未验证 提交 70183c4b 编写于 作者: H Huihuang Zheng 提交者: GitHub

Remove Old Schedules in Ops (#55391)

Remove old schedules.
上级 db1f2c42
...@@ -60,19 +60,16 @@ std::shared_ptr<OpStrategy> StrategyForBroadcast( ...@@ -60,19 +60,16 @@ std::shared_ptr<OpStrategy> StrategyForBroadcast(
const ir::Tensor &B, const ir::Tensor &B,
const std::string &output_name, const std::string &output_name,
const Expr &axis)) { const Expr &axis)) {
framework::CINNCompute binary_compute([=](lang::Args args, framework::CINNCompute binary_compute(
lang::RetValue *ret) { [=](lang::Args args, lang::RetValue *ret) {
CHECK(!args.empty()) << "The input argument of " << op_name CHECK(!args.empty()) << "The input argument of " << op_name
<< " compute is empty! Please check."; << " compute is empty! Please check.";
CINNValuePack pack_args = args[0]; CINNValuePack pack_args = args[0];
CHECK_GE(pack_args.size(), 2U) CHECK_GE(pack_args.size(), 2U)
<< "at least 2 input tensors for " << op_name << " compute"; << "at least 2 input tensors for " << op_name << " compute";
std::string tensor_name = UniqName(op_name + "_Out");
if (FLAGS_cinn_ir_schedule) {
CHECK_GE(pack_args.size(), 3U) << op_name << " 's input is not enough!"; CHECK_GE(pack_args.size(), 3U) << op_name << " 's input is not enough!";
CHECK(pack_args[2].is_string()); CHECK(pack_args[2].is_string());
tensor_name = pack_args[2].operator std::string(); std::string tensor_name = pack_args[2].operator std::string();
}
Expr A_expr = pack_args[0]; Expr A_expr = pack_args[0];
Expr B_expr = pack_args[1]; Expr B_expr = pack_args[1];
CHECK(A_expr.as_tensor()); CHECK(A_expr.as_tensor());
...@@ -198,12 +195,10 @@ std::shared_ptr<OpStrategy> StrategyForBroadcastTo( ...@@ -198,12 +195,10 @@ std::shared_ptr<OpStrategy> StrategyForBroadcastTo(
CINNValuePack pack_args = args[0]; CINNValuePack pack_args = args[0];
CHECK(!pack_args.empty()) CHECK(!pack_args.empty())
<< "The input tensors of broadcast_to compute is empty! Please check."; << "The input tensors of broadcast_to compute is empty! Please check.";
std::string tensor_name = UniqName("broadcast_to_Out");
if (FLAGS_cinn_ir_schedule) {
CHECK_GE(pack_args.size(), 2U); CHECK_GE(pack_args.size(), 2U);
CHECK(pack_args[1].is_string()); CHECK(pack_args[1].is_string());
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
Expr A_expr = pack_args[0]; Expr A_expr = pack_args[0];
CHECK(A_expr.as_tensor()); CHECK(A_expr.as_tensor());
ir::Tensor A = A_expr.as_tensor_ref(); ir::Tensor A = A_expr.as_tensor_ref();
...@@ -323,12 +318,9 @@ std::shared_ptr<OpStrategy> StrategyForIsClose( ...@@ -323,12 +318,9 @@ std::shared_ptr<OpStrategy> StrategyForIsClose(
CINNValuePack pack_args = args[0]; CINNValuePack pack_args = args[0];
int input_size = pack_args.size(); int input_size = pack_args.size();
std::string tensor_name = UniqName("IsClose_output");
if (FLAGS_cinn_ir_schedule) {
// the last pack argument is the output tensor name // the last pack argument is the output tensor name
tensor_name = pack_args.back().operator std::string(); std::string tensor_name = pack_args.back().operator std::string();
--input_size; --input_size;
}
CHECK_EQ(input_size, 2) CHECK_EQ(input_size, 2)
<< "The input number of isclose should be 2, but here " << "The input number of isclose should be 2, but here "
<< input_size << "! Please check."; << input_size << "! Please check.";
......
...@@ -114,11 +114,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForGatherNd( ...@@ -114,11 +114,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForGatherNd(
VLOG(3) << "x shape: " << utils::Join(tensor_x->shape, ", ") VLOG(3) << "x shape: " << utils::Join(tensor_x->shape, ", ")
<< ", index shape: " << utils::Join(tensor_index->shape, ", ") << ", index shape: " << utils::Join(tensor_index->shape, ", ")
<< ", output_shapes: " << utils::Join(output_shapes[0], ", "); << ", output_shapes: " << utils::Join(output_shapes[0], ", ");
std::string tensor_name = UniqName("GatherNd_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 3U); CHECK_EQ(pack_args.size(), 3U);
tensor_name = pack_args[2].operator std::string(); std::string tensor_name = pack_args[2].operator std::string();
}
ir::Tensor out = GatherNd(tensor_x, tensor_index, tensor_name); ir::Tensor out = GatherNd(tensor_x, tensor_index, tensor_name);
std::vector<CINNValue> res; std::vector<CINNValue> res;
stages->InsertLazily(out); stages->InsertLazily(out);
...@@ -131,7 +128,6 @@ std::shared_ptr<framework::OpStrategy> StrategyForGatherNd( ...@@ -131,7 +128,6 @@ std::shared_ptr<framework::OpStrategy> StrategyForGatherNd(
framework::CINNSchedule gather_nd_schedule([=](lang::Args args, framework::CINNSchedule gather_nd_schedule([=](lang::Args args,
lang::RetValue *ret) { lang::RetValue *ret) {
if (FLAGS_cinn_ir_schedule) {
CHECK(!args.empty()) << "The input argument of gather_nd_schedule is " CHECK(!args.empty()) << "The input argument of gather_nd_schedule is "
"empty! Please check.\n"; "empty! Please check.\n";
common::CINNValuePack arg_pack = args[0]; common::CINNValuePack arg_pack = args[0];
...@@ -154,21 +150,12 @@ std::shared_ptr<framework::OpStrategy> StrategyForGatherNd( ...@@ -154,21 +150,12 @@ std::shared_ptr<framework::OpStrategy> StrategyForGatherNd(
if (target.arch == Target::Arch::NVGPU) { if (target.arch == Target::Arch::NVGPU) {
pe::IRCudaScheduleInjective(ir_sch, output_shapes.front(), target); pe::IRCudaScheduleInjective(ir_sch, output_shapes.front(), target);
} else if (target.arch == Target::Arch::X86) { } else if (target.arch == Target::Arch::X86) {
pe::IRScheduleInjectiveCPU( pe::IRScheduleInjectiveCPU(ir_sch, output_shapes.front(), target, true);
ir_sch, output_shapes.front(), target, true);
} }
} }
std::vector<common::CINNValue> res{ std::vector<common::CINNValue> res{
common::CINNValue(ir_sch.GetModule().GetExprs().at(0))}; common::CINNValue(ir_sch.GetModule().GetExprs().at(0))};
*ret = common::CINNValuePack{res}; *ret = common::CINNValuePack{res};
} else {
CHECK(!args.empty()) << "The input argument of gather_nd_schedule is "
"empty! Please check.\n";
CINNValuePack arg_pack = args[0];
Expr out = arg_pack[0];
CHECK(out.as_tensor());
*ret = arg_pack;
}
}); });
auto strategy = std::make_shared<framework::OpStrategy>(); auto strategy = std::make_shared<framework::OpStrategy>();
......
...@@ -105,12 +105,8 @@ std::shared_ptr<OpStrategy> StrategyForLogicalRightShift( ...@@ -105,12 +105,8 @@ std::shared_ptr<OpStrategy> StrategyForLogicalRightShift(
ir::Tensor A = A_expr.as_tensor_ref(); ir::Tensor A = A_expr.as_tensor_ref();
ir::Tensor B = B_expr.as_tensor_ref(); ir::Tensor B = B_expr.as_tensor_ref();
std::string tensor_name = UniqName("T_LogicalRightShift_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 3U); CHECK_EQ(pack_args.size(), 3U);
tensor_name = pack_args[2].operator std::string(); std::string tensor_name = pack_args[2].operator std::string();
}
auto out = LogicalRightShift(A, B, target, tensor_name); auto out = LogicalRightShift(A, B, target, tensor_name);
auto stages = CreateStages({out}); auto stages = CreateStages({out});
......
