未验证 提交 705e7345 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #10449 from reyoung/feature/clean_matmul

Rewrite Matmul, make code cleaner
...@@ -13,10 +13,40 @@ ...@@ -13,10 +13,40 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/blas.h"
#include <utility>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
// Do nothing. Blas is a header only library. MatDescriptor CreateMatrixDescriptor(const framework::DDim &tensor_dim,
int num_flatten_cols, bool trans) {
PADDLE_ENFORCE_GT(tensor_dim.size(), 1);
MatDescriptor retv;
if (num_flatten_cols > 1) {
auto flatten_dim = framework::flatten_to_2d(tensor_dim, num_flatten_cols);
retv.height_ = flatten_dim[0];
retv.width_ = flatten_dim[1];
} else {
if (tensor_dim.size() == 2) {
retv.height_ = tensor_dim[0];
retv.width_ = tensor_dim[1];
} else {
auto dim_vec = framework::vectorize(tensor_dim);
retv.batch_size_ = 1;
for (size_t i = 0; i < dim_vec.size() - 2; ++i) {
retv.batch_size_ *= dim_vec[i];
}
retv.height_ = dim_vec[dim_vec.size() - 2];
retv.width_ = dim_vec[dim_vec.size() - 1];
retv.stride_ = retv.height_ * retv.width_;
}
}
if (trans) {
std::swap(retv.width_, retv.height_);
}
retv.trans_ = trans;
return retv;
}
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -46,6 +46,50 @@ namespace paddle { ...@@ -46,6 +46,50 @@ namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
/**
* Matrix Descriptor of a memory buffer.
*
* It is used for Blas::MatMul. MatMul operator can be batched.
* if Mat A is [BatchSize, H, W], Mat B is [BatchSize, H, W]. It will be a
* `batch_size` times of GEMM. The batched GEMM could be faster base on the
* implementation of the blas library. The batch size could be zero. If any
* matrix of `matmul` has a batch size, the will be a batched GEMM, too. e.g.,
* Mat A is [BatchSize, H1, W2], and Mat B [H2, W2], The result matrix wil be
* [BatchSize, H1, W2]
*
* The boolean flag, `trans`, describe the memory is the transpose of matrix or
* not. If the trans is true, the last two dims of matrix are transposed. The
* memory layout of the matrix is [Width, Height] or [BatchSize, Width, Height].
*
* The MatDescriptor is not only the dimension or shape of a matrix, it also
* contains the layout, stride of matrix. It is clearer to have a structure than
* reuse `DDim`.
*/
struct MatDescriptor {
int64_t height_;
int64_t width_;
int64_t stride_{0};
int64_t batch_size_{0};
bool trans_;
};
/**
* Create Matrix Descriptor from a tensor dim, num_flatten_cols, and transpose
* flag
*
* @param tensor_dim: The dimension of the tensor. The rank of this dimension
* must larger than 1.
*
* @param num_flatten_cols: Reshape a tensor to a matrix. The matrix's first
* dimension(column length) will be the product of tensor's first `num_col_dims`
* dimensions. If num_flatten_cols is zero, the first N-2 dimension will be the
* batch_size of descriptor.
*
* @param trans: True if the matrix is transposed.
*/
extern MatDescriptor CreateMatrixDescriptor(const framework::DDim& tensor_dim,
int num_flatten_cols, bool trans);
template <typename DeviceContext> template <typename DeviceContext>
class Blas { class Blas {
public: public:
...@@ -90,6 +134,11 @@ class Blas { ...@@ -90,6 +134,11 @@ class Blas {
int K, T alpha, const T* A, const T* B, T beta, T* C, int K, T alpha, const T* A, const T* B, T beta, T* C,
int batchCount, int64_t strideA, int64_t strideB) const; int batchCount, int64_t strideA, int64_t strideB) const;
template <typename T>
void MatMul(const framework::Tensor& mat_a, const MatDescriptor& dim_a,
const framework::Tensor& mat_b, const MatDescriptor& dim_b,
T alpha, framework::Tensor* mat_out, T beta) const;
private: private:
const DeviceContext& context_; const DeviceContext& context_;
}; };
......
