Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6ee54b49
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6ee54b49
编写于
6月 07, 2021
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add new exec head;
上级
3d769b97
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
944 addition
and
0 deletion
+944
-0
paddle/fluid/framework/new_exec.h
paddle/fluid/framework/new_exec.h
+867
-0
paddle/fluid/framework/new_exec_test.cc
paddle/fluid/framework/new_exec_test.cc
+77
-0
未找到文件。
paddle/fluid/framework/new_exec.h
0 → 100644
浏览文件 @
6ee54b49
#include <iostream>
#include <string>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/init.h"
#include <chrono>
#include <gperftools/profiler.h>
//USE_OP(fill_constant);
//USE_OP(elementwise_add);
using
namespace
std
;
namespace
paddle
{
namespace
framework
{
class
RuntimeInferShapeContext
:
public
InferShapeContext
{
public:
RuntimeInferShapeContext
(
const
OperatorBase
&
op
,
const
RuntimeContext
&
ctx
)
:
op_
(
op
),
ctx_
(
ctx
)
{}
bool
HasInput
(
const
std
::
string
&
name
)
const
override
{
// has only one input
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
())
{
return
false
;
}
const
auto
&
in
=
it
->
second
;
if
(
in
.
size
()
==
0
)
return
false
;
PADDLE_ENFORCE_EQ
(
in
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Input %s should not contain more than one inputs."
,
name
));
return
in
[
0
]
!=
nullptr
;
}
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
{
// has only one output
const
auto
&
outs
=
ctx_
.
outputs
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
())
{
return
false
;
}
const
auto
&
out
=
it
->
second
;
if
(
out
.
size
()
==
0
)
{
return
false
;
}
PADDLE_ENFORCE_EQ
(
out
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Output %s should not contain more than one outputs."
,
name
));
return
out
[
0
]
!=
nullptr
;
}
bool
HasInputs
(
const
std
::
string
&
name
)
const
override
{
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
for
(
auto
&
input
:
it
->
second
)
{
if
(
input
==
nullptr
)
{
return
false
;
}
}
return
true
;
}
bool
HasOutputs
(
const
std
::
string
&
name
)
const
override
{
const
auto
&
outs
=
ctx_
.
outputs
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
for
(
auto
&
output
:
it
->
second
)
{
if
(
output
==
nullptr
)
{
return
false
;
}
}
return
true
;
}
AttrReader
Attrs
()
const
override
{
return
AttrReader
(
op_
.
Attrs
());
}
std
::
vector
<
std
::
string
>
Inputs
(
const
std
::
string
&
name
)
const
override
{
return
op_
.
Inputs
(
name
);
}
std
::
vector
<
std
::
string
>
Outputs
(
const
std
::
string
&
name
)
const
override
{
return
op_
.
Outputs
(
name
);
}
std
::
string
GetInputNameByIdx
(
size_t
idx
)
const
override
{
auto
&
op_proto
=
paddle
::
framework
::
OpInfoMap
::
Instance
().
Get
(
op_
.
Type
()).
proto_
;
PADDLE_ENFORCE_LT
(
idx
,
op_proto
->
inputs
().
size
(),
platform
::
errors
::
OutOfRange
(
"The index should be less than the size of inputs of "
"operator %s, but got index is %d and size is %d"
,
op_
.
Type
(),
idx
,
op_proto
->
inputs
().
size
()));
return
op_proto
->
inputs
()[
idx
].
name
();
}
std
::
string
GetOutputNameByIdx
(
size_t
idx
)
const
override
{
auto
&
op_proto
=
paddle
::
framework
::
OpInfoMap
::
Instance
().
Get
(
op_
.
Type
()).
proto_
;
PADDLE_ENFORCE_LT
(
idx
,
op_proto
->
outputs
().
size
(),
platform
::
errors
::
OutOfRange
(
"The index should be less than the size of outputs of "
"operator %s, but got index is %d and size is %d"
,
op_
.
Type
(),
idx
,
op_proto
->
outputs
().
size
()));
return
op_proto
->
outputs
()[
idx
].
name
();
}
void
ShareDim
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
override
{
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input %s does not exist."
,
in
));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output %s does not exist."
