未验证 提交 6eaed2da 编写于 作者: L LoneRanger 提交者: GitHub

remove the optimizer base and learning rate base (#56099)

* remove the optimizer base and learning rate base

* fix bug

* fix bug
上级 f60c698f
......@@ -250,7 +250,6 @@ def _is_valid_optimizer(optimizer):
optimizer,
(
paddle.optimizer.Optimizer,
paddle.fluid.optimizer.Optimizer,
DygraphShardingOptimizer,
),
)
......@@ -260,7 +259,7 @@ def check_optimizers(optimizers):
for optimizer in optimizers:
if not _is_valid_optimizer(optimizer):
raise RuntimeError(
"Current train mode is pure fp16, optimizers should be paddle.optimizer.Optimizer or paddle.fluid.optimizer.Optimizer or DygraphShardingOptimizer, but receive {}.".format(
"Current train mode is pure fp16, optimizers should be paddle.optimizer.Optimizer or DygraphShardingOptimizer, but receive {}.".format(
type(optimizer)
)
)
......
......@@ -146,11 +146,10 @@ class Engine:
if optimizer and not isinstance(
optimizer,
(paddle.optimizer.Optimizer, paddle.static.Optimizer),
(paddle.optimizer.Optimizer),
):
raise TypeError(
"'optimizer' must be object of class `paddle.optimizer.Optimizer`"
" or `paddle.static.Optimizer`."
)
self._optimizer = auto_utils.validate_opt(optimizer)
......
......@@ -20,11 +20,11 @@ __all__ = []
import paddle
from paddle.common_ops_import import LayerHelper
from paddle.fluid import framework
from paddle.fluid.dygraph import base as imperative_base
from paddle.fluid.optimizer import Optimizer
from paddle.framework import core, in_dynamic_mode
from paddle.nn.clip import ClipGradByNorm, append_gradient_clip_ops
from paddle.optimizer import Momentum
from paddle.optimizer import Momentum, Optimizer
from paddle.regularizer import L1Decay, L2Decay
from paddle.static import create_global_var
......@@ -58,8 +58,8 @@ class DGCMomentumOptimizer(Optimizer):
assert momentum is not None
super().__init__(
learning_rate=learning_rate,
parameter_list=parameter_list,
regularization=regularization,
parameters=parameter_list,
weight_decay=regularization,
grad_clip=grad_clip,
name=name,
)
......@@ -396,6 +396,55 @@ class DGCMomentumOptimizer(Optimizer):
op_maker.kOpRoleVarAttrName(), [param_var.name, grad_var.name]
)
def _process_distribute_lookuptable(self, param_grads):
"""
Because distribute lookup table only support SGD optimizer for now, not support
other optimizer and regularization, so we should find the table parameter out,
and avoid to add regularization and other op for it, and add sgd optimize op
for it independently.
:param param_grads(list((Var, Var))): list of (param, grad) pair.
:param loss: the loss variable.
:param startup_program: the startup program
"""
from paddle.distributed.distribute_lookup_table import (
find_distributed_lookup_table,
)
program = framework.default_main_program()
global_block = framework.default_main_program().global_block()
table_name = find_distributed_lookup_table(program)
table_param = None
table_grad = None
new_param_grads = []
for p, g in param_grads:
if p.name == table_name:
if table_param is not None:
raise RuntimeError(
"multi dist table var found, only support one now!"
)
table_param = p
table_grad = g
else:
new_param_grads.append((p, g))
sgd_op = None
if table_param is not None:
param_and_grad = [table_param, table_grad]
with table_param.block.program._optimized_guard(
param_and_grad
), framework.name_scope("optimizer"):
self._create_global_learning_rate()
# create the optimize op
sgd_op = global_block.append_op(
type='sgd',
inputs={
"Param": table_param,
"Grad": table_grad,
"LearningRate": self._create_param_lr(param_and_grad),
},
outputs={"ParamOut": param_and_grad[0]},
)
return new_param_grads, (table_param, table_grad), sgd_op
@imperative_base.no_grad()
def apply_gradients(self, params_grads):
# Note: since we can't use all_reduce_op now,
......@@ -532,7 +581,7 @@ class DGCOptimizer(MetaOptimizerBase):
def apply_optimize(self, loss, startup_program, params_grads):
self._init_dgc_opt()
return self.dgc_opt.apply_optimize(
return self.dgc_opt._apply_optimize(
loss, startup_program=startup_program, params_grads=params_grads
)
......
......@@ -53,7 +53,6 @@ from . import initializer
from .initializer import set_global_initializer
from . import layers
from . import dygraph
from . import optimizer
from . import backward
from .backward import gradients
from . import incubate
......@@ -109,7 +108,6 @@ __all__ = (
'disable_dygraph',
'enable_imperative',
'disable_imperative',
'optimizer',
'backward',
'LoDTensor',
'LoDTensorArray',
......
......@@ -18,9 +18,6 @@ from .base import *
from . import tracer
from .tracer import *
from . import learning_rate_scheduler
from .learning_rate_scheduler import *
__all__ = []
__all__ += base.__all__
__all__ += learning_rate_scheduler.__all__
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
import numpy as np
import paddle
from .. import unique_name
from ..framework import Variable
from ..data_feeder import check_type
__all__ = []
class LearningRateDecay:
"""
Base class of learning rate decay
Define the common interface of an LearningRateDecay.
User should not use this class directly,
but need to use one of it's implementation.
"""
def __init__(self, begin=0, step=1, dtype='float32'):
self.step_num = begin
self.step_size = step
self.dtype = dtype
def __call__(self):
lr = self.step()
if isinstance(lr, float):
lr = self.create_lr_var(lr)
self.step_num += self.step_size
return lr
def create_lr_var(self, lr):
"""
convert lr from float to variable
Args:
lr: learning rate
Returns:
learning rate variable
"""
from .. import layers
lr = paddle.static.create_global_var(
name=unique_name.generate("learning_rate"),
shape=[1],
value=float(lr),
dtype=self.dtype,
persistable=False,
)
return lr
# Note: If you want to change what optimizer.state_dict stores, just overwrite this functions,
# "self.step_num" will be stored by default.
def state_dict(self):
"""
Returns the state of the scheduler as a :class:`dict`.