...@@ -180,6 +180,31 @@ void Blas<platform::CPUDeviceContext>::BatchedGEMM( ...@@ -180,6 +180,31 @@ void Blas<platform::CPUDeviceContext>::BatchedGEMM(
#endif #endif
} }
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
const MatDescriptor &dim_a,
const framework::Tensor &mat_b,
const MatDescriptor &dim_b, T alpha,
framework::Tensor *mat_out, T beta) const {
PADDLE_ENFORCE_EQ(dim_a.width_, dim_b.height_);
CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
dim_a.width_, alpha, mat_a.data<T>(),
mat_b.data<T>(), beta, mat_out->data<T>());
} else {
PADDLE_ENFORCE(dim_a.batch_size_ == dim_b.batch_size_ ||
dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0);
this->template BatchedGEMM<T>(
transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha,
mat_a.data<T>(), mat_b.data<T>(), beta, mat_out->data<T>(),
dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
dim_a.stride_, dim_b.stride_);
}
}
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/math/blas.h"
namespace paddle {
namespace operators {
namespace math {
// Implements the logic of numpy matmul:
// https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
//
// but allowing also for a, b to be transposed
//
// Both a & b can be 1- to 3-dimensional. Higher rank tensors are not supported
// yet.
template <typename DeviceContext, typename T>
class MatMulFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& a,
bool trans_a, const framework::Tensor& b, bool trans_b,
T alpha, framework::Tensor* out, T beta) {
auto dim_a = a.dims();
auto dim_b = b.dims();
PADDLE_ENFORCE(a.place() == b.place() && b.place() == out->place(),
"Tensors must all be in the same place.");
PADDLE_ENFORCE_GE(dim_a.size(), 1,
"Input tensor a must be at least 1-dimensional.");
PADDLE_ENFORCE_GE(dim_b.size(), 1,
"Input tensor b must be at least 1-dimensional.");
std::vector<int64_t> out_dim;
int64_t batch_count = 1;
if (dim_a.size() > 3) {
PADDLE_ENFORCE(dim_b.size() == dim_a.size(),
"The dimensions of X and Y must be the same, and both of "
"them should be %d-dimensional.",
dim_b.size());
// The first rank-2 dimensions are accumulated on the batch_count, and the
// last two dimensions are used for matrix multiplication.
for (int j = 0; j < dim_a.size() - 2; ++j) {
PADDLE_ENFORCE_EQ(dim_b[j], dim_a[j],
"The %d-th dimension of X and Y must be the same.",
j);
out_dim.push_back(dim_a[j]);
batch_count *= dim_a[j];
}
}
int M = 0, N = 0, kA = 0, kB = 0, batchCountA = 0, batchCountB = 0,
strideA = 0, strideB = 0;
switch (dim_a.size()) {
case 1:
// similar to np.matmul:
// prepend dimension 1 (no transpose) or append dimension 1 (transpose)
M = trans_a ? dim_a[0] : 1;
kA = trans_a ? 1 : dim_a[0];
break;
case 2:
M = trans_a ? dim_a[1] : dim_a[0];
kA = trans_a ? dim_a[0] : dim_a[1];
break;
case 3:
batchCountA = dim_a[0];
M = trans_a ? dim_a[2] : dim_a[1];
kA = trans_a ? dim_a[1] : dim_a[2];
strideA = M * kA;
break;
default:
batchCountA = batch_count;
size_t mat_s = dim_a.size() - 2;
M = trans_a ? dim_a[mat_s + 1] : dim_a[mat_s];
kA = trans_a ? dim_a[mat_s] : dim_a[mat_s + 1];
strideA = M * kA;
}
switch (dim_b.size()) {
case 1:
// similar to np.matmul:
// append dimension 1 (no transpose) or prepend dimension 1 (transpose)
kB = trans_b ? 1 : dim_b[0];
N = trans_b ? dim_b[0] : 1;
break;
case 2:
kB = trans_b ? dim_b[1] : dim_b[0];
N = trans_b ? dim_b[0] : dim_b[1];
break;
case 3:
batchCountB = dim_b[0];
kB = trans_b ? dim_b[2] : dim_b[1];
