未验证 提交 6f9e64d4 编写于 作者: P Pei Yang 提交者: GitHub

refine en api doc of [shape, scale, split, selu, soft_relu, scatter],...

refine en api doc of [shape, scale, split, selu, soft_relu, scatter], test=develop, test=document_fix (#20264)
上级 5c649d9a
...@@ -168,7 +168,7 @@ paddle.fluid.layers.sequence_first_step (ArgSpec(args=['input'], varargs=None, k ...@@ -168,7 +168,7 @@ paddle.fluid.layers.sequence_first_step (ArgSpec(args=['input'], varargs=None, k
paddle.fluid.layers.sequence_last_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '34372f58331247749e8b0a1663cf233b')) paddle.fluid.layers.sequence_last_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '34372f58331247749e8b0a1663cf233b'))
paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '39fbc5437be389f6c0c769f82fc1fba2')) paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '39fbc5437be389f6c0c769f82fc1fba2'))
paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', '392dd4bad607fd853f71fec71801044f')) paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', '392dd4bad607fd853f71fec71801044f'))
paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '78cf3a7323d1a7697658242e13f63759')) paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '64073050d3f172d71ace73d7bbb4168e'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'input_length', 'padding_value', 'name'], varargs=None, keywords=None, defaults=(None, 0, None)), ('document', '31e0cbec2898efae95853034adadfe2b')) paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'input_length', 'padding_value', 'name'], varargs=None, keywords=None, defaults=(None, 0, None)), ('document', '31e0cbec2898efae95853034adadfe2b'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(True, None, None, None)), ('document', '77cbfb28cd2fc589f589c7013c5086cd')) paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(True, None, None, None)), ('document', '77cbfb28cd2fc589f589c7013c5086cd'))
paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', 'c1df110ea65998984f564c5c10abc54a')) paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', 'c1df110ea65998984f564c5c10abc54a'))
...@@ -210,14 +210,14 @@ paddle.fluid.layers.resize_trilinear (ArgSpec(args=['input', 'out_shape', 'scale ...@@ -210,14 +210,14 @@ paddle.fluid.layers.resize_trilinear (ArgSpec(args=['input', 'out_shape', 'scale
paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 'NCHW')), ('document', '0107a5cbae1aef3f381d3d769a6068eb')) paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 'NCHW')), ('document', '0107a5cbae1aef3f381d3d769a6068eb'))
paddle.fluid.layers.gather (ArgSpec(args=['input', 'index', 'overwrite'], varargs=None, keywords=None, defaults=(True,)), ('document', 'f985c9b66e3aec96fa753a8eb44c991c')) paddle.fluid.layers.gather (ArgSpec(args=['input', 'index', 'overwrite'], varargs=None, keywords=None, defaults=(True,)), ('document', 'f985c9b66e3aec96fa753a8eb44c991c'))
paddle.fluid.layers.gather_nd (ArgSpec(args=['input', 'index', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a7d625028525167b138106f574dffdf9')) paddle.fluid.layers.gather_nd (ArgSpec(args=['input', 'index', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a7d625028525167b138106f574dffdf9'))
paddle.fluid.layers.scatter (ArgSpec(args=['input', 'index', 'updates', 'name', 'overwrite'], varargs=None, keywords=None, defaults=(None, True)), ('document', '69b22affd4a6326502af166f04c095ab')) paddle.fluid.layers.scatter (ArgSpec(args=['input', 'index', 'updates', 'name', 'overwrite'], varargs=None, keywords=None, defaults=(None, True)), ('document', '3f94c3348dc79b7b40a839d31a3eaa84'))
paddle.fluid.layers.scatter_nd_add (ArgSpec(args=['ref', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2607b5c9369fbc52f208de066a80fc25')) paddle.fluid.layers.scatter_nd_add (ArgSpec(args=['ref', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2607b5c9369fbc52f208de066a80fc25'))
paddle.fluid.layers.scatter_nd (ArgSpec(args=['index', 'updates', 'shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e43f1d3a938b35da246aea3e72a020ec')) paddle.fluid.layers.scatter_nd (ArgSpec(args=['index', 'updates', 'shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e43f1d3a938b35da246aea3e72a020ec'))
paddle.fluid.layers.sequence_scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'abe3f714120117a5a3d3e639853932bf')) paddle.fluid.layers.sequence_scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'abe3f714120117a5a3d3e639853932bf'))
paddle.fluid.layers.random_crop (ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,)), ('document', '042af0b8abea96b40c22f6e70d99e042')) paddle.fluid.layers.random_crop (ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,)), ('document', '042af0b8abea96b40c22f6e70d99e042'))