...@@ -106,11 +106,9 @@ std::shared_ptr<framework::OpStrategy> StrategyForLookupTable( ...@@ -106,11 +106,9 @@ std::shared_ptr<framework::OpStrategy> StrategyForLookupTable(
VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ")
<< ", B shape: " << utils::Join(tensor_B->shape, ", ") << ", B shape: " << utils::Join(tensor_B->shape, ", ")
<< ", output_shapes: " << utils::Join(output_shapes[0], ", "); << ", output_shapes: " << utils::Join(output_shapes[0], ", ");
std::string tensor_name = UniqName("LookupTable_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 3U); CHECK_EQ(pack_args.size(), 3U);
tensor_name = pack_args[2].operator std::string(); std::string tensor_name = pack_args[2].operator std::string();
}
ir::Tensor out = LookupTable(tensor_A, tensor_B, padding_idx, tensor_name); ir::Tensor out = LookupTable(tensor_A, tensor_B, padding_idx, tensor_name);
std::vector<CINNValue> res; std::vector<CINNValue> res;
stages->InsertLazily(out); stages->InsertLazily(out);
......
...@@ -194,12 +194,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForOneHot( ...@@ -194,12 +194,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForOneHot(
ir::Tensor on_value = on_value_expr.as_tensor_ref(); ir::Tensor on_value = on_value_expr.as_tensor_ref();
ir::Tensor off_value = off_value_expr.as_tensor_ref(); ir::Tensor off_value = off_value_expr.as_tensor_ref();
std::string tensor_name = common::UniqName("T_OneHot_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 4U); CHECK_EQ(pack_args.size(), 4U);
tensor_name = pack_args[3].operator std::string(); std::string tensor_name = pack_args[3].operator std::string();
}
ir::Tensor out = OneHot(indices, ir::Tensor out = OneHot(indices,
on_value, on_value,
......
...@@ -94,13 +94,9 @@ std::shared_ptr<OpStrategy> StrategyForReciprocal( ...@@ -94,13 +94,9 @@ std::shared_ptr<OpStrategy> StrategyForReciprocal(
CHECK(!pack_args.empty()) CHECK(!pack_args.empty())
<< "at least one input tensor for " << op_name << " compute\n"; << "at least one input tensor for " << op_name << " compute\n";
std::string tensor_name = UniqName("Reciprocal_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 2); CHECK_EQ(pack_args.size(), 2);
CHECK(pack_args[1].is_string()); CHECK(pack_args[1].is_string());
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
Expr A = pack_args[0]; Expr A = pack_args[0];
CHECK(A.as_tensor()); CHECK(A.as_tensor());
...@@ -110,10 +106,8 @@ std::shared_ptr<OpStrategy> StrategyForReciprocal( ...@@ -110,10 +106,8 @@ std::shared_ptr<OpStrategy> StrategyForReciprocal(
VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ")
<< ", output_shapes: " << utils::Join(output_shapes[0], ", "); << ", output_shapes: " << utils::Join(output_shapes[0], ", ");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 2U); CHECK_EQ(pack_args.size(), 2U);
tensor_name = pack_args[1].operator std::string(); tensor_name = pack_args[1].operator std::string();
}
ir::Tensor out = Reciprocal(tensor_A, tensor_name); ir::Tensor out = Reciprocal(tensor_A, tensor_name);
std::vector<CINNValue> res; std::vector<CINNValue> res;
......
...@@ -207,12 +207,9 @@ std::shared_ptr<framework::OpStrategy> StrategyForResize( ...@@ -207,12 +207,9 @@ std::shared_ptr<framework::OpStrategy> StrategyForResize(
auto tensor_A = A.as_tensor_ref(); auto tensor_A = A.as_tensor_ref();
VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ")
<< ", output_shapes: " << utils::Join(output_shapes[0], ", "); << ", output_shapes: " << utils::Join(output_shapes[0], ", ");
std::string tensor_name = common::UniqName("T_Resize_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 2U); CHECK_EQ(pack_args.size(), 2U);
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
ir::Tensor out = Resize(tensor_A, target, out_shape, mode, tensor_name); ir::Tensor out = Resize(tensor_A, target, out_shape, mode, tensor_name);
......
...@@ -178,12 +178,9 @@ std::shared_ptr<framework::OpStrategy> StrategyForSort( ...@@ -178,12 +178,9 @@ std::shared_ptr<framework::OpStrategy> StrategyForSort(
auto stages = CreateStages({tensor_A}); auto stages = CreateStages({tensor_A});
VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ")
<< ", output_shapes: " << utils::Join(output_shapes[0], ", "); << ", output_shapes: " << utils::Join(output_shapes[0], ", ");
auto tensor_name = UniqName("Sort_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 2U); CHECK_EQ(pack_args.size(), 2U);
CHECK(pack_args[1].is_string()); CHECK(pack_args[1].is_string());
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
std::vector<ir::Tensor> out = std::vector<ir::Tensor> out =
Sort(tensor_A, target, stages, axis, is_ascend, tensor_name); Sort(tensor_A, target, stages, axis, is_ascend, tensor_name);
stages->InsertLazily(out[0]); stages->InsertLazily(out[0]);
...@@ -195,9 +192,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForSort( ...@@ -195,9 +192,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForSort(
*ret = CINNValuePack{res}; *ret = CINNValuePack{res};
}); });
framework::CINNSchedule sort_schedule([=](lang::Args args, framework::CINNSchedule sort_schedule(
lang::RetValue *ret) { [=](lang::Args args, lang::RetValue *ret) {
if (FLAGS_cinn_ir_schedule) {
CHECK(!args.empty()) CHECK(!args.empty())
<< "The input argument of sort_schedule is empty! Please check.\n"; << "The input argument of sort_schedule is empty! Please check.\n";
common::CINNValuePack arg_pack = args[0]; common::CINNValuePack arg_pack = args[0];
...@@ -213,8 +209,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForSort( ...@@ -213,8 +209,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForSort(
ir::IRSchedule ir_sch(mod_expr); ir::IRSchedule ir_sch(mod_expr);
ir_sch.MergeExprs(); ir_sch.MergeExprs();
auto blocks = ir_sch.GetAllBlocks(); auto blocks = ir_sch.GetAllBlocks();
// TODO(Shixiaowei02): remove external calls, do not use local variables, // TODO(Shixiaowei02): remove external calls, do not use local
// because the size will exceed the limit. // variables, because the size will exceed the limit.
ir_sch.SetBuffer(blocks[0], "local"); ir_sch.SetBuffer(blocks[0], "local");
ir_sch.SetBuffer(blocks[1], "local"); ir_sch.SetBuffer(blocks[1], "local");
...@@ -223,19 +219,12 @@ std::shared_ptr<framework::OpStrategy> StrategyForSort( ...@@ -223,19 +219,12 @@ std::shared_ptr<framework::OpStrategy> StrategyForSort(
1, 1,
std::multiplies<int>()); std::multiplies<int>());
if (prod_size > 1 && target.arch == Target::Arch::X86) { if (prod_size > 1 && target.arch == Target::Arch::X86) {
pe::IRScheduleInjectiveCPU(ir_sch, output_shapes.front(), target, true); pe::IRScheduleInjectiveCPU(
ir_sch, output_shapes.front(), target, true);
} }
std::vector<common::CINNValue> res{ std::vector<common::CINNValue> res{
common::CINNValue(ir_sch.GetModule().GetExprs().at(0))}; common::CINNValue(ir_sch.GetModule().GetExprs().at(0))};
*ret = common::CINNValuePack{res}; *ret = common::CINNValuePack{res};
} else {
CHECK(!args.empty())
<< "The input argument of sort_schedule is empty! Please check.\n";
CINNValuePack arg_pack = args[0];
Expr out = arg_pack[0];
CHECK(out.as_tensor());
*ret = arg_pack;
}
}); });
auto strategy = std::make_shared<framework::OpStrategy>(); auto strategy = std::make_shared<framework::OpStrategy>();
...@@ -271,12 +260,9 @@ std::shared_ptr<framework::OpStrategy> StrategyForArgSort( ...@@ -271,12 +260,9 @@ std::shared_ptr<framework::OpStrategy> StrategyForArgSort(
auto stages = CreateStages({tensor_A}); auto stages = CreateStages({tensor_A});
VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ")
<< ", output_shapes: " << utils::Join(output_shapes[0], ", "); << ", output_shapes: " << utils::Join(output_shapes[0], ", ");
auto tensor_name = UniqName("ArgSort_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 3U); CHECK_EQ(pack_args.size(), 3U);
CHECK(pack_args[1].is_string()); CHECK(pack_args[1].is_string());
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
auto out = ArgSort(tensor_A, target, stages, axis, is_ascend, tensor_name); auto out = ArgSort(tensor_A, target, stages, axis, is_ascend, tensor_name);
std::vector<CINNValue> res; std::vector<CINNValue> res;
stages->InsertLazily(out.at(0)); stages->InsertLazily(out.at(0));
...@@ -291,7 +277,6 @@ std::shared_ptr<framework::OpStrategy> StrategyForArgSort( ...@@ -291,7 +277,6 @@ std::shared_ptr<framework::OpStrategy> StrategyForArgSort(
framework::CINNSchedule argsort_schedule([=](lang::Args args, framework::CINNSchedule argsort_schedule([=](lang::Args args,
lang::RetValue *ret) { lang::RetValue *ret) {
if (FLAGS_cinn_ir_schedule) {
CHECK(!args.empty()) CHECK(!args.empty())
<< "The input argument of argsort_schedule is empty! Please check.\n"; << "The input argument of argsort_schedule is empty! Please check.\n";
common::CINNValuePack arg_pack = args[0]; common::CINNValuePack arg_pack = args[0];
...@@ -322,14 +307,6 @@ std::shared_ptr<framework::OpStrategy> StrategyForArgSort( ...@@ -322,14 +307,6 @@ std::shared_ptr<framework::OpStrategy> StrategyForArgSort(
std::vector<common::CINNValue> res{ std::vector<common::CINNValue> res{
common::CINNValue(ir_sch.GetModule().GetExprs().at(0))}; common::CINNValue(ir_sch.GetModule().GetExprs().at(0))};
*ret = common::CINNValuePack{res}; *ret = common::CINNValuePack{res};
} else {
CHECK(!args.empty())
<< "The input argument of argsort_schedule is empty! Please check.\n";
CINNValuePack arg_pack = args[0];
Expr out = arg_pack[0];
CHECK(out.as_tensor());
*ret = arg_pack;
}
}); });
auto strategy = std::make_shared<framework::OpStrategy>(); auto strategy = std::make_shared<framework::OpStrategy>();
......