N = trans_b ? dim_b[1] : dim_b[2];
strideB = kB * N;
break;
default:
batchCountB = batch_count;
size_t mat_s = dim_b.size() - 2;
kB = trans_b ? dim_b[mat_s + 1] : dim_b[mat_s];
N = trans_b ? dim_b[mat_s] : dim_b[mat_s + 1];
strideB = kB * N;
}
PADDLE_ENFORCE_EQ(
kA, kB,
"First matrix's width must be equal with second matrix's height.");
if (batchCountA && batchCountB) {
PADDLE_ENFORCE_EQ(
batchCountA, batchCountB,
"When input tensors a and b are both batched, they must have the "
"same batch dimension.");
}
int batchCount = std::max(batchCountA, batchCountB);
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
auto blas = GetBlas<DeviceContext, T>(context);
if (!batchCount) {
// regular matrix multiplication
blas.GEMM(transA, transB, M, N, kA, alpha, a.data<T>(), b.data<T>(), beta,
out->data<T>());
} else {
// batched matrix multiplication
blas.BatchedGEMM(transA, transB, M, N, kA, alpha, a.data<T>(),
b.data<T>(), beta, out->data<T>(), batchCount, strideA,
strideB);
}
}
};
} // namespace math
} // namespace operators
} // namespace paddle
...@@ -12,14 +12,257 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,14 +12,257 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/matmul_op.h"
#include <algorithm> #include <algorithm>
#include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
/**
* Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
* original x_dim is returned.
*/
static framework::DDim RowMatrixFromVector(const framework::DDim& x_dim) {
if (x_dim.size() > 1) {
return x_dim;
}
return framework::make_ddim({1, x_dim[0]});
}
/**
* Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
* original y_dim is returned.
*/
static framework::DDim ColumnMatrixFromVector(const framework::DDim& y_dim) {
if (y_dim.size() > 1) {
return y_dim;
}
return framework::make_ddim({y_dim[0], 1});
}
template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto& x =
detail::Ref(context.Input<framework::Tensor>("X"), "Cannot find X");
auto& y =
detail::Ref(context.Input<framework::Tensor>("Y"), "Cannot find Y");
auto* out = context.Output<framework::Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
auto blas = math::GetBlas<DeviceContext, T>(context);
auto mat_dim_a = math::CreateMatrixDescriptor(
RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
auto mat_dim_b = math::CreateMatrixDescriptor(
ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
blas.MatMul(x, mat_dim_a, y, mat_dim_b, T(1), out, T(0));
}
};
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static framework::Tensor FoldInitDims(const framework::Tensor& input) {
auto output = input;
auto in_dims = input.dims();
if (in_dims.size() == 3) {
output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
}
return output;
}
// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
static framework::Tensor FoldHeadAndLastDims(const DeviceContext& context,
const framework::Tensor& input) {
auto in_dims = input.dims();
if (in_dims.size() != 3) {
return input;
}
framework::Tensor output;
output.Resize({in_dims[1], in_dims[0], in_dims[2]});
output.mutable_data<T>(context.GetPlace());
std::vector<int> axis = {1, 0, 2};
math::Transpose<DeviceContext, T, 3> trans;
trans(context, input, &output, axis);
output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
return output;
}
/**
* Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
*
* The shape would be [BatchSize, H, W] or [H, W].
* If transposed, `H,W` will be swapped.