paddle.fluid.layers.mean_iou (ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None), ('document', 'dea29c0c3cdbd5b498afef60e58c9d7c')) paddle.fluid.layers.mean_iou (ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None), ('document', 'dea29c0c3cdbd5b498afef60e58c9d7c'))
paddle.fluid.layers.relu (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0942c174f4f6fb274976d4357356f6a2')) paddle.fluid.layers.relu (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0942c174f4f6fb274976d4357356f6a2'))
paddle.fluid.layers.selu (ArgSpec(args=['x', 'scale', 'alpha', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'f93c61f5b0bf933cd425a64dca2c4fdd')) paddle.fluid.layers.selu (ArgSpec(args=['x', 'scale', 'alpha', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '3ee40bc474b4bccdaf112d3f0d847318'))
paddle.fluid.layers.log (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '02f668664e3bfc4df6c00d7363467140')) paddle.fluid.layers.log (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '02f668664e3bfc4df6c00d7363467140'))
paddle.fluid.layers.crop (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '32196a194f757b4da114a595a5bc6414')) paddle.fluid.layers.crop (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '32196a194f757b4da114a595a5bc6414'))
paddle.fluid.layers.crop_tensor (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'd460aaf35afbbeb9beea4789aa6e4343')) paddle.fluid.layers.crop_tensor (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'd460aaf35afbbeb9beea4789aa6e4343'))
...@@ -232,7 +232,7 @@ paddle.fluid.layers.swish (ArgSpec(args=['x', 'beta', 'name'], varargs=None, key ...@@ -232,7 +232,7 @@ paddle.fluid.layers.swish (ArgSpec(args=['x', 'beta', 'name'], varargs=None, key
paddle.fluid.layers.prelu (ArgSpec(args=['x', 'mode', 'param_attr', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'cb417a61f701c937f33d057fe85203ab')) paddle.fluid.layers.prelu (ArgSpec(args=['x', 'mode', 'param_attr', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'cb417a61f701c937f33d057fe85203ab'))
paddle.fluid.layers.brelu (ArgSpec(args=['x', 't_min', 't_max', 'name'], varargs=None, keywords=None, defaults=(0.0, 24.0, None)), ('document', '49580538249a52c857fce75c94ad8af7')) paddle.fluid.layers.brelu (ArgSpec(args=['x', 't_min', 't_max', 'name'], varargs=None, keywords=None, defaults=(0.0, 24.0, None)), ('document', '49580538249a52c857fce75c94ad8af7'))
paddle.fluid.layers.leaky_relu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(0.02, None)), ('document', '1eb3009c69060299ec87949ee0d4b9ae')) paddle.fluid.layers.leaky_relu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(0.02, None)), ('document', '1eb3009c69060299ec87949ee0d4b9ae'))
paddle.fluid.layers.soft_relu (ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None)), ('document', '6455afd2498b00198f53f83d63d6c6a4')) paddle.fluid.layers.soft_relu (ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None)), ('document', 'f14efa9e5fd2e8b3d976cdda38eff43f'))
paddle.fluid.layers.flatten (ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '424ff350578992f201f2c5c30959ef89')) paddle.fluid.layers.flatten (ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '424ff350578992f201f2c5c30959ef89'))
paddle.fluid.layers.sequence_mask (ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None)), ('document', '6c3f916921b24edaad220f1fcbf039de')) paddle.fluid.layers.sequence_mask (ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None)), ('document', '6c3f916921b24edaad220f1fcbf039de'))
paddle.fluid.layers.stack (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', 'a76f347bf27ffe21b990340d5d9524d5')) paddle.fluid.layers.stack (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', 'a76f347bf27ffe21b990340d5d9524d5'))
...@@ -243,7 +243,7 @@ paddle.fluid.layers.unique (ArgSpec(args=['x', 'dtype'], varargs=None, keywords= ...@@ -243,7 +243,7 @@ paddle.fluid.layers.unique (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=
paddle.fluid.layers.unique_with_counts (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=('int32',)), ('document', '4496682f302007019e458a2f30d8a7c3')) paddle.fluid.layers.unique_with_counts (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=('int32',)), ('document', '4496682f302007019e458a2f30d8a7c3'))
paddle.fluid.layers.expand (ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e93a1b102ab64b247c1b774e60d4c0d0')) paddle.fluid.layers.expand (ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e93a1b102ab64b247c1b774e60d4c0d0'))
paddle.fluid.layers.sequence_concat (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f47f9d207ac60b6f294087bcb1b64ae8')) paddle.fluid.layers.sequence_concat (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f47f9d207ac60b6f294087bcb1b64ae8'))