...@@ -67,12 +67,9 @@ std::shared_ptr<OpStrategy> StrategyForElementwise( ...@@ -67,12 +67,9 @@ std::shared_ptr<OpStrategy> StrategyForElementwise(
CINNValuePack pack_args = args[0]; CINNValuePack pack_args = args[0];
CHECK_GE(pack_args.size(), 1U) CHECK_GE(pack_args.size(), 1U)
<< "1 input tensor for " << op_name << " compute"; << "1 input tensor for " << op_name << " compute";
std::string tensor_name = UniqName(op_name + "_Out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 2U); CHECK_EQ(pack_args.size(), 2U);
CHECK(pack_args[1].is_string()); CHECK(pack_args[1].is_string());
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
Expr A_expr = pack_args[0]; Expr A_expr = pack_args[0];
CHECK(A_expr.as_tensor()); CHECK(A_expr.as_tensor());
ir::Tensor A = A_expr.as_tensor_ref(); ir::Tensor A = A_expr.as_tensor_ref();
...@@ -158,12 +155,9 @@ std::shared_ptr<OpStrategy> StrategyForScale( ...@@ -158,12 +155,9 @@ std::shared_ptr<OpStrategy> StrategyForScale(
CHECK(A_expr.as_tensor()); CHECK(A_expr.as_tensor());
ir::Tensor A = A_expr.as_tensor_ref(); ir::Tensor A = A_expr.as_tensor_ref();
ir::Tensor out; ir::Tensor out;
std::string tensor_name = UniqName("Scale_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 2); CHECK_EQ(pack_args.size(), 2);
CHECK(pack_args[1].is_string()); CHECK(pack_args[1].is_string());
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
if (bias_after_scale) { if (bias_after_scale) {
out = Compute( out = Compute(
...@@ -242,12 +236,9 @@ std::shared_ptr<OpStrategy> StrategyForConstScalar( ...@@ -242,12 +236,9 @@ std::shared_ptr<OpStrategy> StrategyForConstScalar(
auto scalar = GetScalarExpr(attrs.attr_store.at("value")); auto scalar = GetScalarExpr(attrs.attr_store.at("value"));
auto scalar_type = out_type.at(0); auto scalar_type = out_type.at(0);
CINNValuePack pack_args = args[0]; CINNValuePack pack_args = args[0];
std::string tensor_name = UniqName("const_scalar_Out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 1U); CHECK_EQ(pack_args.size(), 1U);
CHECK(pack_args[0].is_string()); CHECK(pack_args[0].is_string());
tensor_name = pack_args[0].operator std::string(); std::string tensor_name = pack_args[0].operator std::string();
}
auto out = lang::Compute( auto out = lang::Compute(
{Expr(1)}, {Expr(1)},
...@@ -371,12 +362,9 @@ std::shared_ptr<OpStrategy> StrategyForFillConstant( ...@@ -371,12 +362,9 @@ std::shared_ptr<OpStrategy> StrategyForFillConstant(
} }
CINNValuePack arg_pack = args[0]; CINNValuePack arg_pack = args[0];
std::string tensor_name = UniqName("fill_constant_Out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(arg_pack.size(), 1U); CHECK_EQ(arg_pack.size(), 1U);
CHECK(arg_pack[0].is_string()); CHECK(arg_pack[0].is_string());
tensor_name = arg_pack[0].operator std::string(); std::string tensor_name = arg_pack[0].operator std::string();
}
CHECK(!shape.empty()) << "shape attr is empty!"; CHECK(!shape.empty()) << "shape attr is empty!";
auto shape_exprs = ToCinnExprs(shape); auto shape_exprs = ToCinnExprs(shape);
auto out = lang::Compute( auto out = lang::Compute(
...@@ -458,12 +446,9 @@ std::shared_ptr<OpStrategy> StrategyForAssignValue( ...@@ -458,12 +446,9 @@ std::shared_ptr<OpStrategy> StrategyForAssignValue(
const auto &value = attrs.attr_store.at("values"); const auto &value = attrs.attr_store.at("values");
CINNValuePack arg_pack = args[0]; CINNValuePack arg_pack = args[0];
std::string tensor_name = UniqName("T_assign_value_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(arg_pack.size(), 1U); CHECK_EQ(arg_pack.size(), 1U);
CHECK(arg_pack[0].is_string()); CHECK(arg_pack[0].is_string());
tensor_name = arg_pack[0].operator std::string(); std::string tensor_name = arg_pack[0].operator std::string();
}
absl::optional<ir::Tensor> out; absl::optional<ir::Tensor> out;
#define EXPAND_VALUE_TO_TENSOR(TYPE) \ #define EXPAND_VALUE_TO_TENSOR(TYPE) \
...@@ -649,11 +634,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForSqueeze( ...@@ -649,11 +634,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForSqueeze(
VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ")
<< ", output_shapes: " << utils::Join(output_shapes[0], ", "); << ", output_shapes: " << utils::Join(output_shapes[0], ", ");
std::string tensor_name = UniqName("Squeeze_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 2U); CHECK_EQ(pack_args.size(), 2U);
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
ir::Tensor out = pe::Squeeze(tensor_A, axes, tensor_name); ir::Tensor out = pe::Squeeze(tensor_A, axes, tensor_name);
std::vector<CINNValue> res; std::vector<CINNValue> res;
...@@ -729,12 +711,9 @@ std::shared_ptr<OpStrategy> StrategyForExpandDims( ...@@ -729,12 +711,9 @@ std::shared_ptr<OpStrategy> StrategyForExpandDims(
Expr x = input_args[0]; Expr x = input_args[0];
CHECK(x.as_tensor()); CHECK(x.as_tensor());
std::string tensor_name = UniqName("expand_dims_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(input_args.size(), 2U); CHECK_EQ(input_args.size(), 2U);
CHECK(input_args[1].is_string()); CHECK(input_args[1].is_string());
tensor_name = input_args[1].operator std::string(); std::string tensor_name = input_args[1].operator std::string();
}
auto out = auto out =
pe::ExpandDims(x.as_tensor_ref(), axes, output_shapes[0], tensor_name); pe::ExpandDims(x.as_tensor_ref(), axes, output_shapes[0], tensor_name);
...@@ -809,12 +788,9 @@ std::shared_ptr<OpStrategy> StrategyForReshape( ...@@ -809,12 +788,9 @@ std::shared_ptr<OpStrategy> StrategyForReshape(
VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ")
<< ", output_shapes: " << utils::Join(output_shapes[0], ", "); << ", output_shapes: " << utils::Join(output_shapes[0], ", ");
std::string tensor_name = UniqName("Reshape_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 2); CHECK_EQ(pack_args.size(), 2);
CHECK(pack_args[1].is_string()); CHECK(pack_args[1].is_string());
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
ir::Tensor out = pe::Reshape(tensor_A, output_shapes[0], tensor_name); ir::Tensor out = pe::Reshape(tensor_A, output_shapes[0], tensor_name);
std::vector<CINNValue> res; std::vector<CINNValue> res;
...@@ -901,11 +877,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForCast( ...@@ -901,11 +877,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForCast(
auto stages = CreateStages({tensor_A}); auto stages = CreateStages({tensor_A});
VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ")
<< ", output_shapes: " << utils::Join(output_shapes[0], ", "); << ", output_shapes: " << utils::Join(output_shapes[0], ", ");
std::string tensor_name = UniqName("Cast_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 2U); CHECK_EQ(pack_args.size(), 2U);
tensor_name = pack_args[1].operator std::string(); std::string tensor_name = pack_args[1].operator std::string();
}
ir::Tensor out = pe::Cast(tensor_A, out_type[0], tensor_name); ir::Tensor out = pe::Cast(tensor_A, out_type[0], tensor_name);
std::vector<CINNValue> res; std::vector<CINNValue> res;
stages->InsertLazily(out); stages->InsertLazily(out);
...@@ -953,11 +926,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForArange( ...@@ -953,11 +926,8 @@ std::shared_ptr<framework::OpStrategy> StrategyForArange(
<< "The input argument of arange compute is empty! Please check.\n"; << "The input argument of arange compute is empty! Please check.\n";
CINNValuePack pack_args = args[0]; CINNValuePack pack_args = args[0];
std::string tensor_name = common::UniqName("T_Arange_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), 1U); CHECK_EQ(pack_args.size(), 1U);
tensor_name = pack_args[0].operator std::string(); std::string tensor_name = pack_args[0].operator std::string();
}
auto out = pe::Arange(start, stop, step, dtype, tensor_name); auto out = pe::Arange(start, stop, step, dtype, tensor_name);
std::vector<common::CINNValue> res; std::vector<common::CINNValue> res;
......