,
out
));
PADDLE_ENFORCE_LT
(
i
,
in_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of input dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
in_it
->
second
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
out_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
out_it
->
second
.
size
(),
j
));
Variable
*
in_var
=
in_it
->
second
[
i
];
Variable
*
out_var
=
out_it
->
second
[
j
];
PADDLE_ENFORCE_EQ
(
in_var
->
Type
(),
out_var
->
Type
(),
platform
::
errors
::
InvalidArgument
(
"The type of input (%s) and output (%s) are inconsistent."
,
in
,
out
));
if
(
in_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
in_sele_rows
=
in_var
->
Get
<
framework
::
SelectedRows
>
();
auto
out_sele_rows
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
out_sele_rows
->
mutable_value
()
->
Resize
(
in_sele_rows
.
value
().
dims
());
out_sele_rows
->
set_rows
(
in_sele_rows
.
rows
());
out_sele_rows
->
set_height
(
in_sele_rows
.
height
());
}
else
if
(
in_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
in_lod_tensor
=
in_var
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out_lod_tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
out_lod_tensor
->
Resize
(
in_lod_tensor
.
dims
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Currently, the input type of ShareDim only can be LoDTensor "
"or SelectedRows."
));
}
}
void
ShareAllLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
)
const
override
{
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input [%s] found error in Op [%s]"
,
in
,
op_
.
Type
()));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output [%s] found error in Op [%s]"
,
out
,
op_
.
Type
()));
auto
&
in_var_list
=
in_it
->
second
;
auto
&
out_var_list
=
out_it
->
second
;
PADDLE_ENFORCE_EQ
(
in_var_list
.
size
(),
out_var_list
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"Op [%s]: Input var size should be equal with output var size"
,
op_
.
Type
()));
auto
&
out_var_names
=
op_
.
Outputs
(
out
);
for
(
size_t
i
=
0
;
i
<
in_var_list
.
size
();
++
i
)
{
if
(
out_var_names
[
i
]
==
framework
::
kEmptyVarName
)
{
continue
;
}
Variable
*
in_var
=
in_var_list
[
i
];
if
(
!
in_var
->
IsType
<
LoDTensor
>
())
return
;
Variable
*
out_var
=
out_var_list
[
i
];
PADDLE_ENFORCE_EQ
(
out_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
PreconditionNotMet
(
"The %d-th output of Output(%s) must be LoDTensor."
,
i
,
out_var_names
[
i
]));
auto
&
in_tensor
=
in_var
->
Get
<
LoDTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
LoDTensor
>
();
out_tensor
->
set_lod
(
in_tensor
.
lod
());
#ifdef PADDLE_WITH_MKLDNN
if
(
in_tensor
.
layout
()
!=
DataLayout
::
kMKLDNN
)
#endif
out_tensor
->
set_layout
(
in_tensor
.
layout
());
}
}
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
override
{
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input %s does not exist."
,
in
));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output %s does not exist."
,
out
));
PADDLE_ENFORCE_LT
(
i
,
in_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of input dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
in_it
->
second
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
out_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
out_it
->
second
.
size
(),
j
));
Variable
*
in_var
=
in_it
->
second
.
at
(
i
);
if
(
!
in_var
->
IsType
<
LoDTensor
>
())
return
;
Variable
*
out_var
=
out_it
->
second
.
at
(
j
);
PADDLE_ENFORCE_EQ
(
out_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The %zu-th output of Output(%s) must be LoDTensor."
,
j
,
out
));
auto
&
in_tensor
=
in_var
->
Get
<
LoDTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
LoDTensor
>
();
out_tensor
->
set_lod
(
in_tensor
.
lod
());
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
// Fix me: ugly workaround below
// Correct solution:
// set_layout() should NOT be called here (i.e. ShareLoD). Instead,
// layout of output tensor should be set "manually" in Compute()
// of each OPKernel. The reason layout should NOT be shared between
// input and output "automatically" (now by InferShape()->ShareLoD())
// is that layout transform may occur after InferShape().
// Workaround:
// Skip set_layout() when input layout is kMKLDNN
// This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
// OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
// in Compute()
if
(
in_tensor
.
layout
()
!=
DataLayout
::
kMKLDNN
)
#endif
out_tensor
->
set_layout
(
in_tensor
.
layout
());
}
int32_t
GetLoDLevel
(
const
std
::
string
&
in
,
size_t
i
=
0
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"GetLoDLevel is only used in compile time. The calculation of "
"output's actual lod is different among operators so that should be "
"set in the runtime kernel."