paddle.fluid.layers.scale (ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None)), ('document', '463e4713806e5adaa4d20a41e2218453')) paddle.fluid.layers.scale (ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None)), ('document', 'a33547d41970fa3c59e6b2f21fe5f76d'))
paddle.fluid.layers.elementwise_add (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '0c9c260e7738165a099f6a76da0b7814')) paddle.fluid.layers.elementwise_add (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '0c9c260e7738165a099f6a76da0b7814'))
paddle.fluid.layers.elementwise_div (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '4701ffd4eb4b7ee19756d3b90532c5f2')) paddle.fluid.layers.elementwise_div (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '4701ffd4eb4b7ee19756d3b90532c5f2'))
paddle.fluid.layers.elementwise_sub (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', 'eab2518a801f3f393cf38fddc899c941')) paddle.fluid.layers.elementwise_sub (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', 'eab2518a801f3f393cf38fddc899c941'))
...@@ -260,7 +260,7 @@ paddle.fluid.layers.gaussian_random_batch_size_like (ArgSpec(args=['input', 'sha ...@@ -260,7 +260,7 @@ paddle.fluid.layers.gaussian_random_batch_size_like (ArgSpec(args=['input', 'sha
paddle.fluid.layers.sum (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', 'f4b60847cb0f1ae00823ba6fb1b11310')) paddle.fluid.layers.sum (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', 'f4b60847cb0f1ae00823ba6fb1b11310'))
paddle.fluid.layers.slice (ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None), ('document', '8c622791994a0d657d8c6c9cefa5bf34')) paddle.fluid.layers.slice (ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None), ('document', '8c622791994a0d657d8c6c9cefa5bf34'))
paddle.fluid.layers.strided_slice (ArgSpec(args=['input', 'axes', 'starts', 'ends', 'strides'], varargs=None, keywords=None, defaults=None), ('document', '340d8d656272ea396b441aab848429a2')) paddle.fluid.layers.strided_slice (ArgSpec(args=['input', 'axes', 'starts', 'ends', 'strides'], varargs=None, keywords=None, defaults=None), ('document', '340d8d656272ea396b441aab848429a2'))
paddle.fluid.layers.shape (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'bf61c8f79d795a8371bdb3b5468aa82b')) paddle.fluid.layers.shape (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '39534cccdb8e727e287316c7c42e6663'))
paddle.fluid.layers.rank (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'a4492cf0393c6f70e4e25c681dcd73f4')) paddle.fluid.layers.rank (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'a4492cf0393c6f70e4e25c681dcd73f4'))
paddle.fluid.layers.size (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'cf2e156beae36378722666c4c33bebfe')) paddle.fluid.layers.size (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'cf2e156beae36378722666c4c33bebfe'))
paddle.fluid.layers.logical_and (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '12db97c6c459c0f240ec7006737174f2')) paddle.fluid.layers.logical_and (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '12db97c6c459c0f240ec7006737174f2'))
......
...@@ -6334,25 +6334,24 @@ def reduce_any(input, dim=None, keep_dim=False, name=None): ...@@ -6334,25 +6334,24 @@ def reduce_any(input, dim=None, keep_dim=False, name=None):
def split(input, num_or_sections, dim=-1, name=None): def split(input, num_or_sections, dim=-1, name=None):
""" """
Split the input tensor into multiple sub-tensors. Split the input tensor into multiple sub-Tensors.
Args: Args:
input (Variable): The input variable which is a Tensor or LoDTensor. input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
num_or_sections (int|list): If :attr:`num_or_sections` is an integer, num_or_sections (int|list): Integer or list of Integers. If :attr:`num_or_sections` is an integer,
then the integer indicates the number of equal sized sub-tensors then the integer indicates the number of equal sized sub-Tensors
that the tensor will be divided into. If :attr:`num_or_sections` that the Tensor will be divided into. If :attr:`num_or_sections`
is a list of integers, the length of list indicates the number of is a list of integers, the length of list indicates the number of
sub-tensors and the integers indicate the sizes of sub-tensors' sub-Tensors and the integers indicate the sizes of sub-Tensors'
:attr:`dim` dimension orderly. :attr:`dim` dimension orderly. The the length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
dim (int): The dimension along which to split. If :math:`dim < 0`, the dim (int): The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`. dimension to split along is :math:`rank(input) + dim`.
name(str|None): A name for this layer(optional). If set None, the layer name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
will be named automatically.