It is a subset of self.__dict__ .
"""
self._state_keys()
state_dict = {}
for key in self.keys:
if key not in self.__dict__:
continue
value = self.__dict__[key]
if isinstance(value, Variable):
assert (
value.size == 1
), "the size of Variable in state_dict must be 1, but its size is {} with shape {}".format(
value.size, value.shape
)
value = value.item()
state_dict[key] = value
return state_dict
def _state_keys(self):
"""
set the keys in self.__dict__ that are needed to be saved.
"""
self.keys = ['step_num']
def set_state_dict(self, state_dict):
"""
Loads the schedulers state.
"""
self._state_keys()
for key in self.keys:
if key in state_dict:
self.__dict__[key] = state_dict[key]
else:
raise RuntimeError(
"Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".format(
key
)
)
if len(state_dict) > len(self.keys):
warnings.warn(
"There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
)
# [aliases] Compatible with old method names
set_dict = set_state_dict
def step(self):
raise NotImplementedError()
class _LearningRateEpochDecay(LearningRateDecay):
"""
:api_attr: imperative
Base class of learning rate decay, which is updated each epoch.
Define the common interface of an _LearningRateEpochDecay.
User should not use this class directly,
but need to use one of it's implementation. And invoke method: `epoch()` each epoch.
"""
def __init__(self, learning_rate, dtype=None):
if not isinstance(learning_rate, (float, int)):
raise TypeError(
"The type of 'learning_rate' must be 'float, int', but received %s."
% type(learning_rate)
)
if learning_rate < 0:
raise ValueError("Invalid learning rate: {}".format(learning_rate))
self.base_lr = float(learning_rate)
self.epoch_num = -1
self.dtype = dtype
if dtype is None:
self.dtype = "float32"
self.learning_rate = self.create_lr_var(self.base_lr)
self.epoch()
# For those subclass who overload _LearningRateEpochDecay, "self.epoch_num/learning_rate" will be stored by default.
# you can change it for your subclass.
def _state_keys(self):
self.keys = ['epoch_num', 'learning_rate']
def __call__(self):
"""
Return last computed learning rate on current epoch.
"""
if not isinstance(self.learning_rate, Variable):
self.learning_rate = self.create_lr_var(self.learning_rate)
return self.learning_rate
def epoch(self, epoch=None):
"""
compueted learning_rate and update it when invoked.
"""
if epoch is None:
self.epoch_num += 1
else:
self.epoch_num = epoch
self.learning_rate = self.get_lr()
def get_lr(self):
raise NotImplementedError
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
import logging
from collections import defaultdict
import paddle
from paddle.fluid.framework import (
Program,
Variable,
Parameter,
name_scope,
default_main_program,
default_startup_program,
device_guard,
)
from . import framework
from . import layers
from . import unique_name
from .backward import (
append_backward,
_some_in_set_,
_append_grad_suffix_,
_get_no_grad_set_name,
)
from .framework import program_guard
from .layer_helper import LayerHelper
from .dygraph import base as imperative_base
from .dygraph import no_grad
from .dygraph.learning_rate_scheduler import (
LearningRateDecay,
_LearningRateEpochDecay,
)
from paddle.fluid import core
from functools import reduce
from functools import cmp_to_key
from .wrapped_decorator import signature_safe_contextmanager
import warnings
from paddle import _C_ops, _legacy_C_ops
from ..fluid.framework import (
in_dygraph_mode,
_current_expected_place,
)
__all__ = []
class Optimizer:
"""Optimizer Base class.
Define the common interface of an optimizer.
User should not use this class directly,
but need to use one of it's implementation.
"""
@imperative_base.no_grad
def __init__(
self,
learning_rate,
parameter_list=None,
regularization=None,
grad_clip=None,
flatten_param_grads=False,
align_size=-1,
name=None,
):
"""
Args:
flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
If true, the parameters and gradients will be coalesce to contiguous mempry,
and the grad_clip ops / optimizer ops will be fuse to one operator.
"""
# Because of the loop import, so place it in the function body
from paddle.optimizer.lr import LRScheduler
self._parameter_list = (
list(parameter_list) if parameter_list is not None else None
)
self._name = name
if in_dygraph_mode():
if not isinstance(
learning_rate, (float, LearningRateDecay, LRScheduler)
):
raise TypeError(
"learning rate should be float or LRScheduler, got %s here"
% type(learning_rate)
)
if self._parameter_list is None:
raise AttributeError(
"parameter_list argument given to the Optimizer should not be None in dygraph mode."
)
if regularization is not None:
for param in self._parameter_list:
if param.regularizer is not None:
logging.info(
"If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
"The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
% regularization.__str__()
)
break
else:
if not isinstance(
learning_rate, (float, framework.Variable, LRScheduler)
):
raise TypeError(
"learning rate should be float or LRScheduler, got %s here"
% type(learning_rate)
)
if grad_clip is not None:
if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
raise TypeError(
"'grad_clip' should be an instance of GradientClipBase's derived class"
)
self.regularization = regularization
self._grad_clip = grad_clip
self._learning_rate = learning_rate
self._flatten_param_grads = flatten_param_grads
self._align_size = align_size
self._dtype = None
# Infer the dtype form parameter
if self._parameter_list:
self._dtype = self._parameter_list[0].dtype
# each program should have a independent learning rate
# program -> Variable(learning_rate)
self._learning_rate_map = dict()
if isinstance(self._learning_rate, framework.Variable):
self._learning_rate_map[
framework.default_main_program()
] = self._learning_rate
# Dictionary of accumulators. Some optimizer subclasses need to
# allocate and manage extra variables associated with the parameters
# to train. These variables are called accumulators.
# {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
self._accumulators = defaultdict(lambda: dict())
# global_accumulator dict, {accum_name : acc_variable, ...}
self._global_accumulators = {}
self.helper = LayerHelper(self.__class__.__name__)
self._opti_name_list = []
self._accumulators_holder = {}
self._param_device_map = dict()
# NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
# for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
# And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
# Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
self._auxiliary_vars = dict()
@framework.dygraph_only
def state_dict(self):
'''
Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
If the optimizer never be called(minimize function), the state_dict is empty.