此差异已折叠。
...@@ -59,7 +59,6 @@ TEST(Operator, Operator_ElementWise_Add_Test0) { ...@@ -59,7 +59,6 @@ TEST(Operator, Operator_ElementWise_Add_Test0) {
std::string func_name = "add1"; std::string func_name = "add1";
Module::Builder builder("module0", target); Module::Builder builder("module0", target);
if (FLAGS_cinn_ir_schedule) {
std::string out_name = "C"; std::string out_name = "C";
common::CINNValuePack cinn_input = common::CINNValuePack cinn_input =
common::CINNValuePack{{common::CINNValue(A), common::CINNValuePack{{common::CINNValue(A),
...@@ -76,23 +75,6 @@ TEST(Operator, Operator_ElementWise_Add_Test0) { ...@@ -76,23 +75,6 @@ TEST(Operator, Operator_ElementWise_Add_Test0) {
builder.AddFunction(func); builder.AddFunction(func);
} }
} else {
common::CINNValuePack cinn_input =
common::CINNValuePack{{common::CINNValue(A), common::CINNValue(B)}};
common::CINNValuePack rets = impl->fcompute(cinn_input);
ASSERT_EQ(rets.size(), 2UL);
rets = impl->fschedule(rets);
ASSERT_EQ(rets.size(), 2UL);
// the last element is a StageMap
for (int i = 0; i < rets->size() - 1; i++) {
Expr temp = rets[i];
inputs.push_back(temp.as_tensor_ref());
}
auto func = Lower("fn_" + func_name, rets.back(), inputs);
LOG(INFO) << "Test Strategy Codegen:\n" << func;
builder.AddFunction(func);
}
auto jit = backends::ExecutionEngine::Create({}); auto jit = backends::ExecutionEngine::Create({});
auto module = builder.Build(); auto module = builder.Build();
jit->Link(module); jit->Link(module);
...@@ -160,7 +142,6 @@ TEST(Operator, Operator_ElementWise_Add_Test1) { ...@@ -160,7 +142,6 @@ TEST(Operator, Operator_ElementWise_Add_Test1) {
std::string func_name = "add2"; std::string func_name = "add2";
Module::Builder builder("module", target); Module::Builder builder("module", target);
if (FLAGS_cinn_ir_schedule) {
std::string out_name = "C"; std::string out_name = "C";
common::CINNValuePack cinn_input = common::CINNValuePack cinn_input =
common::CINNValuePack{{common::CINNValue(A), common::CINNValuePack{{common::CINNValue(A),
...@@ -176,22 +157,6 @@ TEST(Operator, Operator_ElementWise_Add_Test1) { ...@@ -176,22 +157,6 @@ TEST(Operator, Operator_ElementWise_Add_Test1) {
LOG(INFO) << "Test Operator_ElementWise_Add_Test1's Strategy, func is :\n" LOG(INFO) << "Test Operator_ElementWise_Add_Test1's Strategy, func is :\n"
<< func; << func;
} }
} else {
common::CINNValuePack cinn_input =
common::CINNValuePack{{common::CINNValue(A), common::CINNValue(B)}};
common::CINNValuePack rets = impl->fcompute(cinn_input);
ASSERT_EQ(rets.size(), 2UL);
rets = impl->fschedule(rets);
ASSERT_EQ(rets.size(), 2UL);
// the last element is a StageMap
for (int i = 0; i < rets->size() - 1; i++) {
Expr temp = rets[i];
inputs.push_back(temp.as_tensor_ref());
}
auto func = Lower("fn_" + func_name, rets.back(), inputs);
LOG(INFO) << "Test Strategy Codegen:\n" << func;
builder.AddFunction(func);
}
backends::CodeGenCUDA_Dev codegen(target); backends::CodeGenCUDA_Dev codegen(target);
...@@ -225,7 +190,6 @@ TEST(Operator, Operator_BroadcastTo) { ...@@ -225,7 +190,6 @@ TEST(Operator, Operator_BroadcastTo) {
std::string func_name = "broadcast_to"; std::string func_name = "broadcast_to";
if (FLAGS_cinn_ir_schedule) {
std::string out_name = "C"; std::string out_name = "C";
common::CINNValuePack cinn_input = common::CINNValuePack{ common::CINNValuePack cinn_input = common::CINNValuePack{
{common::CINNValue(B), common::CINNValue(out_name)}}; {common::CINNValue(B), common::CINNValue(out_name)}};
...@@ -237,32 +201,13 @@ TEST(Operator, Operator_BroadcastTo) { ...@@ -237,32 +201,13 @@ TEST(Operator, Operator_BroadcastTo) {
for (auto func : funcs) { for (auto func : funcs) {
LOG(INFO) << "Test Operator_BroadcastTo's Strategy, func is :\n" << func; LOG(INFO) << "Test Operator_BroadcastTo's Strategy, func is :\n" << func;
} }
} else {
common::CINNValuePack cinn_input =
common::CINNValuePack{{common::CINNValue(B)}};
common::CINNValuePack rets = impl->fcompute(cinn_input);
ASSERT_EQ(rets.size(), 2UL);
rets = impl->fschedule(rets);
ASSERT_EQ(rets.size(), 2UL);
// the last element is a StageMap
for (int i = 0; i < rets->size() - 1; i++) {
Expr temp = rets[i];
inputs.push_back(temp.as_tensor_ref());
}
auto func = Lower("func" + func_name, rets.back(), inputs);
LOG(INFO) << "Test Operator_BroadcastTo's Strategy, func is :\n" << func;
}
} }
common::CINNValuePack GetComputeResult( common::CINNValuePack GetComputeResult(
const std::shared_ptr<OpImpl> &impl, const std::shared_ptr<OpImpl> &impl,
std::vector<common::CINNValue> &cinn_inputs, // NOLINT std::vector<common::CINNValue> &cinn_inputs, // NOLINT
const std::string &output_name = "") { const std::string &output_name = "") {
if (FLAGS_cinn_ir_schedule) {
cinn_inputs.emplace_back(output_name); cinn_inputs.emplace_back(output_name);
}
return impl->fcompute(common::CINNValuePack{cinn_inputs}); return impl->fcompute(common::CINNValuePack{cinn_inputs});
} }
......