*/
static void ReshapeTensorIntoMatrixSequence(
framework::Tensor* x, const math::MatDescriptor& descriptor) {
int64_t h, w;
h = descriptor.height_;
w = descriptor.width_;
if (descriptor.trans_) {
std::swap(w, h);
}
if (descriptor.batch_size_) {
x->Resize({descriptor.batch_size_, h, w});
} else {
x->Resize({h, w});
}
}
/**
* Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
* Out = matmul(x, y)
*
* This method will first calculate X,Y matrix sequence, and then calculate
* the out shape.
*
* Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
* The out = [BatchSize, H1, W2]
*
* If there is no batch size in `X` and `Y`, the out will be [H1, W2]
* If any of `X` and `Y` has batch size BatchSize, the out will have the
* BatchSize.
*/
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x,
framework::Tensor* y,
framework::Tensor* out, bool trans_x,
bool trans_y) {
auto x_dim = RowMatrixFromVector(x->dims());
auto y_dim = ColumnMatrixFromVector(y->dims());
auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
out->Resize({mat_dim_x.height_, mat_dim_y.width_});
} else {
out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
mat_dim_x.height_, mat_dim_y.width_});
}
ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}
// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False | True | False | True
// transpose_Y | False | False | True | True
// -----------+----------+----------+----------+-----------
// dX = | dOut Y^T | Y dOut^T | dOut Y | Y^T dOut^T
// dY = | X^T dOut | X dOut | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
// dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
public:
void MatMul(const framework::ExecutionContext& context,
const framework::Tensor& a, bool trans_a,
const framework::Tensor& b, bool trans_b,
framework::Tensor* out) const {
out->mutable_data<T>(context.GetPlace());
auto blas = math::GetBlas<DeviceContext, T>(context);
auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
blas.MatMul(a, mat_dim_a, b, mat_dim_b, T(1), out, T(0));
}
void CalcInputGrad(const framework::ExecutionContext& context,
const framework::Tensor& a, bool trans_a,
bool is_fold_init_dims_a, const framework::Tensor& b,
bool trans_b, bool is_fold_init_dims_b,
framework::Tensor* out) const {
if (out == nullptr) return;
bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
out->dims().size() == 2;
if (!need_combine) {
MatMul(context, a, trans_a, b, trans_b, out);
} else {
auto& ctx = context.template device_context<DeviceContext>();
MatMul(context, is_fold_init_dims_a
? FoldInitDims(a)
: FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
trans_a, is_fold_init_dims_b
? FoldInitDims(b)
: FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
trans_b, out);
}
}
void Compute(const framework::ExecutionContext& context) const override {
auto x = *context.Input<framework::Tensor>("X");
auto y = *context.Input<framework::Tensor>("Y");
auto dout =
*context.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
bool transpose_x = context.Attr<bool>("transpose_X");
bool transpose_y = context.Attr<bool>("transpose_Y");
using framework::Tensor; ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
framework::DDim dx_dims;
if (dx) {
dx_dims = dx->dims();
if (dx_dims != x.dims()) {
dx->Resize(x.dims());
}
}
framework::DDim dy_dims;
if (dy) {
dy_dims = dy->dims();
if (dy_dims != y.dims()) {
dy->Resize(y.dims());
}
}
if (transpose_x && transpose_y) {
CalcInputGrad(context, y, true, true, dout, true, false, dx);
CalcInputGrad(context, dout, true, true, x, true, false, dy);