));
}
void
SetLoDLevel
(
const
std
::
string
&
out
,
int32_t
lod_level
,
size_t
j
=
0
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"SetLoDLevel is only used in compile time. The calculation of "
"output's actual lod is different among operators so that should be "
"set in the runtime kernel."
));
}
bool
IsRuntime
()
const
override
{
return
true
;
}
// TODO(paddle-dev): Can this be template?
std
::
vector
<
InferShapeVarPtr
>
GetInputVarPtrs
(
const
std
::
string
&
name
)
override
{
const
std
::
vector
<
Variable
*>&
vars
=
InputVars
(
name
);
std
::
vector
<
InferShapeVarPtr
>
res
;
res
.
reserve
(
vars
.
size
());
res
.
insert
(
res
.
begin
(),
vars
.
begin
(),
vars
.
end
());
return
res
;
}
std
::
vector
<
InferShapeVarPtr
>
GetOutputVarPtrs
(
const
std
::
string
&
name
)
override
{
const
std
::
vector
<
Variable
*>&
vars
=
OutputVars
(
name
);
std
::
vector
<
InferShapeVarPtr
>
res
;
res
.
reserve
(
vars
.
size
());
res
.
insert
(
res
.
begin
(),
vars
.
begin
(),
vars
.
end
());
return
res
;
}
DDim
GetInputDim
(
const
std
::
string
&
name
)
const
override
{
const
std
::
vector
<
Variable
*>&
vars
=
InputVars
(
name
);
PADDLE_ENFORCE_EQ
(
vars
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Input(%s) should hold one element, but now it holds %zu elements."
,
name
,
vars
.
size
()));
return
this
->
GetDim
(
vars
[
0
]);
}
std
::
vector
<
DDim
>
GetInputsDim
(
const
std
::
string
&
name
)
const
override
{
const
std
::
vector
<
Variable
*>&
vars
=
InputVars
(
name
);
return
GetDims
(
vars
);
}
std
::
vector
<
proto
::
VarType
::
Type
>
GetInputsVarType
(
const
std
::
string
&
name
)
const
override
{
return
GetVarTypes
(
InputVars
(
name
));
}
std
::
vector
<
proto
::
VarType
::
Type
>
GetOutputsVarType
(
const
std
::
string
&
name
)
const
override
{
return
GetVarTypes
(
OutputVars
(
name
));
}
void
SetOutputDim
(
const
std
::
string
&
name
,
const
DDim
&
dim
)
override
{
//cerr << "set out dim" << endl;
auto
&
vars
=
OutputVars
(
name
);
PADDLE_ENFORCE_EQ
(
vars
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Output(%s) should hold one element, "
"but now it holds %zu elements."
,
name
,
vars
.
size
()));
SetDim
(
vars
[
0
],
dim
);
}
void
SetOutputsDim
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
override
{
auto
&
vars
=
OutputVars
(
name
);
SetDims
(
vars
,
dims
);
}
protected:
DDim
GetDim
(
Variable
*
var
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
InvalidArgument
(
"Input variable is nullptr."
));
if
(
var
->
IsType
<
LoDTensor
>
())
{
return
var
->
Get
<
LoDTensor
>
().
dims
();
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
return
var
->
Get
<
SelectedRows
>
().
GetCompleteDims
();
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only LoDTensor or SelectedRows support 'GetDim', but input "
"Variable's type is %s."
,
ToTypeName
(
var
->
Type
())));
}
}
std
::
vector
<
DDim
>
GetDims
(
const
std
::
vector
<
Variable
*>&
vars
)
const
{
std
::
vector
<
DDim
>
ret
;
ret
.
reserve
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
std
::
back_inserter
(
ret
),
[
this
](
Variable
*
var
)
{
return
this
->
GetDim
(
var
);
});
return
ret
;
}
std
::
vector
<
DDim
>
GetRepeatedDims
(
const
std
::
string
&
name
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"GetRepeatedDims method only ban be used in compile time."