...@@ -21,8 +21,6 @@ ...@@ -21,8 +21,6 @@
#include "paddle/cinn/hlir/pe/schedule.h" #include "paddle/cinn/hlir/pe/schedule.h"
#include "paddle/cinn/ir/ir_schedule.h" #include "paddle/cinn/ir/ir_schedule.h"
DECLARE_bool(cinn_ir_schedule);
namespace cinn { namespace cinn {
namespace hlir { namespace hlir {
...@@ -31,7 +29,6 @@ CINNSchedule GetElementwiseScheduleFunc( ...@@ -31,7 +29,6 @@ CINNSchedule GetElementwiseScheduleFunc(
const Target& target, const Target& target,
bool vectorizable) { bool vectorizable) {
return CINNSchedule([=](lang::Args args, lang::RetValue* ret) { return CINNSchedule([=](lang::Args args, lang::RetValue* ret) {
if (FLAGS_cinn_ir_schedule) {
CHECK(!args.empty()) << "The input argument of ElementwiseSchedule is " CHECK(!args.empty()) << "The input argument of ElementwiseSchedule is "
"empty! Please check.\n"; "empty! Please check.\n";
common::CINNValuePack arg_pack = args[0]; common::CINNValuePack arg_pack = args[0];
...@@ -50,25 +47,6 @@ CINNSchedule GetElementwiseScheduleFunc( ...@@ -50,25 +47,6 @@ CINNSchedule GetElementwiseScheduleFunc(
std::vector<common::CINNValue> res{ std::vector<common::CINNValue> res{
common::CINNValue(ir_sch.GetModule().GetExprs().at(0))}; common::CINNValue(ir_sch.GetModule().GetExprs().at(0))};
*ret = common::CINNValuePack{res}; *ret = common::CINNValuePack{res};
} else {
CHECK(!args.empty()) << "The input argument of ElementwiseSchedule is "
"empty! Please check.\n";
common::CINNValuePack arg_pack = args[0];
Expr out = arg_pack[0];
poly::StageMap stages = arg_pack[1];
CHECK(out.as_tensor());
CHECK_EQ(arg_pack.size(), 2UL);
if (target.arch == Target::Arch::NVGPU) {
pe::CudaScheduleInjective(
stages[out.as_tensor_ref()], output_shapes.front(), target);
} else if (target.arch == Target::Arch::X86) {
pe::ScheduleInjectiveCPU(stages[out.as_tensor_ref()],
output_shapes.front(),
target,
vectorizable);
}
*ret = arg_pack;
}
}); });
} }
...@@ -77,7 +55,6 @@ CINNSchedule GetInjectiveScheduleFunc( ...@@ -77,7 +55,6 @@ CINNSchedule GetInjectiveScheduleFunc(
const Target& target, const Target& target,
bool vectorizable) { bool vectorizable) {
return CINNSchedule([=](lang::Args args, lang::RetValue* ret) { return CINNSchedule([=](lang::Args args, lang::RetValue* ret) {
if (FLAGS_cinn_ir_schedule) {
CHECK(!args.empty()) << "The input argument of InjectiveSchedule is " CHECK(!args.empty()) << "The input argument of InjectiveSchedule is "
"empty! Please check.\n"; "empty! Please check.\n";
common::CINNValuePack arg_pack = args[0]; common::CINNValuePack arg_pack = args[0];
...@@ -102,25 +79,6 @@ CINNSchedule GetInjectiveScheduleFunc( ...@@ -102,25 +79,6 @@ CINNSchedule GetInjectiveScheduleFunc(
std::vector<common::CINNValue> res{ std::vector<common::CINNValue> res{
common::CINNValue(ir_sch.GetModule().GetExprs().at(0))}; common::CINNValue(ir_sch.GetModule().GetExprs().at(0))};
*ret = common::CINNValuePack{res}; *ret = common::CINNValuePack{res};
} else {
CHECK(!args.empty()) << "The input argument of InjectiveSchedule is "
"empty! Please check.\n";
common::CINNValuePack arg_pack = args[0];
Expr out = arg_pack[0];
poly::StageMap stages = arg_pack[1];
CHECK(out.as_tensor());
CHECK_EQ(arg_pack.size(), 2UL);
if (target.arch == Target::Arch::NVGPU) {
pe::CudaScheduleInjective(
stages[out.as_tensor_ref()], output_shapes.front(), target);
} else if (target.arch == Target::Arch::X86) {
pe::ScheduleInjectiveCPU(stages[out.as_tensor_ref()],
output_shapes.front(),
target,
vectorizable);
}
*ret = arg_pack;
}
}); });
} }
......
...@@ -29,8 +29,6 @@ ...@@ -29,8 +29,6 @@
#include "paddle/cinn/ir/ir_schedule.h" #include "paddle/cinn/ir/ir_schedule.h"
#include "paddle/cinn/optim/ir_simplify.h" #include "paddle/cinn/optim/ir_simplify.h"
DECLARE_bool(cinn_ir_schedule);
namespace cinn { namespace cinn {
namespace hlir { namespace hlir {
namespace op { namespace op {
...@@ -115,16 +113,10 @@ std::shared_ptr<OpStrategy> StrategyForReduce( ...@@ -115,16 +113,10 @@ std::shared_ptr<OpStrategy> StrategyForReduce(
CHECK(!args.empty()) << "The input argument of " << op_name CHECK(!args.empty()) << "The input argument of " << op_name
<< " compute is empty! Please check."; << " compute is empty! Please check.";
CINNValuePack arg_packs = args[0]; CINNValuePack arg_packs = args[0];
std::string tensor_name = UniqName(op_name + "_out");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(arg_packs.size(), 2U) CHECK_EQ(arg_packs.size(), 2U)
<< "There should be 2 input args for " << op_name << " compute"; << "There should be 2 input args for " << op_name << " compute";
CHECK(arg_packs[1].is_string()); CHECK(arg_packs[1].is_string());
tensor_name = arg_packs[1].operator std::string(); std::string tensor_name = arg_packs[1].operator std::string();
} else {
CHECK_EQ(arg_packs.size(), 1U)
<< "There should be 1 input args for " << op_name << " compute";
}
Expr x_expr = arg_packs[0]; Expr x_expr = arg_packs[0];
CHECK(x_expr.as_tensor()); CHECK(x_expr.as_tensor());
ir::Tensor x = x_expr.as_tensor_ref(); ir::Tensor x = x_expr.as_tensor_ref();
...@@ -175,12 +167,10 @@ std::shared_ptr<OpStrategy> StrategyForReduce( ...@@ -175,12 +167,10 @@ std::shared_ptr<OpStrategy> StrategyForReduce(
lang::RetValue *ret) { lang::RetValue *ret) {
CHECK(!args.empty()) << "The input argument of " << op_name CHECK(!args.empty()) << "The input argument of " << op_name
<< " schedule is empty! Please check."; << " schedule is empty! Please check.";
CINNValuePack arg_pack = args[0];
if (FLAGS_cinn_ir_schedule) { CINNValuePack arg_pack = args[0];
CHECK_GE(arg_pack.size(), 2UL); CHECK_GE(arg_pack.size(), 2UL);
CHECK_LE(arg_pack.size(), 8UL); CHECK_LE(arg_pack.size(), 8UL);
CINNValuePack arg_pack = args[0];
std::vector<Expr> vec_ast; std::vector<Expr> vec_ast;
std::vector<Expr> vec_tensor; std::vector<Expr> vec_tensor;
for (int i = 0; i < arg_pack.size(); i++) { for (int i = 0; i < arg_pack.size(); i++) {
...@@ -291,8 +281,7 @@ std::shared_ptr<OpStrategy> StrategyForReduce( ...@@ -291,8 +281,7 @@ std::shared_ptr<OpStrategy> StrategyForReduce(
Expr reduce_reshape = vec_tensor[2]; Expr reduce_reshape = vec_tensor[2];
VLOG(3) << "Do IRCudaScheduleBlockShuffleReduce Schedule!"; VLOG(3) << "Do IRCudaScheduleBlockShuffleReduce Schedule!";
pe::IRCudaScheduleBlockShuffleReduce( pe::IRCudaScheduleBlockShuffleReduce(ir_sch,
ir_sch,
reduce_reshape.as_tensor_ref(), reduce_reshape.as_tensor_ref(),
reduce_internal.as_tensor_ref(), reduce_internal.as_tensor_ref(),
reduce_out.as_tensor_ref(), reduce_out.as_tensor_ref(),
...@@ -310,72 +299,6 @@ std::shared_ptr<OpStrategy> StrategyForReduce( ...@@ -310,72 +299,6 @@ std::shared_ptr<OpStrategy> StrategyForReduce(
CINNValue(ir_sch.GetModule().GetExprs().at(0))}; CINNValue(ir_sch.GetModule().GetExprs().at(0))};
*ret = CINNValuePack{res}; *ret = CINNValuePack{res};
} }
} else {
CHECK_GE(arg_pack.size(), 2UL);
CHECK_LE(arg_pack.size(), 5UL);
if (target.arch == Target::Arch::NVGPU) {
if (!WithoutLastDimInReduce(inputs[0]->shape, reduce_axes)) {
if (arg_pack.size() == 3) {
Expr out = arg_pack[0];
Expr tmp_out = arg_pack[1];
poly::StageMap stages = arg_pack.back();
VLOG(3) << "Do CudaBlockReduceInternalSchedule Schedule!";
pe::CudaBlockReduceInternalSchedule(stages,
tmp_out.as_tensor_ref(),
out.as_tensor_ref(),
common::DefaultNVGPUTarget());
} else if (arg_pack.size() == 4) {
Expr out = arg_pack[0];
Expr tmp_out = arg_pack[1];
Expr reduce_tmp_out = arg_pack[2];
poly::StageMap stages = arg_pack.back();
VLOG(3) << "Do CudaBlockReduceSchedule Schedule!";
pe::CudaBlockReduceSchedule(stages,
reduce_tmp_out.as_tensor_ref(),
tmp_out.as_tensor_ref(),
out.as_tensor_ref(),
common::DefaultNVGPUTarget());
} else {
Expr out = arg_pack[0];
Expr tmp_out = arg_pack[1];
Expr reduce_tmp_out = arg_pack[2];
Expr reshape = arg_pack[3];
poly::StageMap stages = arg_pack.back();
VLOG(3) << "Do CudaTwoStepReduceSchedule Schedule!";
pe::CudaTwoStepReduceSchedule(stages,
reshape.as_tensor_ref(),
reduce_tmp_out.as_tensor_ref(),
tmp_out.as_tensor_ref(),
out.as_tensor_ref(),
common::DefaultNVGPUTarget());
}
} else {
if (arg_pack.size() == 2) {
Expr reduce_out = arg_pack[0];
poly::StageMap stages = arg_pack.back();
VLOG(3) << "Do CudaReduceSchedule Schedule!";
pe::CudaReduceSchedule(
stages,
reduce_out.as_tensor_ref(),
inputs[0]->shape.size() - reduce_axes.back() - 1,
target);
} else {
CHECK_EQ(arg_pack.size(), 4) << "args is not equal 4!";
Expr reduce_reshape = arg_pack[2];
Expr reduce_internal = arg_pack[1];
Expr reduce_out = arg_pack[0];
poly::StageMap stages = arg_pack.back();
VLOG(3) << "Do CudaBlockShuffleReduceSchedule Schedule!";
pe::CudaBlockShuffleReduceSchedule(stages,
reduce_reshape.as_tensor_ref(),
reduce_internal.as_tensor_ref(),
reduce_out.as_tensor_ref(),
target);
}
}
}
*ret = arg_pack;
}
}); });
auto strategy = std::make_shared<framework::OpStrategy>(); auto strategy = std::make_shared<framework::OpStrategy>();
......