Returns: Returns:
list(Variable): The list of segmented tensor variables. list(Variable): The list of segmented Tensor variables.
Examples: Example:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -6366,7 +6365,7 @@ def split(input, num_or_sections, dim=-1, name=None): ...@@ -6366,7 +6365,7 @@ def split(input, num_or_sections, dim=-1, name=None):
# x1.shape [-1, 3, 3, 5] # x1.shape [-1, 3, 3, 5]
# x2.shape [-1, 3, 3, 5] # x2.shape [-1, 3, 3, 5]
x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2) x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=2)
# x0.shape [-1, 3, 2, 5] # x0.shape [-1, 3, 2, 5]
# x1.shape [-1, 3, 3, 5] # x1.shape [-1, 3, 3, 5]
# x2.shape [-1, 3, 4, 5] # x2.shape [-1, 3, 4, 5]
...@@ -10169,39 +10168,71 @@ def scatter(input, index, updates, name=None, overwrite=True): ...@@ -10169,39 +10168,71 @@ def scatter(input, index, updates, name=None, overwrite=True):
""" """
**Scatter Layer** **Scatter Layer**
Output is obtained by updating the input on selected indices on the first Output is obtained by updating the input on selected indices based on updates.
axis.
.. math:: .. code-block:: python
import numpy as np
Out = X #input:
Out[Ids] = Updates input = np.array([[1, 1], [2, 2], [3, 3]])
index = np.array([2, 1, 0, 1])
# shape of updates should be the same as input
# shape of updates with dim > 1 should be the same as input
updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
overwrite = False
# calculation:
if not overwrite:
for i in range(len(index)):
input[index[i]] = np.zeros((2))
for i in range(len(index)):
if (overwrite):
input[index[i]] = updates[i]
else:
input[index[i]] += updates[i]
# output:
out = np.array([[3, 3], [6, 6], [1, 1]])
out.shape # [3, 2]
Args: Args:
input (Variable): The source input with rank>=1. input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
index (Variable): The index input with rank=1. Its dtype should be index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
int32 or int64 as it is used as indexes. updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 shoule be the same as input.
updates (Variable): The updated value of scatter op. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
name (str|None): The output variable name. Default None. overwrite (bool): The mode that updating the output when there are same indices.
overwrite (bool): The mode that updating the output when has same index.
If True, use the overwrite mode to update the output of the same index, If True, use the overwrite mode to update the output of the same index,
if False, use the accumulate mode to update the output of the same index. if False, use the accumulate mode to update the output of the same index.
Default value is True.You can set overwrite=False to implement scatter_add. Default value is True.
Returns: Returns:
output (Variable): The output is a tensor with the same shape as input. Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
Examples: Examples:
.. code-block:: python .. code-block:: python
import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False) input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False) index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False) updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
output = fluid.layers.scatter(input, index, updates, overwrite=False)
output = fluid.layers.scatter(input, index, updates) exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
index_data = np.array([2, 1, 0, 1]).astype(np.int64)
update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)
res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
print(res)
# [array([[3., 3.],
# [6., 6.],
# [1., 1.]], dtype=float32)]
""" """
helper = LayerHelper('scatter', **locals()) helper = LayerHelper('scatter', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -10521,36 +10552,56 @@ def relu(x, name=None): ...@@ -10521,36 +10552,56 @@ def relu(x, name=None):
return out return out
@templatedoc()
def selu(x, scale=None, alpha=None, name=None): def selu(x, scale=None, alpha=None, name=None):
""" """
${comment} Selu Operator.
The equation is:
.. math::
selu= \\lambda*
\\begin{cases}
x &\\quad \\text{ if } x>0 \n
\\alpha * e^x - \\alpha &\\quad \\text{ if } x<=0
\\end{cases}
The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD information with input `X`.
Args: Args:
x (Variable): The input tensor. x (Variable): The input N-D Tensor.
scale(float, None): If the scale is not set, scale(float, optional): lambda in selu activation function,
the default value is 1.0507009873554804934193349852946. the default value is 1.0507009873554804934193349852946.