} else if (transpose_x) {
CalcInputGrad(context, y, false, false, dout, true, false, dx);
CalcInputGrad(context, x, false, false, dout, false, true, dy);
} else if (transpose_y) {
CalcInputGrad(context, dout, false, false, y, false, true, dx);
CalcInputGrad(context, dout, true, true, x, false, true, dy);
} else {
CalcInputGrad(context, dout, false, false, y, true, false, dx);
CalcInputGrad(context, x, true, true, dout, false, true, dy);
}
if (dx) {
if (dx_dims != x.dims()) {
dx->Resize(dx_dims);
}
}
if (dy) {
if (dy_dims != y.dims()) {
dy->Resize(dy_dims);
}
}
}
};
class MatMulOp : public framework::OperatorWithKernel { class MatMulOp : public framework::OperatorWithKernel {
public: public:
...@@ -36,121 +279,41 @@ class MatMulOp : public framework::OperatorWithKernel { ...@@ -36,121 +279,41 @@ class MatMulOp : public framework::OperatorWithKernel {
auto dim_x = context->GetInputDim("X"); auto dim_x = context->GetInputDim("X");
auto dim_y = context->GetInputDim("Y"); auto dim_y = context->GetInputDim("Y");
bool transpose_x = context->Attrs().Get<bool>("transpose_X");
bool transpose_y = context->Attrs().Get<bool>("transpose_Y");
PADDLE_ENFORCE_GE(dim_x.size(), 1,
"Input tensor X must be at least 1-dimensional.");
PADDLE_ENFORCE_GE(dim_y.size(), 1,
"Input tensor Y must be at least 1-dimensional.");
std::vector<int64_t> out_dim;
int64_t batch_count = 1;
if (dim_x.size() > 3) {
PADDLE_ENFORCE_EQ(
dim_y.size(), dim_x.size(),
"The dimensions of X and Y must be the same, and both of "
"them should be %d-dimensional.",
dim_x.size());
// The first rank-2 dimensions are accumulated on the batch_count, and the
// last two dimensions are used for matrix multiplication.
for (int j = 0; j < dim_x.size() - 2; ++j) {
PADDLE_ENFORCE_EQ(dim_y[j], dim_x[j],
"The %d-th dimension of X and Y must be the same.",
j);
out_dim.push_back(dim_x[j]);
batch_count *= dim_x[j];
}
}
int M = 0, N = 0, KX = 0, KY = 0, batchCountX = 0, batchCountY = 0;
bool remove_initial_dim = false, remove_final_dim = false;
switch (dim_x.size()) {
case 1:
if (transpose_x) {
M = dim_x[0];
KX = 1;
} else {
M = 1;
KX = dim_x[0];
remove_initial_dim = true;
}
break;
case 2:
M = transpose_x ? dim_x[1] : dim_x[0];
KX = transpose_x ? dim_x[0] : dim_x[1];
break;
case 3:
batchCountX = dim_x[0];
M = transpose_x ? dim_x[2] : dim_x[1];
KX = transpose_x ? dim_x[1] : dim_x[2];
break;
default:
batchCountX = batch_count;
size_t mat_s = dim_x.size() - 2;
M = transpose_x ? dim_x[mat_s + 1] : dim_x[mat_s];
KX = transpose_x ? dim_x[mat_s] : dim_x[mat_s + 1];
break;
}
switch (dim_y.size()) {
case 1:
if (transpose_y) {
N = dim_y[0];
KY = 1;
} else {
N = 1;
KY = dim_y[0];
remove_final_dim = true;
}
break;
case 2:
KY = transpose_y ? dim_y[1] : dim_y[0];
N = transpose_y ? dim_y[0] : dim_y[1];
break;
case 3:
batchCountY = dim_y[0];
KY = transpose_y ? dim_y[2] : dim_y[1];
N = transpose_y ? dim_y[1] : dim_y[2];
break;
default:
batchCountY = batch_count;
size_t mat_s = dim_y.size() - 2;
KY = transpose_y ? dim_y[mat_s + 1] : dim_y[mat_s];
N = transpose_y ? dim_y[mat_s] : dim_y[mat_s + 1];
}
PADDLE_ENFORCE_EQ(
KX, KY,
"First matrix's width must be equal with second matrix's height.");
if (batchCountX && batchCountY) {
PADDLE_ENFORCE_EQ(
batchCountX, batchCountY,
"When Input(X) and Input(Y) are both three dimensional, they "
"must have the same batch dimension.");
}
int batchCount = std::max(batchCountX, batchCountY);
auto mat_dim_x =
math::CreateMatrixDescriptor(RowMatrixFromVector(dim_x), 0,
context->Attrs().Get<bool>("transpose_X"));