...@@ -73,12 +73,9 @@ std::shared_ptr<OpStrategy> StrategyForMatMul( ...@@ -73,12 +73,9 @@ std::shared_ptr<OpStrategy> StrategyForMatMul(
CHECK(A.as_tensor()); CHECK(A.as_tensor());
CHECK(B.as_tensor()); CHECK(B.as_tensor());
std::string tensor_name = UniqName("MatMul");
if (FLAGS_cinn_ir_schedule) {
CHECK_GE(pack_args.size(), 3); CHECK_GE(pack_args.size(), 3);
CHECK(pack_args[2].is_string()); CHECK(pack_args[2].is_string());
tensor_name = pack_args[2].operator std::string(); std::string tensor_name = pack_args[2].operator std::string();
}
auto tensor_A = A.as_tensor_ref(); auto tensor_A = A.as_tensor_ref();
auto tensor_B = B.as_tensor_ref(); auto tensor_B = B.as_tensor_ref();
...@@ -130,32 +127,9 @@ std::shared_ptr<OpStrategy> StrategyForMatMul( ...@@ -130,32 +127,9 @@ std::shared_ptr<OpStrategy> StrategyForMatMul(
CHECK(!args.empty()) CHECK(!args.empty())
<< "The input argument of matmul schedule is empty! Please check.\n"; << "The input argument of matmul schedule is empty! Please check.\n";
CINNValuePack arg_pack = args[0]; CINNValuePack arg_pack = args[0];
if (FLAGS_cinn_ir_schedule) {
std::vector<CINNValue> results = std::vector<CINNValue> results =
pe::IRCudaScheduleMatMul(arg_pack, output_shape, target); pe::IRCudaScheduleMatMul(arg_pack, output_shape, target);
*ret = CINNValuePack({results}); *ret = CINNValuePack({results});
} else {
CHECK(arg_pack.size() == 2UL || arg_pack.size() == 3UL);
poly::StageMap stages = arg_pack.back();
if (target.arch == Target::Arch::NVGPU) {
Expr out = arg_pack[0];
CHECK(out.as_tensor());
pe::MatmulScheduleCUDA(stages, out.as_tensor_ref(), target);
} else if (target.arch == Target::Arch::X86) {
#ifdef CINN_WITH_MKL_CBLAS
CHECK_EQ(arg_pack.size(), 3UL);
#else
CHECK_EQ(arg_pack.size(), 3UL);
Expr out = arg_pack[0];
Expr packedB = arg_pack[1];
CHECK(packedB.as_tensor());
CHECK(out.as_tensor());
pe::MatmulScheduleCPU(
stages, out.as_tensor_ref(), packedB.as_tensor_ref(), target);
#endif
}
*ret = arg_pack;
}
}); });
auto strategy = std::make_shared<framework::OpStrategy>(); auto strategy = std::make_shared<framework::OpStrategy>();
...@@ -262,17 +236,11 @@ std::shared_ptr<OpStrategy> StrategyForSplit( ...@@ -262,17 +236,11 @@ std::shared_ptr<OpStrategy> StrategyForSplit(
ir::Tensor A = A_expr.as_tensor_ref(); ir::Tensor A = A_expr.as_tensor_ref();
std::vector<std::string> tensor_names; std::vector<std::string> tensor_names;
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(pack_args.size(), output_shapes.size() + 1); CHECK_EQ(pack_args.size(), output_shapes.size() + 1);
for (int idx = 1; idx < pack_args.size(); ++idx) { for (int idx = 1; idx < pack_args.size(); ++idx) {
CHECK(pack_args[idx].is_string()); CHECK(pack_args[idx].is_string());
tensor_names.push_back(pack_args[idx].operator std::string()); tensor_names.push_back(pack_args[idx].operator std::string());
} }
} else {
for (int idx = 0; idx < output_shapes.size(); ++idx) {
tensor_names.push_back(UniqName("T_Split_Out"));
}
}
auto out = pe::Split(A, axis, output_shapes, tensor_names); auto out = pe::Split(A, axis, output_shapes, tensor_names);
auto stages = CreateStages(out); auto stages = CreateStages(out);
...@@ -285,9 +253,8 @@ std::shared_ptr<OpStrategy> StrategyForSplit( ...@@ -285,9 +253,8 @@ std::shared_ptr<OpStrategy> StrategyForSplit(
*ret = CINNValuePack{res}; *ret = CINNValuePack{res};
}); });
framework::CINNSchedule split_schedule([=](lang::Args args, framework::CINNSchedule split_schedule(
lang::RetValue *ret) { [=](lang::Args args, lang::RetValue *ret) {
if (FLAGS_cinn_ir_schedule) {
CHECK(!args.empty()) CHECK(!args.empty())
<< "The input argument of split schedule is empty! Please check."; << "The input argument of split schedule is empty! Please check.";
CINNValuePack arg_pack = args[0]; CINNValuePack arg_pack = args[0];
...@@ -306,16 +273,6 @@ std::shared_ptr<OpStrategy> StrategyForSplit( ...@@ -306,16 +273,6 @@ std::shared_ptr<OpStrategy> StrategyForSplit(
std::vector<CINNValue> res{ std::vector<CINNValue> res{
CINNValue(ir_sch.GetModule().GetExprs().at(0))}; CINNValue(ir_sch.GetModule().GetExprs().at(0))};
*ret = CINNValuePack{res}; *ret = CINNValuePack{res};
} else {
CHECK(!args.empty())
<< "The input arguments of split schedule is empty! Please check.";
CINNValuePack arg_pack = args[0];
CHECK_GE(arg_pack.size(), 2UL)
<< "The input tensor's size of split schedule is " << arg_pack.size()
<< "and it should be greater equal to 2! Please check.";
pe::CudaSplitSchedule(&arg_pack, output_shapes, axis, target);
*ret = arg_pack;
}
}); });
auto strategy = std::make_shared<framework::OpStrategy>(); auto strategy = std::make_shared<framework::OpStrategy>();
...@@ -468,8 +425,7 @@ std::shared_ptr<OpStrategy> StrategyForConcat( ...@@ -468,8 +425,7 @@ std::shared_ptr<OpStrategy> StrategyForConcat(
CHECK(!out_type.empty()) CHECK(!out_type.empty())
<< "Output type of Concat is empty! Please check.\n"; << "Output type of Concat is empty! Please check.\n";
CINNValuePack pack_args = args[0]; CINNValuePack pack_args = args[0];
int input_size = int input_size = pack_args.size() - 1;
FLAGS_cinn_ir_schedule ? pack_args.size() - 1 : pack_args.size();
CHECK_GE(input_size, 1UL) CHECK_GE(input_size, 1UL)
<< "at least 2 input tensors for Concat compute\n"; << "at least 2 input tensors for Concat compute\n";
CHECK(!output_shapes.empty()); CHECK(!output_shapes.empty());
...@@ -485,11 +441,8 @@ std::shared_ptr<OpStrategy> StrategyForConcat( ...@@ -485,11 +441,8 @@ std::shared_ptr<OpStrategy> StrategyForConcat(
input_tensors.push_back(tensor.as_tensor_ref()); input_tensors.push_back(tensor.as_tensor_ref());
} }
std::string tensor_name = UniqName("Concat_output");
if (FLAGS_cinn_ir_schedule) {
CHECK(pack_args[input_size].is_string()); CHECK(pack_args[input_size].is_string());
tensor_name = pack_args[input_size].operator std::string(); std::string tensor_name = pack_args[input_size].operator std::string();
}
auto stages = CreateStages(input_tensors); auto stages = CreateStages(input_tensors);
auto out = pe::Concat(input_tensors, axis, tensor_name); auto out = pe::Concat(input_tensors, axis, tensor_name);
...@@ -612,11 +565,8 @@ std::shared_ptr<OpStrategy> StrategyForMul( ...@@ -612,11 +565,8 @@ std::shared_ptr<OpStrategy> StrategyForMul(
auto new_B = B_tensor->Reshape(new_shape_B_e, stages); auto new_B = B_tensor->Reshape(new_shape_B_e, stages);
