未验证 提交 7073ed5b 编写于 作者: V Vvsmile 提交者: GitHub

Remove API: pad_constant_like (#47949)

remove pad_constant_like which is not used in paddle 2.0
上级 9aacb31b
...@@ -107,7 +107,6 @@ __all__ = [ ...@@ -107,7 +107,6 @@ __all__ = [
'lod_append', 'lod_append',
'lrn', 'lrn',
'pad', 'pad',
'pad_constant_like',
'label_smooth', 'label_smooth',
'roi_pool', 'roi_pool',
'roi_align', 'roi_align',
...@@ -7022,102 +7021,6 @@ def pad(x, paddings, pad_value=0.0, name=None): ...@@ -7022,102 +7021,6 @@ def pad(x, paddings, pad_value=0.0, name=None):
return out return out
def pad_constant_like(x, y, pad_value=0.0, name=None):
r"""
Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
the edges of each axis is specified by the difference of the shape
of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
See below for an example.
.. code-block:: text
Given:
X = [[[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]],
[[12, 13, 14],
[15, 16, 17]]],
[[[18, 19, 20],
[21, 22, 23]],
[[24, 25, 26],
[27, 28, 29]],
[[30, 31, 32],
[33, 34, 35]]]]
X.shape = (2, 3, 2, 3)
Y = [[[[35, 36, 37]],
[[38, 39, 40]],
[[41, 42, 43]]]]
Y.shape = (1, 3, 1, 3)
And
pad_value = 0.
Return:
Out = [[[[35, 36, 37],
[ 0, 0, 0]],
[[38, 39, 40],
[ 0, 0, 0]],
[[41, 42, 43],
[ 0, 0, 0]]],
[[[ 0, 0, 0],
[ 0, 0, 0]],
[[ 0, 0, 0],
[ 0, 0, 0]],
[[ 0, 0, 0],
[ 0, 0, 0]]]]
Out.shape = [2, 3, 2, 3]
Args:
x (Variable): Tensor, its shape specifies the shape of output.
y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` ,
:math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
pad_value (float): The constant value used to pad.
name(str, optional): The default value is None.
Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`
Returns:
The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`
Return Type:
Variable
Examples:
.. code-block:: python
# x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
# y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
# out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
"""
check_type(x, 'x', (Variable), 'pad_constant_like')
check_variable_and_dtype(
y, 'y', ['float32', 'float64', 'int32', 'int64'], "pad_constant_like"
)
helper = LayerHelper('pad_constant_like', **locals())
dtype = helper.input_dtype(input_param_name='y')
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='pad_constant_like',
inputs={'X': x, 'Y': y},
outputs={'Out': out},
attrs={'pad_value': float(pad_value)},
)
return out
def label_smooth( def label_smooth(
label, prior_dist=None, epsilon=0.1, dtype="float32", name=None label, prior_dist=None, epsilon=0.1, dtype="float32", name=None
): ):
......
...@@ -14,9 +14,7 @@ ...@@ -14,9 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest, check_out_dtype from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestPadConstantLikeOp(OpTest): class TestPadConstantLikeOp(OpTest):
...@@ -67,40 +65,5 @@ class TestCase2(TestPadConstantLikeOp): ...@@ -67,40 +65,5 @@ class TestCase2(TestPadConstantLikeOp):
self.pad_value = 0.5 self.pad_value = 0.5
class TestPadConstantLikeOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
x_data = np.random.random((2, 2, 2, 2)).astype("float32")
y_data = np.random.random((2, 2, 2, 2)).astype("float32")
def test_Variable_x():
var_y = fluid.data(
name="data_y", shape=[2, 2, 2, 2], dtype="float32"
)
fluid.layers.pad_constant_like(x=x_data, y=var_y)
self.assertRaises(TypeError, test_Variable_x)
def test_Variable_y():
var_x = fluid.data(
name="data_x", shape=[2, 2, 2, 2], dtype="float32"
)
fluid.layers.pad_constant_like(x=var_x, y=y_data)
self.assertRaises(TypeError, test_Variable_y)
class TestOutDtype(unittest.TestCase):
def test_dtype(self):
api_fn = fluid.layers.pad_constant_like
check_out_dtype(
api_fn,
in_specs=[([2, 3, 2, 3], 'float64'), ([1, 3, 1, 3],)],
expect_dtypes=['float32', 'float64', 'int32', 'int64'],
target_index=1,
pad_value=0.0,
)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册