auto mat_dim_y =
math::CreateMatrixDescriptor(ColumnMatrixFromVector(dim_y), 0,
context->Attrs().Get<bool>("transpose_Y"));
PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_);
PADDLE_ENFORCE(mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0);
std::vector<int64_t> dim_out; std::vector<int64_t> dim_out;
if (batchCount) { if (mat_dim_x.batch_size_ != 0) {
if (dim_x.size() > 3) { dim_out = framework::vectorize(dim_x);
dim_out.insert(dim_out.begin(), out_dim.begin(), out_dim.end()); dim_out[dim_out.size() - 2] = mat_dim_x.height_;
dim_out[dim_out.size() - 1] = mat_dim_y.width_;
} else if (mat_dim_y.batch_size_ != 0) {
dim_out = framework::vectorize(dim_y);
dim_out[dim_out.size() - 2] = mat_dim_x.height_;
dim_out[dim_out.size() - 1] = mat_dim_y.width_;
} else { } else {
dim_out.push_back(batchCount); dim_out = {mat_dim_x.height_, mat_dim_y.width_};
}
} }
if (!remove_initial_dim) {
dim_out.push_back(M); if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
dim_out.resize(dim_out.size() - 1);
} }
if (!remove_final_dim) {
dim_out.push_back(N); if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
dim_out.resize(dim_out.size() - 1);
} }
if (dim_out.size() == 0) {
// We don't support 0-dimensional Tensors (scalars), so instead if (dim_out.empty()) {
// treat the output as a Tensor of shape (1, ) in this case. dim_out = {1};
dim_out.push_back(1);
} }
context->SetOutputDim("Out", framework::make_ddim(dim_out)); context->SetOutputDim("Out", framework::make_ddim(dim_out));
context->ShareLoD("X", /*->*/ "Out"); context->ShareLoD("X", /*->*/ "Out");
...@@ -233,15 +396,40 @@ class MatMulOpGrad : public framework::OperatorWithKernel { ...@@ -233,15 +396,40 @@ class MatMulOpGrad : public framework::OperatorWithKernel {
} }
}; };
class MatMulOpGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto* retv = new framework::OpDesc();
retv->SetType("matmul_grad");
retv->SetInput("X", Input("X"));
retv->SetInput("Y", Input("Y"));
retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
retv->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDesc>(retv);
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker, REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::MatMulOpGradMaker);
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad); REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>); matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
matmul_grad, matmul_grad,
ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>); ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>);
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
matmul_grad,
ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>);
#endif
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/matmul_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
matmul_grad,
ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <functional>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matmul.h"
namespace paddle {
namespace operators {
namespace matmul_detail {
using Tensor = framework::Tensor;
using DDim = framework::DDim;
using framework::make_ddim;
using framework::vectorize;
template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor& x = *context.Input<Tensor>("X");
const Tensor& y = *context.Input<Tensor>("Y");
Tensor* out = context.Output<Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
bool transpose_x = context.Attr<bool>("transpose_X");
bool transpose_y = context.Attr<bool>("transpose_Y");
math::MatMulFunctor<DeviceContext, T>()(