));
}
void
SetDim
(
Variable
*
var
,
const
DDim
&
dim
)
{
if
(
var
->
IsType
<
LoDTensor
>
())
{
var
->
GetMutable
<
LoDTensor
>
()
->
Resize
(
dim
);
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
var
->
GetMutable
<
SelectedRows
>
()
->
set_height
(
dim
[
0
]);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Variable type error, expect LoDTensor or SelectedRows, but received "
"(%s)."
,
ToTypeName
(
var
->
Type
())));
}
}
void
SetDims
(
const
std
::
vector
<
Variable
*>&
vars
,
const
std
::
vector
<
DDim
>&
dims
)
{
size_t
length
=
vars
.
size
();
PADDLE_ENFORCE_EQ
(
length
,
dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The number of input variables do not match the "
"number of input dimensions, the number of variables "
"is %zu, the number of dimensions is %zu."
,
length
,
dims
.
size
()));
for
(
size_t
i
=
0
;
i
<
length
;
++
i
)
{
if
(
vars
[
i
]
==
nullptr
)
{
continue
;
}
SetDim
(
vars
[
i
],
dims
[
i
]);
}
}
void
SetRepeatedDims
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
override
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"SetRepeatedDims method only can be used in compile time."
));
}
std
::
vector
<
proto
::
VarType
::
Type
>
GetVarTypes
(
const
std
::
vector
<
Variable
*>&
vars
)
const
{
std
::
vector
<
proto
::
VarType
::
Type
>
retv
;
retv
.
resize
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
retv
.
begin
(),
std
::
bind
(
std
::
mem_fn
(
&
RuntimeInferShapeContext
::
GetVarType
),
this
,
std
::
placeholders
::
_1
));
return
retv
;
}
proto
::
VarType
::
Type
GetVarType
(
Variable
*
var
)
const
{
return
ToVarType
(
var
->
Type
());
}
private:
const
std
::
vector
<
Variable
*>&
InputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
inputs
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the input (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
}
const
std
::
vector
<
Variable
*>&
OutputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
outputs
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the outputs (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
}
const
OperatorBase
&
op_
;
const
RuntimeContext
&
ctx_
;
};
framework
::
ProgramDesc
load_from_file
(
const
std
::
string
&
file_name
)
{
std
::
ifstream
fin
(
file_name
,
std
::
ios
::
in
|
std
::
ios
::
binary
);
fin
.
seekg
(
0
,
std
::
ios
::
end
);
std
::
string
buffer
(
fin
.
tellg
(),
' '
);
fin
.
seekg
(
0
,
std
::
ios
::
beg
);
fin
.
read
(
&
buffer
[
0
],
buffer
.
size
());
fin
.
close
();
ProgramDesc
program_desc
(
buffer
);
return
program_desc
;
}
struct
VariableScope
{
std
::
vector
<
std
::
unique_ptr
<
Variable
>
>
var_list
;
std
::
map
<
std
::
string
,
int
>
name2id
;
};
struct
OpFuncNode
{
//int unsed;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
input_index
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
output_index
;
using
OpKernelFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
OpKernelFunc
kernel_func_
;
};
int
convert
(
const
platform
::
Place
&
place
)
{
if
(
is_cpu_place
(
place
))
{
return
0
;
}
if
(
is_gpu_place
(
place
))
{
return
1
;
}
return
-
1
;
}
void
build_variable_scope
(
const
framework
::
ProgramDesc
&
pdesc
,
VariableScope
*
var_scope
)
{
auto
&
global_block
=
pdesc
.
Block
(
0
);
for
(
auto
&
var
:
global_block
.
AllVars
())
{
if
(
var
->
Name
()
==
framework
::
kEmptyVarName
)
{
continue
;
}
//cerr << "var name " << var->Name() << endl;
if
(
var_scope
->
name2id
.
find
(
var
->
Name
()
)
==
var_scope
->
name2id
.
end
()
)
{
var_scope
->
name2id
[
var
->
Name
()
]
=
var_scope
->
var_list
.
size
();
}
auto
v
=
new
Variable
();
v
->
GetMutable
<
LoDTensor
>
();
var_scope
->
var_list
.
push_back
(
std
::
unique_ptr
<
Variable
>
(
v
));
}
}
void
build_op_func_list
(
const
framework
::
ProgramDesc
&
pdesc
,
std
::
vector
<
OperatorBase
*
>&
op_list
,
std
::
vector
<
OpFuncNode
>&
vec_func_list
,
VariableScope
*
var_scope
,
const
platform
::
Place
&
place
)
{
auto
&
global_block
=
pdesc
.