std::vector<ir::Tensor> out; std::vector<ir::Tensor> out;
std::string tensor_name = UniqName("Mul_output");
if (FLAGS_cinn_ir_schedule) {
CHECK(pack_args.back().is_string()); CHECK(pack_args.back().is_string());
tensor_name = pack_args.back().operator std::string(); std::string tensor_name = pack_args.back().operator std::string();
}
if (target.arch == Target::Arch::X86) { if (target.arch == Target::Arch::X86) {
#ifdef CINN_WITH_MKL_CBLAS #ifdef CINN_WITH_MKL_CBLAS
...@@ -647,32 +597,9 @@ std::shared_ptr<OpStrategy> StrategyForMul( ...@@ -647,32 +597,9 @@ std::shared_ptr<OpStrategy> StrategyForMul(
CHECK(!args.empty()) CHECK(!args.empty())
<< "The input argument of matmul schedule is empty! Please check.\n"; << "The input argument of matmul schedule is empty! Please check.\n";
CINNValuePack arg_pack = args[0]; CINNValuePack arg_pack = args[0];
if (FLAGS_cinn_ir_schedule) {
std::vector<CINNValue> results = std::vector<CINNValue> results =
pe::IRCudaScheduleMatMul(arg_pack, output_shape, target); pe::IRCudaScheduleMatMul(arg_pack, output_shape, target);
*ret = CINNValuePack({results}); *ret = CINNValuePack({results});
} else {
CHECK(arg_pack.size() == 2UL || arg_pack.size() == 3UL);
poly::StageMap stages = arg_pack.back();
if (target.arch == Target::Arch::NVGPU) {
Expr out = arg_pack[0];
CHECK(out.as_tensor());
pe::MatmulScheduleCUDA(stages, out.as_tensor_ref(), target);
} else if (target.arch == Target::Arch::X86) {
#ifdef CINN_WITH_MKL_CBLAS
CHECK_EQ(arg_pack.size(), 3UL);
#else
CHECK_EQ(arg_pack.size(), 3UL);
Expr out = arg_pack[0];
Expr packedB = arg_pack[1];
CHECK(packedB.as_tensor());
CHECK(out.as_tensor());
pe::MatmulScheduleCPU(
stages, out.as_tensor_ref(), packedB.as_tensor_ref(), target);
#endif
}
*ret = arg_pack;
}
}); });
auto strategy = std::make_shared<framework::OpStrategy>(); auto strategy = std::make_shared<framework::OpStrategy>();
...@@ -780,12 +707,9 @@ std::shared_ptr<OpStrategy> StrategyForCublasGemm( ...@@ -780,12 +707,9 @@ std::shared_ptr<OpStrategy> StrategyForCublasGemm(
// dummy gemm computation, which will be replaced by // dummy gemm computation, which will be replaced by
// cinn_gpu_cublas_gemm in the GemmRewriter pass. // cinn_gpu_cublas_gemm in the GemmRewriter pass.
std::string tensor_name = UniqName("cublas_gemm_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(input_args.size(), 4); CHECK_EQ(input_args.size(), 4);
CHECK(input_args[3].is_string()); CHECK(input_args[3].is_string());
tensor_name = input_args[3].operator std::string(); std::string tensor_name = input_args[3].operator std::string();
}
auto out = pe::Identity(bias_tensor, tensor_name).front(); auto out = pe::Identity(bias_tensor, tensor_name).front();
auto stages = CreateStages( auto stages = CreateStages(
{lhs.as_tensor_ref(), rhs.as_tensor_ref(), bias_tensor}); {lhs.as_tensor_ref(), rhs.as_tensor_ref(), bias_tensor});
...@@ -849,12 +773,9 @@ std::shared_ptr<OpStrategy> StrategyForLayoutTransform( ...@@ -849,12 +773,9 @@ std::shared_ptr<OpStrategy> StrategyForLayoutTransform(
Expr A = input_args[0]; Expr A = input_args[0];
CHECK(A.as_tensor()); CHECK(A.as_tensor());
std::string tensor_name = UniqName("layout_transform_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(input_args.size(), 2); CHECK_EQ(input_args.size(), 2);
CHECK(input_args[1].is_string()); CHECK(input_args[1].is_string());
tensor_name = input_args[1].operator std::string(); std::string tensor_name = input_args[1].operator std::string();
}
auto out = pe::LayoutTransform( auto out = pe::LayoutTransform(
A.as_tensor_ref(), src_layout, dst_layout, tensor_name); A.as_tensor_ref(), src_layout, dst_layout, tensor_name);
...@@ -865,9 +786,8 @@ std::shared_ptr<OpStrategy> StrategyForLayoutTransform( ...@@ -865,9 +786,8 @@ std::shared_ptr<OpStrategy> StrategyForLayoutTransform(
*ret = CINNValuePack{res}; *ret = CINNValuePack{res};
}); });
framework::CINNSchedule layout_transform_schedule( framework::CINNSchedule layout_transform_schedule([=](lang::Args args,
[=](lang::Args args, lang::RetValue *ret) { lang::RetValue *ret) {
if (FLAGS_cinn_ir_schedule) {
CHECK(!args.empty()) << "The input argument of CublasGemm schedule " CHECK(!args.empty()) << "The input argument of CublasGemm schedule "
"is empty! Please check."; "is empty! Please check.";
CINNValuePack arg_pack = args[0]; CINNValuePack arg_pack = args[0];
...@@ -888,29 +808,8 @@ std::shared_ptr<OpStrategy> StrategyForLayoutTransform( ...@@ -888,29 +808,8 @@ std::shared_ptr<OpStrategy> StrategyForLayoutTransform(
} else { } else {
CINN_NOT_IMPLEMENTED CINN_NOT_IMPLEMENTED
} }
std::vector<CINNValue> res{ std::vector<CINNValue> res{CINNValue(ir_sch.GetModule().GetExprs().at(0))};
CINNValue(ir_sch.GetModule().GetExprs().at(0))};
*ret = CINNValuePack{res}; *ret = CINNValuePack{res};
} else {
CHECK(!args.empty()) << "The input argument of layout_transform "
"schedule is empty! Please check.\n";
CINNValuePack arg_pack = args[0];
CHECK_EQ(arg_pack.size(), 2UL);
Expr out = arg_pack[0];
poly::StageMap stages = arg_pack[1];
CHECK(out.as_tensor());
auto tensor_out = out.as_tensor_ref();
std::vector<int> out_shape;
for (auto shape : tensor_out->shape) {
out_shape.push_back(shape.as_int32());
}
if (target.arch == Target::Arch::X86) {
pe::ScheduleInjectiveCPU(stages[tensor_out], out_shape, target);
} else {
CINN_NOT_IMPLEMENTED
}
*ret = arg_pack;
}
}); });
auto strategy = std::make_shared<framework::OpStrategy>(); auto strategy = std::make_shared<framework::OpStrategy>();
...@@ -996,12 +895,9 @@ std::shared_ptr<OpStrategy> StrategyForReverse( ...@@ -996,12 +895,9 @@ std::shared_ptr<OpStrategy> StrategyForReverse(
Expr A = input_args[0]; Expr A = input_args[0];
CHECK(A.as_tensor()); CHECK(A.as_tensor());
std::string tensor_name = UniqName("Reverse_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(input_args.size(), 2); CHECK_EQ(input_args.size(), 2);
CHECK(input_args[1].is_string()); CHECK(input_args[1].is_string());
tensor_name = input_args[1].operator std::string(); std::string tensor_name = input_args[1].operator std::string();
}
auto out = pe::Reverse(A.as_tensor_ref(), axis, tensor_name); auto out = pe::Reverse(A.as_tensor_ref(), axis, tensor_name);
auto stages = CreateStages({A.as_tensor_ref(), out}); auto stages = CreateStages({A.as_tensor_ref(), out});