context.template device_context<DeviceContext>(), x, transpose_x, y,
transpose_y, T(1), out, T(0));
}
};
template <typename T>
inline Tensor Reshape(const Tensor& input, const DDim& dims) {
Tensor output;
output.ShareDataWith(input);
output.Resize(dims);
return output;
}
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
template <typename T>
Tensor CombineBatchAndM(const Tensor& input) {
Tensor output;
output.ShareDataWith(input);
auto in_dims = input.dims();
if (in_dims.size() == 3) {
std::vector<int64_t> out_dims = {in_dims[0] * in_dims[1], in_dims[2]};
output.Resize(make_ddim(out_dims));
}
return output;
}
// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Tensor CombineBatchAndN(const DeviceContext& context, const Tensor& input) {
Tensor output;
auto in_dims = input.dims();
if (in_dims.size() == 3) {
output.Resize({in_dims[1], in_dims[0], in_dims[2]});
output.mutable_data<T>(context.GetPlace());
std::vector<int> axis = {1, 0, 2};
math::Transpose<DeviceContext, T, 3> trans;
trans(context, input, &output, axis);
std::vector<int64_t> out_dims = {in_dims[1], in_dims[0] * in_dims[2]};
output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
} else {
output.ShareDataWith(input);
}
return output;
}
// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False | True | False | True
// transpose_Y | False | False | True | True
// -----------+----------+----------+----------+-----------
// dX = | dOut Y^T | Y dOut^T | dOut Y | Y^T dOut^T
// dY = | X^T dOut | X dOut | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
// dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor& x = *context.Input<Tensor>("X");
const Tensor& y = *context.Input<Tensor>("Y");
const Tensor& dout = *context.Input<Tensor>(framework::GradVarName("Out"));
Tensor* dx = context.Output<Tensor>(framework::GradVarName("X"));
Tensor* dy = context.Output<Tensor>(framework::GradVarName("Y"));
bool transpose_x = context.Attr<bool>("transpose_X");
bool transpose_y = context.Attr<bool>("transpose_Y");
std::vector<int64_t> x_dims = vectorize(x.dims());
std::vector<int64_t> y_dims = vectorize(y.dims());
// If X is a vector, reshape it to a matrix.
if (x_dims.size() == 1) {
x_dims.insert(x_dims.begin(), 1);
}
// If Y is a vector, reshape it to a matrix.
if (y_dims.size() == 1) {
y_dims.push_back(1);
}
int batch_count = 0;
// The first rank-2 dimensions are accumulated on the batch_count, and the
// last two dimensions are used for matrix multiplication.
if (x_dims.size() > 3) {
batch_count = accumulate(x_dims.begin(), x_dims.end() - 2, 1,
std::multiplies<int>());
}
// Fix the dOut dimensions.
int M = 0, N = 0, batchCountX = 0, batchCountY = 0;
switch (x_dims.size()) {
case 2:
M = transpose_x ? x_dims[1] : x_dims[0];
break;
case 3:
batchCountX = x_dims[0];
M = transpose_x ? x_dims[2] : x_dims[1];
break;
default:
batchCountX = batch_count;
size_t mat_s = x_dims.size() - 2;
M = transpose_x ? x_dims[mat_s + 1] : x_dims[mat_s];
}
switch (y_dims.size()) {
case 2:
N = transpose_y ? y_dims[0] : y_dims[1];
break;
case 3:
batchCountY = y_dims[0];
N = transpose_y ? y_dims[1] : y_dims[2];
break;
default:
batchCountY = batch_count;
size_t mat_s = y_dims.size() - 2;
N = transpose_y ? y_dims[mat_s] : y_dims[mat_s + 1];
}
if (batchCountX && batchCountY) {
PADDLE_ENFORCE_EQ(
batchCountX, batchCountY,
"When Input(X) and Input(Y) are both three dimensional, they "
"must have the same batch dimension.");
}
int batchCount = std::max(batchCountX, batchCountY);
std::vector<int64_t> dout_dims = {M, N};
if (batchCount) {