Block
(
0
);
for
(
auto
&
op
:
global_block
.
AllOps
()
)
{
//cerr << op->Type() << endl;
//bool debug = op->Type() == "softmax_with_cross_entropy_grad";
bool
debug
=
false
;
//cerr << "create op" << endl;
//auto op_base_u = OpRegistry::CreateOp(*op);
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
op
->
Type
()
);
VariableNameMap
inputs_1
=
op
->
Inputs
();
VariableNameMap
outputs_1
=
op
->
Outputs
();
AttributeMap
attrs_1
=
op
->
GetAttrMap
();
if
(
info
.
Checker
()
!=
nullptr
)
{
info
.
Checker
()
->
Check
(
&
attrs_1
);
}
auto
op_base
=
info
.
Creator
()(
op
->
Type
(),
inputs_1
,
outputs_1
,
attrs_1
);
auto
input_names
=
op
->
Inputs
();
auto
output_names
=
op
->
Outputs
();
OpFuncNode
op_func_node
;
VariableValueMap
ins_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
ins_name2id
;
for
(
auto
&
var_name_item
:
input_names
)
{
std
::
vector
<
Variable
*>
input_vars
;
std
::
vector
<
int
>
vec_ids
;
input_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
auto
it
=
var_scope
->
name2id
.
find
(
var_name
);
assert
(
it
!=
var_scope
->
name2id
.
end
()
);
input_vars
.
push_back
(
var_scope
->
var_list
[
it
->
second
].
get
());
vec_ids
.
push_back
(
it
->
second
);
}
ins_map
[
var_name_item
.
first
]
=
input_vars
;
ins_name2id
[
var_name_item
.
first
]
=
vec_ids
;
}
if
(
debug
)
cerr
<<
"1"
<<
endl
;
VariableValueMap
outs_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
outs_name2id
;
for
(
auto
&
var_name_item
:
output_names
)
{
std
::
vector
<
Variable
*>
output_vars
;
std
::
vector
<
int
>
vec_ids
;
output_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
auto
it
=
var_scope
->
name2id
.
find
(
var_name
);
assert
(
it
!=
var_scope
->
name2id
.
end
()
);
//cerr << it->second << "\t" << var_scope.var_list.size() << endl;
output_vars
.
push_back
(
var_scope
->
var_list
[
it
->
second
].
get
()
);
vec_ids
.
push_back
(
it
->
second
);
}
outs_map
[
var_name_item
.
first
]
=
output_vars
;
//cerr << ToTypeName(output_vars[0]->Type() ) << endl;
outs_name2id
[
var_name_item
.
first
]
=
vec_ids
;
}
op_func_node
.
input_index
=
ins_name2id
;
op_func_node
.
output_index
=
outs_name2id
;
RuntimeContext
runtime_context
(
{},
{});
runtime_context
.
inputs
.
swap
(
ins_map
);
runtime_context
.
outputs
.
swap
(
outs_map
);
//cerr << "create runtime context" << endl;
RuntimeInferShapeContext
infer_shape_ctx
(
*
op_base
,
runtime_context
);
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
InferShape
(
&
infer_shape_ctx
);
//cerr << "fin infer shape" << endl;
auto
&
all_op_kernels
=
OperatorWithKernel
::
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
op
->
Type
()
);
PADDLE_ENFORCE_NE
(
kernels_iter
,
all_op_kernels
.
end
(),
platform
::
errors
::
Unavailable
(
"There are no kernels which are registered in the %s operator."