Args: None
Return:
state_dict(dict) : dict contains all the variable used by optimizer
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
with fluid.dygraph.guard():
emb = paddle.nn.Embedding(10, 10)
adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
state_dict = adam.state_dict()
'''
from paddle.optimizer.lr import LRScheduler
state_dict = {}
for k, v in self._accumulators.items():
for para_name, var_tmp in v.items():
state_dict[var_tmp.name] = var_tmp
for k, v in self._global_accumulators.items():
state_dict[v.name] = v
# global step if use lr decay
if isinstance(self._learning_rate, LRScheduler):
state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
return state_dict
if isinstance(self._learning_rate, LearningRateDecay):
state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
if not isinstance(self._learning_rate, _LearningRateEpochDecay):
var_tmp = None
var_temp = framework._create_tensor(
None, name='global_step', dtype='int32'
)
paddle.tensor.fill_constant(
[1], "int32", self._learning_rate.step_num, out=var_temp
)
state_dict['global_step'] = var_temp
return state_dict
@framework.dygraph_only
def set_state_dict(self, state_dict):
'''
Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
Args:
state_dict(dict) : Dict contains all the Variable needed by optimizer
Return:
None
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10)
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy.pdparams")
scheduler = paddle.optimizer.lr.NoamDecay(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
state_dict = adam.state_dict()
paddle.save(state_dict, "paddle_dy.pdopt")
para_state_dict = paddle.load("paddle_dy.pdparams")
opti_state_dict = paddle.load("paddle_dy.pdopt")
'''
from paddle.optimizer.lr import LRScheduler
if isinstance(self._learning_rate, LRScheduler):
self._learning_rate.set_dict(state_dict["LR_Scheduler"])
if isinstance(self._learning_rate, LearningRateDecay):
self._learning_rate.set_dict(state_dict["LR_Scheduler"])
if not isinstance(self._learning_rate, _LearningRateEpochDecay):
assert (
'global_step' in state_dict
), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
global_step = state_dict['global_step']
if isinstance(global_step, Variable):
step_np = global_step
step_np = np.array(step_np.value().get_tensor())
assert step_np.shape == (
1,
), "global step shape is (1,), the shape is {}".format(
step_np.shape
)
self._learning_rate.step_num = int(step_np[0])
elif isinstance(global_step, np.ndarray):
assert global_step.shape == (
1,
), "global step shape is (1,), the shape is {}".format(
global_step.shape
)
self._learning_rate.step_num = global_step[0]
else:
raise RuntimeError(
"Type not supprt, value in state dict must be [Tensor, Variable, numpy], the type is ",
type(global_step),
)
def _load_state_para(state_dict, param):
var = param.value()
tensor = var.get_tensor()
model_np = np.array(tensor)
load_para = state_dict[param.name]
if isinstance(load_para, Variable):
load_para_np = load_para.numpy()
elif isinstance(load_para, core.eager.Tensor):
load_para_np = load_para.numpy()
elif isinstance(load_para, np.ndarray):
load_para_np = load_para
else:
raise RuntimeError(
"State dict type {} not supprt".format(str(type(load_para)))
)
assert (
model_np.shape == load_para_np.shape
), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
param.name, model_np.shape, load_para_np.shape
)
assert (
model_np.dtype == load_para_np.dtype
), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {} but load tensor with dtype {}".format(
param.name, model_np.dtype, load_para_np.dtype
)
tensor.set(load_para_np, framework._current_expected_place())
self._accumulators_holder = state_dict
for k, v in self._accumulators.items():
for para_name, var_tmp in v.items():
assert (
var_tmp.name in state_dict
), "optimizer variable {} not found".format(var_tmp.name)
_load_state_para(state_dict, var_tmp)
for k, v in self._global_accumulators.items():
assert (
v.name in state_dict
), "optimizer variable {} not found".format(v.name)
_load_state_para(state_dict, v)
# [aliases] Compatible with old method names
set_dict = set_state_dict
def get_opti_var_name_list(self):
return self._opti_name_list
def _set_auxiliary_var(self, key, val):
self._auxiliary_vars[key] = val
def _get_auxiliary_var(self, key):
if key in self._auxiliary_vars:
return self._auxiliary_vars[key]
else:
return None
def _create_global_learning_rate(self):
from paddle.optimizer.lr import LRScheduler
if isinstance(self._learning_rate, LRScheduler):
lr_var = self._global_learning_rate()
# only create global lr_var once
if not isinstance(lr_var, framework.Variable):
lr_name = unique_name.generate('learning_rate')
self._learning_rate._var_name = lr_name
lr_var = self.helper.create_global_variable(
name=lr_name,
shape=[1],
persistable=True,
stop_gradient=True,
dtype='float32' if self._dtype is None else self._dtype,
)
main_prog = framework.default_main_program()
main_prog.lr_scheduler = self._learning_rate
main_prog.lr_var = lr_var
self._learning_rate_map[
framework.default_main_program()
] = lr_var
lr_value = float(self._learning_rate())
self.helper.set_variable_initializer(
lr_var,
initializer=paddle.nn.initializer.Constant(value=lr_value),
)
return
if imperative_base.enabled():
# create learning rate Variable
if isinstance(self._learning_rate, float):
lr = self._global_learning_rate()
if isinstance(lr, framework.Variable):
return
else:
self._learning_rate_map[
framework.default_main_program()
] = paddle.static.create_global_var(
name=unique_name.generate("learning_rate"),
shape=[1],
value=float(self._learning_rate),
dtype='float32' if self._dtype is None else self._dtype,
persistable=True,
)
# get learning rate Variable from LearningRateDecay
elif isinstance(self._learning_rate, LearningRateDecay):
self._learning_rate_map[
framework.default_main_program()
] = self._learning_rate()
else:
raise TypeError(
"optimizer's learning rate must be float or LearningRateDecay"
)
else:
lr = self._global_learning_rate()
if isinstance(lr, framework.Variable):
return
else:
if not isinstance(self._learning_rate, float):
raise TypeError(
"learning rate variable is create outside optimizer,"
"can not create new learning rate variable for new program"
)
# create learning rate in the current main program
self._learning_rate_map[
framework.default_main_program()
] = paddle.static.create_global_var(
name=unique_name.generate("learning_rate"),
shape=[1],
value=float(self._learning_rate),
dtype='float32' if self._dtype is None else self._dtype,
persistable=True,
)
@framework.dygraph_only
def set_lr(self, value):
"""
:api_attr: imperative
Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
this API cannot be invoked, because it will lead to conflict.