...@@ -1113,12 +1009,9 @@ std::shared_ptr<OpStrategy> StrategyForTranspose( ...@@ -1113,12 +1009,9 @@ std::shared_ptr<OpStrategy> StrategyForTranspose(
<< "at least one input tensor for transpose compute\n"; << "at least one input tensor for transpose compute\n";
Expr A = input_args[0]; Expr A = input_args[0];
CHECK(A.as_tensor()); CHECK(A.as_tensor());
std::string tensor_name = UniqName("Transpose_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(input_args.size(), 2); CHECK_EQ(input_args.size(), 2);
CHECK(input_args[1].is_string()); CHECK(input_args[1].is_string());
tensor_name = input_args[1].operator std::string(); std::string tensor_name = input_args[1].operator std::string();
}
auto out = pe::Transpose(A.as_tensor_ref(), axis, tensor_name); auto out = pe::Transpose(A.as_tensor_ref(), axis, tensor_name);
auto stages = CreateStages({out}); auto stages = CreateStages({out});
...@@ -1236,12 +1129,9 @@ std::shared_ptr<OpStrategy> StrategyForGather( ...@@ -1236,12 +1129,9 @@ std::shared_ptr<OpStrategy> StrategyForGather(
Expr index = input_args[1]; Expr index = input_args[1];
CHECK(index.as_tensor()); CHECK(index.as_tensor());
std::string tensor_name = UniqName("gather_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(input_args.size(), 3U); CHECK_EQ(input_args.size(), 3U);
CHECK(input_args[2].is_string()); CHECK(input_args[2].is_string());
tensor_name = input_args[2].operator std::string(); std::string tensor_name = input_args[2].operator std::string();
}
auto out = pe::Gather(x.as_tensor_ref(), auto out = pe::Gather(x.as_tensor_ref(),
index.as_tensor_ref(), index.as_tensor_ref(),
...@@ -1335,12 +1225,9 @@ std::shared_ptr<OpStrategy> StrategyForScatterAssign( ...@@ -1335,12 +1225,9 @@ std::shared_ptr<OpStrategy> StrategyForScatterAssign(
auto stages = CreateStages({tensor_input, tensor_updates, tensor_index}); auto stages = CreateStages({tensor_input, tensor_updates, tensor_index});
std::string tensor_name = UniqName("scatter_assign_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(arg_pack.size(), 4U); CHECK_EQ(arg_pack.size(), 4U);
CHECK(arg_pack[3].is_string()); CHECK(arg_pack[3].is_string());
tensor_name = arg_pack[3].operator std::string(); std::string tensor_name = arg_pack[3].operator std::string();
}
auto out = pe::ScatterAssign( auto out = pe::ScatterAssign(
tensor_input, tensor_updates, tensor_index, target, axis, tensor_name); tensor_input, tensor_updates, tensor_index, target, axis, tensor_name);
...@@ -1462,12 +1349,9 @@ std::shared_ptr<OpStrategy> StrategyForScatterAdd( ...@@ -1462,12 +1349,9 @@ std::shared_ptr<OpStrategy> StrategyForScatterAdd(
auto stages = CreateStages({tensor_input, tensor_updates, tensor_index}); auto stages = CreateStages({tensor_input, tensor_updates, tensor_index});
std::string tensor_name = UniqName("scatter_add_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(arg_pack.size(), 4U); CHECK_EQ(arg_pack.size(), 4U);
CHECK(arg_pack[3].is_string()); CHECK(arg_pack[3].is_string());
tensor_name = arg_pack[3].operator std::string(); std::string tensor_name = arg_pack[3].operator std::string();
}
auto out = pe::ScatterAdd( auto out = pe::ScatterAdd(
tensor_input, tensor_updates, tensor_index, target, axis, tensor_name); tensor_input, tensor_updates, tensor_index, target, axis, tensor_name);
...@@ -1617,12 +1501,9 @@ std::shared_ptr<OpStrategy> StrategyForSlice( ...@@ -1617,12 +1501,9 @@ std::shared_ptr<OpStrategy> StrategyForSlice(
CHECK(A_expr.as_tensor()); CHECK(A_expr.as_tensor());
ir::Tensor A = A_expr.as_tensor_ref(); ir::Tensor A = A_expr.as_tensor_ref();
std::string tensor_name = UniqName("Slice_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(arg_pack.size(), 2U); CHECK_EQ(arg_pack.size(), 2U);
CHECK(arg_pack[1].is_string()); CHECK(arg_pack[1].is_string());
tensor_name = arg_pack[1].operator std::string(); std::string tensor_name = arg_pack[1].operator std::string();
}
auto out = pe::Slice( auto out = pe::Slice(
A, starts, axes, strides, decrease_axis, output_shape, tensor_name); A, starts, axes, strides, decrease_axis, output_shape, tensor_name);
...@@ -1854,12 +1735,9 @@ std::shared_ptr<OpStrategy> StrategyForSliceAssign( ...@@ -1854,12 +1735,9 @@ std::shared_ptr<OpStrategy> StrategyForSliceAssign(
Expr assign = arg_pack[1]; Expr assign = arg_pack[1];
CHECK(assign.as_tensor()); CHECK(assign.as_tensor());
std::string tensor_name = UniqName("slice_assign_output");
if (FLAGS_cinn_ir_schedule) {
CHECK_EQ(arg_pack.size(), 3U); CHECK_EQ(arg_pack.size(), 3U);
CHECK(arg_pack[2].is_string()); CHECK(arg_pack[2].is_string());
tensor_name = arg_pack[2].operator std::string(); std::string tensor_name = arg_pack[2].operator std::string();
}
auto out = pe::SliceAssign(input.as_tensor_ref(), auto out = pe::SliceAssign(input.as_tensor_ref(),
assign.as_tensor_ref(), assign.as_tensor_ref(),
......
...@@ -86,7 +86,6 @@ TEST(SliceAssign, SliceAssign_Op) { ...@@ -86,7 +86,6 @@ TEST(SliceAssign, SliceAssign_Op) {
std::string func_name = "slice_assign"; std::string func_name = "slice_assign";
if (FLAGS_cinn_ir_schedule) {
std::string out_name = "output"; std::string out_name = "output";
common::CINNValuePack cinn_input = common::CINNValuePack cinn_input =
common::CINNValuePack{{common::CINNValue(input.tensor()), common::CINNValuePack{{common::CINNValue(input.tensor()),
...@@ -100,27 +99,6 @@ TEST(SliceAssign, SliceAssign_Op) { ...@@ -100,27 +99,6 @@ TEST(SliceAssign, SliceAssign_Op) {
for (auto func : funcs) { for (auto func : funcs) {
LOG(INFO) << "Test Operator_BroadcastTo's Strategy, func is :\n" << func; LOG(INFO) << "Test Operator_BroadcastTo's Strategy, func is :\n" << func;
} }
} else {
common::CINNValuePack cinn_input =
common::CINNValuePack{{common::CINNValue(input.tensor()),
common::CINNValue(assign.tensor())}};
common::CINNValuePack rets = impl->fcompute(cinn_input);
rets = impl->fschedule(rets);
// the last element is a StageMap
for (int i = 0; i < rets->size() - 1; i++) {
Expr temp = rets[i];
if (!temp.as_tensor_ref()->buffer.defined()) {
inputs.push_back(temp.as_tensor_ref());
}
}
auto func = lang::LowerVec(
"slice_assign", rets.back(), inputs, {}, {}, nullptr, target);
for (auto& f : func) {
LOG(INFO) << "Test Strategy Codegen:\n" << f;
}
}
} }
} // namespace framework } // namespace framework
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册