,
op
->
Type
()
));
//cerr << "create kernel" << endl;
using
OpKernelFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelType
,
OpKernelFunc
,
OpKernelType
::
Hash
>
;
if
(
debug
)
cerr
<<
"2"
<<
endl
;
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
//auto place = platform::CPUPlace();
//auto place = platform::CUDAPlace(0);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
Scope
scope
;
auto
exec_ctx
=
ExecutionContext
(
*
op_base
,
scope
,
*
dev_ctx
,
runtime_context
);
if
(
debug
)
cerr
<<
"21"
<<
endl
;
auto
expected_kernel_key
=
dynamic_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
GetExpectedKernelType
(
exec_ctx
);
if
(
debug
)
cerr
<<
"22"
<<
endl
;
//cerr << "22" << endl;
// add transfer log
for
(
auto
&
var_name_item
:
ins_map
)
{
auto
&
vec_ids
=
ins_name2id
[
var_name_item
.
first
];
for
(
size_t
i
=
0
;
i
<
var_name_item
.
second
.
size
();
++
i
)
{
auto
var
=
var_name_item
.
second
[
i
];
auto
tensor_in
=
static_cast
<
const
Tensor
*>
(
&
(
var
->
Get
<
LoDTensor
>
()));
auto
kernel_type_for_var
=
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
GetKernelTypeForVar
(
var_name_item
.
first
,
*
tensor_in
,
expected_kernel_key
);
if
(
!
platform
::
is_same_place
(
kernel_type_for_var
.
place_
,
expected_kernel_key
.
place_
)
)
{
if
(
debug
)
cerr
<<
"add data transfer"
<<
endl
;
// need trans place
// add var in scope
// add copy op
std
::
string
new_var_name
=
"temp_1"
+
to_string
(
var_scope
->
var_list
.
size
()
+
1
);
auto
v
=
new
Variable
();
v
->
GetMutable
<
LoDTensor
>
();
var_scope
->
name2id
[
new_var_name
]
=
var_scope
->
var_list
.
size
();
var_scope
->
var_list
.
push_back
(
std
::
unique_ptr
<
Variable
>
(
v
));
VariableNameMap
copy_in_map
;
copy_in_map
[
"X"
]
=
input_names
[
var_name_item
.
first
];
VariableNameMap
copy_out_map
;
copy_out_map
[
"Out"
]
=
{
new_var_name
};
AttributeMap
attr_map
;
attr_map
[
"dst_place_type"
]
=
convert
(
place
);
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
copy_ins_name2id
;
copy_ins_name2id
[
"X"
]
=
ins_name2id
[
var_name_item
.
first
];
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
copy_out_name2id
;
copy_out_name2id
[
"Out"
]
=
{
var_scope
->
name2id
[
new_var_name
]};
vec_ids
[
i
]
=
var_scope
->
name2id
[
new_var_name
];
VariableValueMap
copy_ins_value_map
;
copy_ins_value_map
[
"X"
]
=
ins_map
[
var_name_item
.
first
];
VariableValueMap
copy_outs_value_map
;
copy_outs_value_map
[
"Out"
]
=
{
v
};
auto
copy_op
=
info
.
Creator
()(
"memcpy"
,
copy_in_map
,
copy_out_map
,
attr_map
);
OpFuncNode
copy_op_func_node
;
copy_op_func_node
.
input_index
=
copy_ins_name2id
;
copy_op_func_node
.
output_index
=
copy_out_name2id
;
RuntimeContext
runtime_context
(
{},
{});
runtime_context
.
inputs
.
swap
(
copy_ins_value_map
);
runtime_context
.
outputs
.
swap
(
copy_outs_value_map
);
//cerr << "create runtime context" << endl;
RuntimeInferShapeContext
infer_shape_ctx
(
*
copy_op
,
runtime_context
);
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
copy_op
)
->
InferShape
(
&
infer_shape_ctx
);
//cerr << "fin infer shape" << endl;
auto
&
all_op_kernels
=
OperatorWithKernel
::
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
"memcpy"
);
PADDLE_ENFORCE_NE
(
kernels_iter
,
all_op_kernels
.
end
(),
platform
::
errors
::
Unavailable
(
"There are no kernels which are registered in the memcpy operator."