For more information about this value, please refer For more information about this value, please refer
to: https://arxiv.org/abs/1706.02515. to: https://arxiv.org/abs/1706.02515.
alpha(float, None): If the alpha is not set, alpha(float, optional): alpha in selu activation function,
the default value is 1.6732632423543772848170429916717. the default value is 1.6732632423543772848170429916717.
For more information about this value, please refer For more information about this value, please refer
to: https://arxiv.org/abs/1706.02515. to: https://arxiv.org/abs/1706.02515.
name (str|None, default None): A name for this layer If set None, name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
the layer will be named automatically.
Returns: Returns:
Variable: The output tensor with the same shape as input. Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np
input = fluid.layers.data( inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
name="input", shape=[3, 9, 5], dtype="float32") output = fluid.layers.selu(inputs)
output = fluid.layers.selu(input)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
img = np.array([[0, 1],[2, 3]]).astype(np.float32)
res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
print(res) # [array([[0. , 1.050701],[2.101402, 3.152103]], dtype=float32)]
""" """
helper = LayerHelper('selu', **locals()) helper = LayerHelper('selu', **locals())
dtype = helper.input_dtype(input_param_name='x') dtype = helper.input_dtype(input_param_name='x')
...@@ -11618,26 +11669,37 @@ def leaky_relu(x, alpha=0.02, name=None): ...@@ -11618,26 +11669,37 @@ def leaky_relu(x, alpha=0.02, name=None):
return out return out
@templatedoc()
def soft_relu(x, threshold=40.0, name=None): def soft_relu(x, threshold=40.0, name=None):
""" """
${comment} SoftRelu Activation Operator.
$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$
Args: Args:
x(${x_type}): ${x_comment} x(Variable): Input of soft_relu operator. Data type can be float32, float64.
threshold(${threshold_type}|40.0): ${threshold_comment} threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
name(str|None): A name for this layer(optional). If set None, the layer name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
will be named automatically.
Returns: Returns:
output(${out_type}): ${out_comment} Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np
x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32") inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
y = fluid.layers.soft_relu(x, threshold=20.0) output = fluid.layers.soft_relu(inputs, threshold=20.0)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
img = np.array([[0, 1],[2, 3]]).astype(np.float32)
res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
""" """
helper = LayerHelper('soft_relu', **locals()) helper = LayerHelper('soft_relu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
...@@ -12771,19 +12833,27 @@ def shape(input): ...@@ -12771,19 +12833,27 @@ def shape(input):
Get the shape of the input. Get the shape of the input.
Args: Args:
input (Variable): The input variable. input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
Returns: Returns:
Variable: The shape of the input variable. Variable (Tensor): The shape of the input variable.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np
input = fluid.layers.data( inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
name="input", shape=[3, 100, 100], dtype="float32") output = fluid.layers.shape(inputs)
out = fluid.layers.shape(input)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
img = np.ones((3, 100, 100)).astype(np.float32)
res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
print(res) # [array([ 3, 100, 100], dtype=int32)]
""" """
helper = LayerHelper('shape', **locals()) helper = LayerHelper('shape', **locals())
...@@ -12906,29 +12976,49 @@ def _elementwise_op(helper): ...@@ -12906,29 +12976,49 @@ def _elementwise_op(helper):
return helper.append_activation(out) return helper.append_activation(out)
@templatedoc()
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
""" """
${comment} Scale operator.
Putting scale and bias to the input Tensor as following:
``bias_after_scale`` is True:
.. math::
Out=scale*X+bias
``bias_after_scale`` is False:
.. math::
Out=scale*(X+bias)
Args: Args:
x(${x_type}): ${x_comment} x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
scale(${scale_type}): ${scale_comment} scale(float): The scale factor of the input.
bias(${bias_type}): ${bias_comment} bias(float): The bias to be put on the input.
bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment} bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
act(basestring|None): Activation applied to the output. act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
name(basestring|None): Name of the output. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns: Returns:
out(${out_type}): ${out_comment} Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np
inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32') res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
y = fluid.layers.scale(x, scale = 2.0, bias = 1.0) print(res) # [array([[ 3., 5., 7.], [ 9., 11., 13.]], dtype=float32)]
""" """
helper = LayerHelper('scale', **locals()) helper = LayerHelper('scale', **locals())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册