在大模型下溢出。所以,在 pserver 进程中可以启动多个子线程去接受 trainer 的数据,这样单个子线程的长度就不会溢出了。但是这个值不可以调的过大,因为增加这个值,对性能尤其是内存占用有一定的开销,另外稀疏更新的端口如果太大的话,很容易导致某一个参数服务器没有分配到任何参数。
...
...
doc_cn/faq/index.rst
浏览文件 @
70e206e8
...
@@ -255,7 +255,7 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
...
@@ -255,7 +255,7 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
完整源码可参考 `seqToseq <https://github.com/PaddlePaddle/Paddle/tree/develop/demo/seqToseq>`_ 示例。
完整源码可参考 `seqToseq <https://github.com/PaddlePaddle/Paddle/tree/develop/demo/seqToseq>`_ 示例。
11. 如何指定GPU设备
11. 如何指定GPU设备
-----------------
-----------------
--
例如机器上有4块GPU,编号从0开始,指定使用2、3号GPU:
例如机器上有4块GPU,编号从0开始,指定使用2、3号GPU:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录