)
);
//cerr << "create kernel" << endl;
using
OpKernelFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelType
,
OpKernelFunc
,
OpKernelType
::
Hash
>
;
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
//auto place = platform::CPUPlace();
//auto place = platform::CUDAPlace(0);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
Scope
scope
;
auto
exec_ctx
=
ExecutionContext
(
*
copy_op
,
scope
,
*
dev_ctx
,
runtime_context
);
if
(
debug
)
cerr
<<
"21"
<<
endl
;
auto
expected_kernel_key
=
dynamic_cast
<
const
framework
::
OperatorWithKernel
*>
(
copy_op
)
->
GetExpectedKernelType
(
exec_ctx
);
if
(
debug
)
cerr
<<
"22"
<<
endl
;
//cerr << "22" << endl;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
copy_op_func_node
.
kernel_func_
=
OpKernelFunc
(
kernel_iter
->
second
);
copy_op_func_node
.
kernel_func_
(
exec_ctx
);
op_list
.
push_back
(
copy_op
);
vec_func_list
.
push_back
(
copy_op_func_node
);
}
}
}
op_list
.
push_back
(
op_base
);
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
if
(
debug
)
cerr
<<
"3"
<<
endl
;
op_func_node
.
kernel_func_
=
OpKernelFunc
(
kernel_iter
->
second
);
if
(
debug
)
cerr
<<
"3-1"
<<
endl
;
op_func_node
.
kernel_func_
(
exec_ctx
);
vec_func_list
.
push_back
(
op_func_node
);
if
(
debug
)
cerr
<<
"5"
<<
endl
;
}
}
void
exec_op_func_list
(
const
std
::
vector
<
OpFuncNode
>&
vec_func_list
,
std
::
vector
<
OperatorBase
*
>&
op_list
,
const
VariableScope
&
var_scope
,
const
platform
::
Place
&
place
)
{
for
(
size_t
i
=
0
;
i
<
vec_func_list
.
size
();
++
i
)
{
auto
&
func_node
=
vec_func_list
[
i
];
auto
op_base
=
op_list
[
i
];
// build runtime cost
VariableValueMap
ins_map
;
for
(
auto
&
var_name_item
:
func_node
.
input_index
)
{
std
::
vector
<
Variable
*>
input_vars
;
input_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
id
:
var_name_item
.
second
)
{
cerr
<<
var_name_item
.
first
<<
"
\t
"
<<
id
<<
endl
;
input_vars
.
emplace_back
(
var_scope
.
var_list
[
id
].
get
()
);
}
ins_map
.
emplace
(
var_name_item
.
first
,
std
::
move
(
input_vars
)
);
}
VariableValueMap
outs_map
;
for
(
auto
&
var_name_item
:
func_node
.
output_index
)
{
std
::
vector
<
Variable
*>
out_vars
;
out_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
id
:
var_name_item
.
second
)
{
cerr
<<
var_name_item
.
first
<<
"
\t
"
<<
id
<<
endl
;
out_vars
.
emplace_back
(
var_scope
.
var_list
[
id
].
get
());
}
outs_map
.
emplace
(
var_name_item
.
first
,
std
::
move
(
out_vars
)
);
}
RuntimeContext
runtime_context
(
{},
{});
runtime_context
.
inputs
.
swap
(
ins_map
);
runtime_context
.
outputs
.
swap
(
outs_map
);
RuntimeInferShapeContext
infer_shape_ctx
(
*
op_base
,
runtime_context
);
//dynamic_cast<const framework::OperatorWithKernel*>(op_base)->InferShape( &infer_shape_ctx );
//RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
InferShape
(
&
infer_shape_ctx
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
//auto place = platform::CPUPlace();
//auto place = platform::CUDAPlace(0);
auto
*
dev_ctx
=
pool
.
Get
(
place
);
Scope
scope
;
auto
exec_context
=
ExecutionContext
(
*
op_base
,
scope
,
*
dev_ctx
,
runtime_context
);
func_node
.
kernel_func_
(
exec_context
);
}
}
class
InterpreterCore
{
public:
InterpreterCore
(
const
platform
::
Place
&
place
,
const
ProgramDesc
&
prog
)
:
place_
(
place
),
prog_
(
prog
)
{
paddle
::
framework
::
InitDevices
();
is_build
=
false
;
}
void
run
(
const
std
::
vector
<
std
::
string
>
vec_name
,
const
std
::
vector
<
framework
::
Tensor
>&
vec_tensor
,
const
vector
<
std
::
string
>&
vec_fetch_name
)
{
cerr
<<
"run"
<<
endl
;
// set static data
if
(
is_build
==
false
)
{
paddle
::
framework
::
build_variable_scope
(
prog_
,
&
global_scope
);
}
for
(
size_t
i
=
0
;
i
<
vec_name
.