Args:
value (float|Variable): the value of learning rate
Returns:
None
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle
with fluid.dygraph.guard():
linear = paddle.nn.Linear(10, 10)
adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())
# set learning rate manually by python float value
lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
for i in range(5):
adam.set_lr(lr_list[i])
lr = adam.get_lr()
print("current lr is {}".format(lr))
# Print:
# current lr is 0.2
# current lr is 0.3
# current lr is 0.4
# current lr is 0.5
# current lr is 0.6
"""
if not isinstance(value, (framework.Variable, float)):
raise TypeError(
"The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
% (type(value))
)
if isinstance(self._learning_rate, LearningRateDecay):
raise RuntimeError(
"optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
)
if isinstance(value, float):
self._learning_rate = value
current_lr = self._global_learning_rate()
if current_lr is not None:
if in_dygraph_mode():
place = _current_expected_place()
_C_ops.full_(
current_lr,
list(current_lr.shape),
float(value),
current_lr.dtype,
place,
)
else:
global_block = (
framework.default_main_program().global_block()
)
global_block.append_op(
type='fill_constant',
outputs={'Out': [current_lr]},
attrs={
'dtype': current_lr.dtype,
'shape': list(current_lr.shape),
'value': float(value),
},
stop_gradient=True,
)
else:
assert (
len(value.shape) == 1 and value.shape[0] == 1
), "optimizer's learning rate must be 1-D Tensor with shape[1]"
self._learning_rate_map[framework.default_main_program()] = value
@framework.dygraph_only
def current_step_lr(self):
"""
:api_attr: imperative
Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
otherwise return the step learning rate.
Returns:
float: The learning rate of the current step.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
import paddle
# example1: LearningRateDecay is not used, return value is all the same
with fluid.dygraph.guard():
emb = paddle.nn.Embedding(10, 10)
adam = paddle.optimizer.Adam(0.001, parameters = emb.parameters())
lr = adam.get_lr()
print(lr) # 0.001
# example2: PiecewiseDecay is used, return the step learning rate
with fluid.dygraph.guard():
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = fluid.dygraph.to_variable(inp)
out = linear(inp)
loss = paddle.mean(out)
bd = [2, 4, 6, 8]
value = [0.2, 0.4, 0.6, 0.8, 1.0]
adam = paddle.optimizer.Adam(paddle.optimizer.lr.PiecewiseDecay(bd, value),
parameters=linear.parameters())
# first step: learning rate is 0.2
np.allclose(adam.get_lr(), 0.2, rtol=1e-06, atol=0.0) # True
# learning rate for different steps
ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
for i in range(12):
adam.minimize(loss)
adam.step()
lr = adam.get_lr()
np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True
"""
current_lr = self._global_learning_rate()
if isinstance(current_lr, framework.Variable):
return float(current_lr)
if isinstance(self._learning_rate, float):
return self._learning_rate
elif isinstance(self._learning_rate, _LearningRateEpochDecay):
step_lr = self._learning_rate()
return float(step_lr)
else:
step_lr = self._learning_rate.step()
if isinstance(step_lr, (float, int)):
return step_lr
else:
return float(step_lr)
def _global_learning_rate(self, program=None):
"""
get global decayed learning rate
:return:
"""
if program is None:
program = framework.default_main_program()
return self._learning_rate_map.get(program, None)
def _append_optimize_op(self, block, param_and_grad):
"""append optimize operator to block and return all the added optimize_op"""
raise NotImplementedError()
def _create_param_lr(self, param_and_grad):
# create learning rate variable for every parameter
param = param_and_grad[0]
param_lr = param.optimize_attr['learning_rate']
if type(param_lr) == Variable:
return param_lr
else:
if param_lr == 1.0:
return self._global_learning_rate()
else:
with default_main_program()._lr_schedule_guard(
is_with_opt=True
), framework.name_scope('scale_with_param_lr'):
return self._global_learning_rate() * param_lr
def _is_dtype_fp16_or_bf16(self, dtype):
"""
check the dtype is fp16 or the dtype is bf16
:param dtype: instance of core.VarDesc.VarType
:return: True if dtype is one of fp16 or bf16, False otherwise
"""
assert isinstance(
dtype, core.VarDesc.VarType
), "The dtype should be an instance of core.VarDesc.VarType."
