未验证 提交 6fb2958e 编写于 作者: Z zhoutianzi666 提交者: GitHub

[Paddle-TRT] Shape sum fix scale (#44394)

* shape sum

* add shape, sum trt layer
上级 d5f0ed4b
......@@ -2080,6 +2080,8 @@ USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
USE_TRT_CONVERTER(fill_constant)
USE_TRT_CONVERTER(fused_token_prune)
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
......
......@@ -69,6 +69,8 @@ list(
top_k_op.cc
squeeze2_op.cc
unsqueeze2_op.cc
sum_op.cc
shape_op.cc
fill_constant_op.cc
fused_token_prune_op.cc)
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class ShapeOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(4) << "convert a fluid shape op to tensorrt shape layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);
nvinfer1::ILayer* layer = TRT_ENGINE_ADD_LAYER(engine_, Shape, *input);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "shape", {output_name}, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(shape, ShapeOpConverter);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class SumOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(4) << "convert a fluid sum op to tensorrt sum layer";
framework::OpDesc op_desc(op, nullptr);
nvinfer1::ILayer* layer = nullptr;
// Declare the first input
auto* sum_tmp = engine_->GetITensor(op_desc.Input("X")[0]);
if (op_desc.Input("X").size() == 1) {
layer = TRT_ENGINE_ADD_LAYER(engine_, Identity, *sum_tmp);
} else {
for (size_t i = 1; i < op_desc.Input("X").size(); i++) {
auto* input_i = engine_->GetITensor(op_desc.Input("X")[i]);
layer = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*input_i,
*sum_tmp,
nvinfer1::ElementWiseOperation::kSUM);
sum_tmp = layer->getOutput(0);
}
}
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "sum", {output_name}, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(sum, SumOpConverter);
......@@ -170,6 +170,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"recover_padding",
"remove_padding",
"fill_constant",
"sum",
"shape",
"squeeze2",
"unsqueeze2"};
std::unordered_set<std::string> teller_set{
......@@ -276,6 +278,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"recover_padding",
"remove_padding",
"fill_constant",
"sum",
"shape",
"squeeze2",
"unsqueeze2",
"fused_token_prune"};
......@@ -1208,6 +1212,11 @@ bool OpTeller::Tell(const framework::ir::Node* node,
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
auto dtype = x_var_desc->GetDataType();
// At present, only support float32 or float16 into trt.
if (!(dtype == 5 || dtype == 4)) {
return false;
}
if (!with_dynamic_shape && x_shape.size() == 1) {
VLOG(3) << "Scale op does not support 1-dimensional input in tensorrt";
return false;
......@@ -1361,6 +1370,14 @@ bool OpTeller::Tell(const framework::ir::Node* node,
return false;
}
}
// remember that 1D input in static shape mode is filtered at the beginning
if (op_type == "sum") {
return true;
}
if (op_type == "shape" && !with_dynamic_shape) {
return false;
}
if (op_type == "fused_embedding_eltwise_layernorm") {
if (!with_dynamic_shape) {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
class TrtConvertSumTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1(batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)
for dims in [1, 2, 3, 4]:
for batch in [1, 4]:
self.dims = dims
ops_config = [{
"op_type": "shape",
"op_inputs": {
"Input": ["input1"]
},
"op_outputs": {
"Out": ["output"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input1":
TensorConfig(data_gen=partial(generate_input1, batch))
},
outputs=["output"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape():
if self.dims == 4:
self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24, 24]}
self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48, 48]}
self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24, 24]}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24]}
self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48]}
self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"input1": [1, 24]}
self.dynamic_shape.max_input_shape = {"input1": [4, 48]}
self.dynamic_shape.opt_input_shape = {"input1": [1, 24]}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {"input1": [24]}
self.dynamic_shape.max_input_shape = {"input1": [48]}
self.dynamic_shape.opt_input_shape = {
"input1": [24],
}
def generate_trt_nodes_num(dynamic_shape):
if (not dynamic_shape):
return 0, 3
return 1, 2
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5
# for dynamic_shape
generate_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
class TrtConvertSumTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1(batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)
def generate_input2(batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)
def generate_input3(batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)
for dims in [1, 2, 3, 4]:
for batch in [1, 4]:
self.dims = dims
ops_config = [{
"op_type": "sum",
"op_inputs": {
"X": ["input1", "input2", "input3"]
},
"op_outputs": {
"Out": ["output"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input1":
TensorConfig(data_gen=partial(generate_input1, batch)),
"input2":
TensorConfig(data_gen=partial(generate_input2, batch)),
"input3":
TensorConfig(data_gen=partial(generate_input3, batch))
},
outputs=["output"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape():
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"input1": [1, 3, 24, 24],
"input2": [1, 3, 24, 24],
"input3": [1, 3, 24, 24]
}
self.dynamic_shape.max_input_shape = {
"input1": [4, 3, 48, 48],
"input2": [4, 3, 48, 48],
"input3": [4, 3, 48, 48]
}
self.dynamic_shape.opt_input_shape = {
"input1": [1, 3, 24, 24],
"input2": [1, 3, 24, 24],
"input3": [1, 3, 24, 24]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"input1": [1, 3, 24],
"input2": [1, 3, 24],
"input3": [1, 3, 24]
}
self.dynamic_shape.max_input_shape = {
"input1": [4, 3, 48],
"input2": [4, 3, 48],
"input3": [4, 3, 48]
}
self.dynamic_shape.opt_input_shape = {
"input1": [1, 3, 24],
"input2": [1, 3, 24],
"input3": [1, 3, 24]
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"input1": [1, 24],
"input2": [1, 24],
"input3": [1, 24]
}
self.dynamic_shape.max_input_shape = {
"input1": [4, 48],
"input2": [4, 48],
"input3": [4, 48]
}
self.dynamic_shape.opt_input_shape = {
"input1": [1, 24],
"input2": [1, 24],
"input3": [1, 24]
}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {
"input1": [24],
"input2": [24],
"input3": [24]
}
self.dynamic_shape.max_input_shape = {
"input1": [48],
"input2": [48],
"input3": [48]
}
self.dynamic_shape.opt_input_shape = {
"input1": [24],
"input2": [24],
"input3": [24]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(dynamic_shape):
if (self.dims == 1 and not dynamic_shape):
return 0, 5
return 1, 4
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5
# for dynamic_shape
generate_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
def test(self):
self.run_test()
# special case when sum having olny one input
class TrtConvertSumTest1(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1(batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)
for dims in [1, 2, 3, 4]:
for batch in [1, 4]:
self.dims = dims
ops_config = [{
"op_type": "sum",
"op_inputs": {
"X": ["input1"]
},
"op_outputs": {
"Out": ["output"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input1":
TensorConfig(data_gen=partial(generate_input1, batch)),
},
outputs=["output"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape():
if self.dims == 4:
self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24, 24]}
self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48, 48]}
self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24, 24]}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24]}
self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48]}
self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"input1": [1, 24],
}
self.dynamic_shape.max_input_shape = {
"input1": [4, 48],
}
self.dynamic_shape.opt_input_shape = {
"input1": [1, 24],
}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {
"input1": [24],
}
self.dynamic_shape.max_input_shape = {
"input1": [48],
}
self.dynamic_shape.opt_input_shape = {
"input1": [24],
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(dynamic_shape):
if (self.dims == 1 and not dynamic_shape):
return 0, 3
return 1, 2
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5
# for dynamic_shape
generate_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册