size
();
++
i
)
{
auto
it
=
global_scope
.
name2id
.
find
(
vec_name
[
i
]
);
cerr
<<
"find "
<<
(
it
!=
global_scope
.
name2id
.
end
()
)
<<
endl
;
assert
(
it
!=
global_scope
.
name2id
.
end
()
);
auto
feed_tensor
=
global_scope
.
var_list
[
it
->
second
]
->
GetMutable
<
framework
::
LoDTensor
>
();
cerr
<<
" get tensor"
<<
endl
;
feed_tensor
->
ShareDataWith
(
vec_tensor
[
i
]
);
cerr
<<
"share buffer with"
<<
endl
;
}
if
(
is_build
==
false
)
{
paddle
::
framework
::
build_op_func_list
(
prog_
,
op_list
,
vec_func_list
,
&
global_scope
,
place_
);
is_build
=
true
;
}
paddle
::
framework
::
exec_op_func_list
(
vec_func_list
,
op_list
,
global_scope
,
place_
);
for
(
size_t
i
=
0
;
i
<
vec_fetch_name
.
size
();
++
i
)
{
auto
it
=
global_scope
.
name2id
.
find
(
vec_fetch_name
[
i
]
);
assert
(
it
!=
global_scope
.
name2id
.
end
()
);
auto
fetch_tensor
=
global_scope
.
var_list
[
it
->
second
]
->
GetMutable
<
framework
::
LoDTensor
>
();
//cerr << "out " << fetch_tensor->data<float>()[0] << endl;
cerr
<<
"out "
<<
*
fetch_tensor
<<
endl
;
}
}
private:
const
platform
::
Place
&
place_
;
const
ProgramDesc
&
prog_
;
paddle
::
framework
::
VariableScope
global_scope
;
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>
vec_func_list
;
std
::
vector
<
paddle
::
framework
::
OperatorBase
*
>
op_list
;
bool
is_build
;
};
}
}
paddle/fluid/framework/new_exec_test.cc
0 → 100644
浏览文件 @
6ee54b49
#include <iostream>
#include <string>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/framework/new_exec.h"
#include <chrono>
#include <gperftools/profiler.h>
int
main
()
{
paddle
::
framework
::
InitDevices
();
paddle
::
framework
::
VariableScope
global_scope
;
{
auto
test_prog
=
paddle
::
framework
::
load_from_file
(
"lm_startup_program"
);
paddle
::
framework
::
build_variable_scope
(
test_prog
,
&
global_scope
);
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>
vec_func_list
;
std
::
vector
<
std
::
unique_ptr
<
paddle
::
framework
::
OperatorBase
>>
op_list
;
paddle
::
framework
::
build_op_func_list
(
test_prog
,
op_list
,
vec_func_list
,
global_scope
);
paddle
::
framework
::
exec_op_func_list
(
vec_func_list
,
op_list
,
global_scope
);
}
cerr
<<
"run main"
<<
endl
;
auto
main_prog
=
paddle
::
framework
::
load_from_file
(
"lm_main_program"
);
paddle
::
framework
::
build_variable_scope
(
main_prog
,
&
global_scope
);
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>
vec_main_func_list
;
std
::
vector
<
std
::
unique_ptr
<
paddle
::
framework
::
OperatorBase
>>
op_main_list
;
paddle
::
framework
::
build_op_func_list
(
main_prog
,
op_main_list
,
vec_main_func_list
,
global_scope
);
auto
start
=
std
::
chrono
::
steady_clock
::
now
();
//ProfilerStart("new_executor.prof");
for
(
size_t
i
=
0
;
i
<
2320
;
++
i
)
{
if
(
i
%
200
==
0
)
{
cerr
<<
i
<<
endl
;
}
paddle
::
framework
::
exec_op_func_list
(
vec_main_func_list
,
op_main_list
,
global_scope
);
}
//ProfilerStop();
auto
end
=
std
::
chrono
::
steady_clock
::
now
();
std
::
chrono
::
duration
<
double
>
diff
=
end
-
start
;
cerr
<<
"time cost "
<<
diff
.
count
()
<<
endl
;
return
1
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录