return (
dtype == core.VarDesc.VarType.FP16
or dtype == core.VarDesc.VarType.BF16
)
def _create_master_weight(self, param):
if param.name in self._master_weights:
var = self._master_weights[param.name]
else:
assert isinstance(self.helper, LayerHelper)
var_name = param.name + "_fp32_master"
var_name = unique_name.generate(var_name)
var = paddle.static.create_global_var(
name=var_name,
shape=param.shape,
value=0,
dtype='float32',
persistable=True,
)
block = self.helper.startup_program.global_block()
block.append_op(
type="cast",
inputs={"X": [param]},
outputs={"Out": [var]},
attrs={
"in_dtype": param.dtype,
"out_dtype": core.VarDesc.VarType.FP32,
},
)
self._master_weights[param.name] = var
return var
def _create_accumulators(self, block, parameters):
"""Create all accumulators needed by the parameters
Args:
block: the block in which the loss variable is present
parameters: list of parameter variables for the optimizer
"""
pass
def _finish_update(self, block, parameters_and_grads):
"""Finish any custom updates needed
before completing an optimization step
Args:
block: the block in which the loss variable is present
parameters: list of parameter variables for the optimizer
Returns:
None
"""
pass
def _add_accumulator(
self,
name,
param,
dtype=None,
fill_value=0.0,
shape=None,
type=None,
device=None,
):
"""Utility function to add an accumulator for a parameter
Args:
block: the block in which the loss variable is present
name: name of the accumulator
param: parameter variable for which accumulator is to be added
dtype: data type of the accumulator variable
fill_value: value to initialize the accumulator variable
"""
if self._name is not None:
name = self._name + "_" + name
if (
name in self._accumulators
and param.name in self._accumulators[name]
):
if in_dygraph_mode():
return self._accumulators[name][param.name]
raise Exception(
"Accumulator {} already exists for parameter {}".format(
name, param.name
)
)
if shape is None:
shape = param.shape
assert isinstance(self.helper, LayerHelper)
var_name = param.name + "_" + name
var_name = unique_name.generate(var_name)
self._opti_name_list.append(var_name)
var = self.helper.create_global_variable(
name=var_name,
persistable=True,
dtype=dtype or param.dtype,
type=core.VarDesc.VarType.LOD_TENSOR
if in_dygraph_mode()
else (param.type if type is None else type),
shape=shape,
belong_to_optimizer=True,
)
if device is None:
device = self._get_device_for_param(param.name)
with device_guard(device):
self.helper.set_variable_initializer(
var,
initializer=paddle.nn.initializer.Constant(
value=float(fill_value)
),
)
if in_dygraph_mode():
if len(self._accumulators_holder) > 0:
assert (
var_name in self._accumulators_holder
), "Optimizer set error, {} should in state dict".format(
var_name
)
var.set_value(self._accumulators_holder[var_name])
self._accumulators[name][param.name] = var
return var
def _add_global_accumulator(
self,
name,
dtype=None,
fill_value=0.0,
shape=None,
type=None,
device=None,
):
"""Utility function to add a global accumulator for all parameters in the model
Args:
block: the block in which the loss variable is present
name: name of the accumulator
dtype: data type of the accumulator variable
fill_value: value to initialize the accumulator variable
shape: the shape of the accumulator
type: the variable type of the accumulator
device: the target place of the accumulator
"""
if self._name is not None:
name = self._name + "_" + name
if name in self._global_accumulators:
if in_dygraph_mode():
return self._global_accumulators[name]
raise Exception("Global accumulator {} already exists".format(name))
if shape is None:
shape = [1] # most case, global accumulator is of shape [1]
assert isinstance(self.helper, LayerHelper)
var_name = name
var_name = unique_name.generate(var_name)
self._opti_name_list.append(var_name)
var = self.helper.create_global_variable(
name=var_name,
persistable=True,
dtype=dtype if dtype else self._dtype,
type=type,
shape=shape,
belong_to_optimizer=True,
)
if device is None:
device = 'cpu'
with device_guard(device):
self.helper.set_variable_initializer(
var,
initializer=paddle.nn.initializer.Constant(
value=float(fill_value)
),
)
if in_dygraph_mode():
if len(self._accumulators_holder) > 0:
assert (
var_name in self._accumulators_holder
), "Optimizer set error, {} should in state dict".format(
var_name
)
var.set_value(self._accumulators_holder[var_name])
self._global_accumulators[name] = var
return var
def _get_accumulator(self, name, param):
"""Utility function to fetch an accumulator for a parameter
Args:
name: name of the accumulator
param: parameter variable for which accumulator is to be fetched
Returns:
accumulator variable
"""
if self._name is not None:
name = self._name + "_" + name
if (
name not in self._accumulators
or param.name not in self._accumulators[name]
):
raise Exception(
"Accumulator {} does not exist for parameter {}".format(
name, param.name
)
)
return self._accumulators[name][param.name]
def _get_accumulator_master(self, name, param):
"""Utility function to fetch an accumulator for a parameter
Args:
name: name of the accumulator
param: parameter variable for which accumulator is to be fetched
Returns:
accumulator variable for the parameter
"""
if self._name is not None:
name = self._name + "_" + name
find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
param.dtype
)
target_param = (
self._master_weights[param.name] if find_master else param
)
target_name = target_param.name
if (
name not in self._accumulators
or target_name not in self._accumulators[name]
):
raise Exception(
"Accumulator {} does not exist for parameter {}".format(
name, target_name
)
)
return self._accumulators[name][target_name]
def _get_global_accumulator(self, name):
"""Utility function to fetch a global accumulator
Args:
name: name of the accumulator
Returns:
accumulator variable
"""
if self._name is not None:
name = self._name + "_" + name
if name not in self._global_accumulators:
raise Exception("Global accumulator {} does not exist".format(name))
return self._global_accumulators[name]
def _update_param_device_map(self, parameters_and_grads, target_block):
for param_and_grad in parameters_and_grads:
if param_and_grad[0].trainable is True:
param_name = param_and_grad[0].name
ops = target_block.ops
device_attr_name = (
core.op_proto_and_checker_maker.kOpDeviceAttrName()
)
for op in ops:
input_arg_names = op.input_arg_names
if param_name in input_arg_names:
self._param_device_map[param_name] = op.attr(
device_attr_name
)
break
def _get_device_for_param(self, param_name):
device = None
if param_name in self._param_device_map:
device = self._param_device_map[param_name]
return device
def _create_optimization_pass(self, parameters_and_grads):
"""Add optimization operators to update gradients to variables.
Args:
parameters_and_grads(list(tuple(Variable, Variable))):
a list of (variable, gradient) pair to update.
Returns:
return_op_list: a list of operators that will complete one step of
optimization. This will include parameter update ops, global step
update ops and any other custom ops required by subclasses to manage
their internal state.