if (x_dims.size() > 3) {
dout_dims.insert(dout_dims.begin(), x_dims.begin(), x_dims.end() - 2);
} else {
dout_dims.insert(dout_dims.begin(), batchCount);
}
}
Tensor X = Reshape<T>(x, make_ddim(x_dims));
Tensor Y = Reshape<T>(y, make_ddim(y_dims));
Tensor dOut = Reshape<T>(dout, make_ddim(dout_dims));
auto& dev_ctx = context.template device_context<DeviceContext>();
if (dx) {
dx->mutable_data<T>(context.GetPlace());
const Tensor& dOut_for_dX =
(x_dims.size() == 2 && y_dims.size() == 3)
? CombineBatchAndN<DeviceContext, T>(dev_ctx, dOut)
: dOut;
if (x_dims.size() == 2 && y_dims.size() == 3) {
Y = transpose_y ? CombineBatchAndM<T>(Y)
: CombineBatchAndN<DeviceContext, T>(dev_ctx, Y);
}
if (transpose_x) {
math::MatMulFunctor<DeviceContext, T>()(
dev_ctx, Y, transpose_y, dOut_for_dX, transpose_x, T(1), dx, T(0));
} else {
math::MatMulFunctor<DeviceContext, T>()(
dev_ctx, dOut_for_dX, transpose_x, Y, !transpose_y, T(1), dx, T(0));
}
}
if (dy) {
dy->mutable_data<T>(context.GetPlace());
const Tensor& dOut_for_dY = (y_dims.size() == 2 && x_dims.size() == 3)
? CombineBatchAndM<T>(dOut)
: dOut;
if (y_dims.size() == 2 && x_dims.size() == 3) {
X = transpose_x ? CombineBatchAndN<DeviceContext, T>(dev_ctx, X)
: CombineBatchAndM<T>(X);
dOut = CombineBatchAndM<T>(dOut);
}
if (transpose_y) {
math::MatMulFunctor<DeviceContext, T>()(
dev_ctx, dOut_for_dY, transpose_y, X, transpose_x, T(1), dy, T(0));
} else {
math::MatMulFunctor<DeviceContext, T>()(
dev_ctx, X, !transpose_x, dOut_for_dY, transpose_y, T(1), dy, T(0));
}
}
}
};
} // namespace matmul_detail
using matmul_detail::MatMulKernel;
using matmul_detail::MatMulGradKernel;
} // namespace operators
} // namespace paddle
...@@ -111,23 +111,26 @@ class Generator(object): ...@@ -111,23 +111,26 @@ class Generator(object):
# Generate test cases for all possibilities # Generate test cases for all possibilities
for dim_X in [1, 2, 3]: def inject_test(dim_x, dim_y, trans_x, trans_y):
for dim_Y in [1, 2, 3]: test_name = ('TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
for transpose_X in [False, True]: dim_x, dim_y, trans_x, trans_y))
for transpose_Y in [False, True]: shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
test_name = ( trans_y)
'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
dim_X, dim_Y, transpose_X, transpose_Y))
shape_X, shape_Y = generate_compatible_shapes(
dim_X, dim_Y, transpose_X, transpose_Y)
globals()[test_name] = type(test_name, (Generator, OpTest), { globals()[test_name] = type(test_name, (Generator, OpTest), {
'shape_X': shape_X, 'shape_X': shape_x,
'shape_Y': shape_Y, 'shape_Y': shape_y,
'transpose_X': transpose_X, 'transpose_X': trans_x,
'transpose_Y': transpose_Y, 'transpose_Y': trans_y,
}) })
for dim_X in (1, 2, 3):
for dim_Y in (1, 2, 3):
for transose_x in (False, True):
for transose_y in (False, True):
inject_test(dim_X, dim_Y, transose_x, transose_y)
# Test case n-dim # Test case n-dim
def generate_compatible_shapes(dim, transpose_X, transpose_Y): def generate_compatible_shapes(dim, transpose_X, transpose_Y):
M = 2 M = 2
...@@ -149,7 +152,7 @@ def generate_compatible_shapes(dim, transpose_X, transpose_Y): ...@@ -149,7 +152,7 @@ def generate_compatible_shapes(dim, transpose_X, transpose_Y):
return shape_X, shape_Y return shape_X, shape_Y
# Test case n-dim # # Test case n-dim
for dim in [4]: for dim in [4]:
for transpose_X in [False, True]: for transpose_X in [False, True]:
for transpose_Y in [False, True]: for transpose_Y in [False, True]:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册