"""
# This is a default implementation of create_optimization_pass that
# can be shared by most optimizers. This implementation assumes that
# the subclass will implement the _append_optimize_op method and the
# _initialize_tensors method. The subclass can extend the
# _create_accumulators method if it needs to create accumulators
# for parameters and extend _finish_update method to add custom ops.
# Allways called under program_guard use global block as loss block
# But if current block is in control flow, append optimize op in the
# grad block of current block
global_block = framework.default_main_program().global_block()
target_block = global_block
current_block = framework.default_main_program().current_block()
if current_block.idx != global_block.idx:
assert (
current_block.backward_block_idx != -1
), "current block is not global_block, but it doesn't have backward block."
target_block = framework.default_main_program().blocks[
current_block.backward_block_idx
]
start = len(target_block.ops)
self._update_param_device_map(parameters_and_grads, target_block)
self._create_accumulators(
target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
)
self._create_global_learning_rate()
if in_dygraph_mode():
found_inf = self._get_auxiliary_var('found_inf')
if found_inf:
if isinstance(found_inf, core.eager.Tensor):
self._set_auxiliary_var('found_inf', True)
else:
if isinstance(found_inf, core.eager.Tensor):
self._set_auxiliary_var('found_inf', False)
for param_and_grad in parameters_and_grads:
if param_and_grad[1] is None:
continue
if param_and_grad[0].trainable is True:
self._append_optimize_op(target_block, param_and_grad)
else:
for param_and_grad in parameters_and_grads:
if param_and_grad[1] is None:
continue
with param_and_grad[0].block.program._optimized_guard(
param_and_grad
), name_scope("optimizer"):
if param_and_grad[0].trainable is True:
device = self._get_device_for_param(
param_and_grad[0].name
)
with device_guard(device):
optimize_op = self._append_optimize_op(
target_block, param_and_grad
)
# Get custom finish ops for subclasses
# FIXME: Need to fix this once we figure out how to handle dependencies
self._finish_update(target_block, parameters_and_grads)
end = len(target_block.ops)
return target_block._slice_ops(start, end)
def _process_distribute_lookuptable(self, param_grads):
"""
Because distribute lookup table only support SGD optimizer for now, not support
other optimizer and regularization, so we should find the table parameter out,
and avoid to add regularization and other op for it, and add sgd optimize op
for it independently.
:param param_grads(list((Var, Var))): list of (param, grad) pair.
:param loss: the loss variable.
:param startup_program: the startup program
"""
from paddle.distributed.distribute_lookup_table import (
find_distributed_lookup_table,
)
program = framework.default_main_program()
global_block = framework.default_main_program().global_block()
table_name = find_distributed_lookup_table(program)
table_param = None
table_grad = None
new_param_grads = []
for p, g in param_grads:
if p.name == table_name:
if table_param is not None:
raise RuntimeError(
"multi dist table var found, only support one now!"
)
table_param = p
table_grad = g
else:
new_param_grads.append((p, g))
sgd_op = None
if table_param is not None:
param_and_grad = [table_param, table_grad]
with table_param.block.program._optimized_guard(
param_and_grad
), framework.name_scope("optimizer"):
self._create_global_learning_rate()
# create the optimize op
sgd_op = global_block.append_op(
type='sgd',
inputs={
"Param": table_param,
"Grad": table_grad,
"LearningRate": self._create_param_lr(param_and_grad),
},
outputs={"ParamOut": param_and_grad[0]},
)
return new_param_grads, (table_param, table_grad), sgd_op
def backward(
self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None,
):
"""
The first part of ``minimize``, do auto-diff to append backward operations for
the current program.
Args:
loss (Variable): ``loss`` variable to run optimizations.
startup_program (Program, optional): :ref:`api_fluid_Program` for
initializing parameters in ``parameter_list``. The default value
is None, at this time :ref:`api_fluid_default_startup_program` will be used.
parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
to minimize ``loss``. The default value is None, at this time all parameters
will be updated.
no_grad_set (set, optional): Set of ``Variable`` or ``Variable.name`` that don't need
to be updated. The default value is None.
callbacks (list, optional): list of callable objects to run when appending backward
operator for one parameter. The default value is None.
Return:
list: list of (param, grad) variable pairs, param is ``Parameter``,
grad is the gradient value corresponding to the parameter.
Examples:
See examples in ``apply_gradients``.
"""
act_no_grad_set = None
if in_dygraph_mode():
pass
else:
act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
# Infer dtype by loss if None
if self._dtype is None:
self._dtype = loss.dtype
if in_dygraph_mode():
parameter_list = (
parameter_list if parameter_list else self._parameter_list
)
params_grads = []
for param in parameter_list:
if not param.trainable:
continue
if param._grad_ivar() is not None:
# create gradient variable
grad_var = param._grad_ivar()
params_grads.append((param, grad_var))
else:
if callbacks is None:
callbacks = [paddle.nn.clip.error_clip_callback]
else:
assert isinstance(callbacks, list)
program = loss.block.program
assert np.prod(loss.shape) == 1, (
"The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
"Maybe that you should call paddle.mean to process the current loss.".format(
loss.shape
)
)
parameter_list = (
parameter_list if parameter_list else self._parameter_list
)
with program_guard(program, startup_program):
params_grads = append_backward(
loss, parameter_list, act_no_grad_set, callbacks
)
return params_grads
def _create_regularization_of_grad(self, param, grad, regularization=None):
"""Create and add backward regularization Operators
Function helper of append_regularization_ops.
"""
# If no gradient or no regularization is specified, then we don't need to do anything
if grad is None or (
(
not hasattr(param, 'regularizer')
or (hasattr(param, 'regularizer') and param.regularizer is None)
)
and regularization is None
):
return grad
regularization_term = None
if hasattr(param, 'regularizer') and param.regularizer is not None:
# Add variable for regularization term in grad block
regularization_term = param.regularizer(param, grad, grad.block)
elif regularization is not None:
regularization_term = regularization(param, grad, grad.block)
assert regularization_term is not None
if in_dygraph_mode():
return _legacy_C_ops.sum([grad, regularization_term])
new_grad = grad
if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
# FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
# the grad's type and name will be changed. But the gradient's name
# is used in ParallelExecutor Reduce mode, so I add a flag for
# the new_grad here.
new_grad = grad.block.create_var(
name=grad.name + core.kNewGradSuffix(),
dtype=param.dtype,
shape=param.shape,
lod_level=param.lod_level,
type=core.VarDesc.VarType.LOD_TENSOR,
)
inputs = {"X": [grad, regularization_term]}
outputs = {"Out": [new_grad]}
grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
return new_grad
def append_regularization_ops(
self, parameters_and_grads, regularization=None
):
r"""Create and add backward regularization Operators
Creates and adds backward regularization operators in the BlockDesc.
This will add gradients of the regularizer function to the gradients
of the parameters and return these modified gradients. This is the
same as implementing weight decay in optimizers for regularization.
Args:
parameters_and_grads: A list of (parameters, gradients) pairs
that need to be regularized.
regularization: A global regularizer. If the parameter is not
set. It will be applied with regularizer.
Returns:
list[(Variable, Variable)]: list of (parameters, gradients) \
pair with the regularized gradient
Raises:
Exception: Unknown regularization type
"""
params_and_grads = []
if in_dygraph_mode():
for param, grad in parameters_and_grads:
new_grad = self._create_regularization_of_grad(
param, grad, regularization
)
params_and_grads.append((param, new_grad))
else:
repeate_regularizer = False
with framework.name_scope('regularization'):
for param, grad in parameters_and_grads:
if (
not repeate_regularizer
and getattr(param, 'regularizer', None) is not None
and regularization is not None
):
repeate_regularizer = True
logging.info(
"If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
"The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
% regularization.__str__()
)
with param.block.program._optimized_guard([param, grad]):
new_grad = self._create_regularization_of_grad(
param, grad, regularization
)
params_and_grads.append((param, new_grad))
return params_and_grads
def flatten_param_grads(self, params_grads):
need_flatten_params = []
need_flatten_grads = []
for p, g in params_grads:
if g is None:
continue
g.persistable = True
if (
getattr(p, 'need_clip', True) is False
or getattr(p, 'regularizer', None) is not None
):
warnings.warn(
"flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
"the regularizer is set".format(p.name)
)
self._flatten_param_grads = False
return params_grads
need_flatten_params.append(p)
need_flatten_grads.append(g)
shape = [np.prod(p.shape) for p in need_flatten_params]
block = need_flatten_params[0].block
flatten_param = self.helper.create_global_variable(
name='flatten_param',
persistable=True,
dtype=need_flatten_params[0].dtype,
shape=[np.sum(shape)],
belong_to_optimizer=True,
)
flatten_param.trainable = True
flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
flatten_param.regularizer = need_flatten_params[0].regularizer
flatten_grad = self.helper.create_global_variable(
name='flatten_grad',
persistable=True,
dtype=need_flatten_grads[0].dtype,
shape=[np.sum(shape)],
belong_to_optimizer=True,
)
with program_guard(default_main_program()):
block.append_op(
type="coalesce_tensor",
inputs={"Input": need_flatten_params},
outputs={
"Output": need_flatten_params,
"FusedOutput": flatten_param,
},
attrs={
"copy_data": True,
"use_align": True,
"align_size": self._align_size,
"dtype": need_flatten_params[0].dtype,
},
)
block.append_op(
type="coalesce_tensor",
inputs={"Input": need_flatten_grads},
outputs={
"Output": need_flatten_grads,
"FusedOutput": flatten_grad,
},
attrs={
"copy_data": True,
"use_align": True,
"align_size": self._align_size,
"dtype": need_flatten_grads[0].dtype,
},
)
# NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
# so the shape of flatten_param and flatten_grad will be inferred.
self.helper.set_variable_initializer(
flatten_param,
initializer=paddle.nn.initializer.Constant(0.0),
)
self.helper.set_variable_initializer(
flatten_grad,
initializer=paddle.nn.initializer.Constant(0.0),
)
return [(flatten_param, flatten_grad)]
def apply_gradients(self, params_grads):
"""
Second part of `minimize`, appending optimization operators for
given `params_grads` pairs.
Args:
params_grads (list): list of (param, grad) pair to do optimization.
Returns:
list: A list of operators appended to the current program.
Examples:
.. code-block:: python
import paddle.fluid as fluid
loss = network()
optimizer = paddle.optimizer.SGD(learning_rate=0.1)
params_grads = optimizer.backward(loss)
# you may append operations for params_grads here
# ...
optimizer.apply_gradients(params_grads)
"""
params_grads = sorted(params_grads, key=lambda x: x[0].name)
# NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
if self._flatten_param_grads and self.regularization is None:
if self._grad_clip is None or isinstance(
self._grad_clip, paddle.nn.ClipGradByGlobalNorm
):
params_grads = self.flatten_param_grads(params_grads)
# 'optimizer(grad_clip)' or 'set_gradient_clip'
if self._grad_clip is not None:
params_grads = self._grad_clip(params_grads)
else:
params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
# Add regularization if any
params_grads = self.append_regularization_ops(
params_grads, self.regularization
)
optimize_ops = self._create_optimization_pass(params_grads)
return optimize_ops
def apply_optimize(self, loss, startup_program, params_grads):
"""
Second part of `minimize`, appending optimization operators for
given `params_grads` pairs.
Args:
loss (Variable): loss variable to run optimizations.
startup_program (Program): startup_program for initializing parameters
in `parameter_list`.
params_grads (list): list of (param, grad) pair to do optimization.
Returns:
list: A list of operators appended to the current program.
"""
if in_dygraph_mode():
with program_guard(
framework.default_main_program(),
framework.default_startup_program(),
):
if self._grad_clip is not None:
params_grads = self._grad_clip(params_grads)
params_grads = self.append_regularization_ops(
params_grads, self.regularization
)
optimize_ops = self._create_optimization_pass(params_grads)
else:
program = loss.block.program
with program_guard(program, startup_program):
optimize_ops = self.apply_gradients(params_grads)
return optimize_ops
def _get_no_grad_set(self, loss, no_grad_set=None):
no_grad_set = _get_no_grad_set_name(no_grad_set)
parameters = loss.block.program.global_block().all_parameters()
param_no_trainable = set(
[param.name for param in parameters if param.trainable is False]
)
# If the parameter is no trainable, it should not have a gradient.
no_grad_set.update(param_no_trainable)
return no_grad_set
@framework.dygraph_only
def clear_gradients(self):
"""
Clear the gradients of all optimized parameters for model.
If not, new gradient will accumulat on previous gradient.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import numpy as np
with fluid.dygraph.guard():
value = np.arange(26).reshape(2, 13).astype("float32")
a = fluid.dygraph.to_variable(value)
linear = paddle.nn.Linear(13, 5)
# This can be any optimizer supported by dygraph.
adam = paddle.optimizer.Adam(learning_rate = 0.01,
parameters = linear.parameters())
out = linear(a)
out.backward()
adam.minimize(out)
adam.clear_gradients()
"""
for p in self._parameter_list:
if p.trainable:
p.clear_gradient()
@imperative_base.no_grad
def minimize(
self, loss, startup_program=None, parameter_list=None, no_grad_set=None
):
"""
Add operations to minimize ``loss`` by updating ``parameter_list``.
Args:
loss (Variable): A ``Variable`` containing the value to minimize.
startup_program (Program, optional): :ref:`api_fluid_Program` for
initializing parameters in ``parameter_list``. The default value
is None, at this time :ref:`api_fluid_default_startup_program` will be used.
parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
to minimize ``loss``. The default value is None, at this time all parameters
will be updated.
no_grad_set (set, optional): Set of ``Variable`` or ``Variable.name`` that don't need
to be updated. The default value is None.
Returns:
tuple: tuple (optimize_ops, params_grads), A list of operators appended
by minimize and a list of (param, grad) variable pairs, param is
``Parameter``, grad is the gradient value corresponding to the parameter.
The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
indicate program pruning. If so, the program will be pruned by ``feed`` and
``fetch_list`` before run, see details in ``Executor``.
Examples:
Please refer to the example of current Optimizer.
"""
assert isinstance(loss, Variable), "The loss should be an Variable."
parameter_list = (
parameter_list if parameter_list else self._parameter_list
)
params_grads = self.backward(
loss,
startup_program=startup_program,
parameter_list=parameter_list,
no_grad_set=no_grad_set,
)
optimize_ops = self.apply_optimize(
loss, startup_program=startup_program, params_grads=params_grads
)
return optimize_ops, params_grads
......@@ -290,10 +290,8 @@ class DistributedOptimizer(metaclass=abc.ABCMeta):
"""
def __init__(self, optimizer, strategy=None):
if (
not isinstance(optimizer, SGD.__bases__)
and not isinstance(optimizer, fluid.optimizer.Optimizer)
and not isinstance(optimizer, OptimizerWithMixedPrecision)
if not isinstance(optimizer, SGD.__bases__) and not isinstance(
optimizer, OptimizerWithMixedPrecision
):
raise TypeError("optimizer must be an instance of Optimizer")
......
......@@ -28,7 +28,6 @@ from paddle.static import (
Executor,
)
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.optimizer import Optimizer
from paddle.distributed.transpiler.distribute_transpiler import (
DistributeTranspilerConfig,
......
......@@ -19,8 +19,8 @@ from paddle.fluid import core, unique_name
from paddle.fluid.executor import global_scope
from paddle.fluid.framework import Variable, name_scope
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.optimizer import Optimizer
from paddle.nn import ClipGradByGlobalNorm
from paddle.optimizer import Optimizer
def init_communicator(block, rank, ranks, ring_id):
......
......@@ -27,7 +27,6 @@ from paddle.fluid.framework import (
default_startup_program,
in_dygraph_mode,
)
from paddle.fluid.optimizer import Optimizer
__all__ = []
......@@ -99,7 +98,6 @@ class PipelineOptimizer:
if in_dygraph_mode():
raise Exception("In dygraph, don't support PipelineOptimizer.")
valid_optimizers = (
Optimizer,
paddle.optimizer.Optimizer,
paddle.static.amp.decorator.OptimizerWithMixedPrecision,
)
......
......@@ -1114,9 +1114,6 @@ class Optimizer:
end = len(target_block.ops)
return target_block._slice_ops(start, end)
def _append_dgc_ops(self, param_and_grad):
pass
def backward(
self,
loss,
......@@ -1205,9 +1202,6 @@ class Optimizer:
params_grads = append_backward(
loss, parameter_list, act_no_grad_set, callbacks
)
# Note: since we can't use all_reduce_op now,
# dgc_op should be the last op of one grad.
self._append_dgc_ops(params_grads)
return params_grads
def apply_gradients(self, params_grads):
......
......@@ -70,7 +70,6 @@ from ..fluid.framework import ipu_shard_guard # noqa: F401
from ..fluid.framework import set_ipu_shard # noqa: F401
from .nn.control_flow import Print # noqa: F401
from ..fluid.param_attr import WeightNormParamAttr # noqa: F401
from ..fluid.optimizer import Optimizer # noqa: F401
from .nn.metric import auc # noqa: F401
......
......@@ -37,10 +37,10 @@ from .function_overload import FunctionType, overload
def _set_multi_precision(optimizer, multi_precision):
if not isinstance(
optimizer,
(paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer),
(paddle.optimizer.Optimizer),
):
raise RuntimeError(
"Current AMP training level is O2, optimizer is expected to be paddle.optimizer.Optimizer or paddle.fluid.optimizer.Optimizer, but receive {}.".format(
"Current AMP training level is O2, optimizer is expected to be paddle.optimizer.Optimizer, but receive {}.".format(
type(optimizer)
)
)
......
......@@ -1126,7 +1126,7 @@ class TestLoadSliceVar(TranspilerTest):
y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost)
optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
optimizer = paddle.optimizer.RMSProp(learning_rate=0.1)
optimizer.minimize(avg_cost)
def transpiler_test_impl(self):
......
......@@ -22,9 +22,9 @@ import paddle
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.learning_rate_scheduler import LearningRateDecay
from paddle.nn import Embedding
from paddle.optimizer import Adam
from paddle.optimizer.lr import LRScheduler
class SimpleLSTMRNN(paddle.nn.Layer):
......@@ -552,7 +552,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
self.assertTrue(np.sum(np.abs(v.numpy())) == 0)
if isinstance(adam._learning_rate, LearningRateDecay):
if isinstance(adam._learning_rate, LRScheduler):
adam._learning_rate.step_num = 0
adam.set_state_dict(self.opti_dict)
......@@ -673,7 +673,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
else:
np_opti_dict[k] = v
if isinstance(adam._learning_rate, LearningRateDecay):
if isinstance(adam._learning_rate, LRScheduler):
adam._learning_rate.step_num = 0
adam.set_state_dict(np_opti_dict)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册