Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6e54adb4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6e54adb4
编写于
6月 01, 2023
作者:
T
tianshuo78520a
提交者:
GitHub
6月 01, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
revert sequence_enumerate_op (#54231)
* revert sequence_enumerate_op * restore sequence_enumerate_op
上级
9e62ce7b
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
512 addition
and
0 deletion
+512
-0
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc
+96
-0
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu
+100
-0
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h
+95
-0
paddle/fluid/operators/sequence_ops/unity_build_rule.cmake
paddle/fluid/operators/sequence_ops/unity_build_rule.cmake
+2
-0
test/cpp/inference/api/analyzer_pyramid_dnn_tester.cc
test/cpp/inference/api/analyzer_pyramid_dnn_tester.cc
+219
-0
未找到文件。
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc
0 → 100644
浏览文件 @
6e54adb4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h"
namespace
paddle
{
namespace
operators
{
class
SequenceEnumerateOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"SequenceEnumerate"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"SequenceEnumerate"
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
auto
win_size
=
ctx
->
Attrs
().
Get
<
int
>
(
"win_size"
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
win_size
});
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
};
class
SequenceEnumerateOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(2-D phi::DenseTensor with the 2nd dimension equal to 1) "
"Input phi::DenseTensor of SequenceEnumerate operator."
);
AddOutput
(
"Out"
,
"(2-D phi::DenseTensor with the 2nd dimension equal to win_size) "
"Output phi::DenseTensor of SequenceEnumerate operator."
);
AddAttr
<
int
>
(
"win_size"
,
"(int) The enumerate sequence window size."
)
.
AddCustomChecker
([](
const
int
&
win_size
)
{
PADDLE_ENFORCE_GE
(
win_size
,
2
,
platform
::
errors
::
InvalidArgument
(
"The window size should be not less than 2."
"Received window size is %d"
,
win_size
));
});
AddAttr
<
int
>
(
"pad_value"
,
"(int) The enumerate sequence padding value."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
framework
::
kAllKernelsMustComputeRuntimeShape
,
"Skip calling InferShape() function in the runtime."
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
Sequence Enumerate Operator.
Generate a new sequence for the input index sequence, which enumerates all the
sub-sequences with length `win_size` of the input.
The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
Examples:
Case 1:
Input:
X.lod = [[0, 3, 5]]
X.data = [[1], [2], [3], [4], [5]]
X.dims = [5, 1]
Attrs:
win_size = 2
pad_value = 0
Output:
Out.lod = [[0, 3, 5]]
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
Out.dims = [5, 2]
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
sequence_enumerate
,
ops
::
SequenceEnumerateOp
,
ops
::
SequenceEnumerateOpMaker
);
PD_REGISTER_STRUCT_KERNEL
(
sequence_enumerate
,
CPU
,
ALL_LAYOUT
,
ops
::
SequenceEnumerateKernel
,
int32_t
,
int64_t
)
{}
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu
0 → 100644
浏览文件 @
6e54adb4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h"
#include "paddle/phi/backends/gpu/gpu_primitives.h"
namespace
paddle
{
namespace
operators
{
using
phi
::
PADDLE_CUDA_NUM_THREADS
;
template
<
typename
T
>
__global__
void
CalcOutPut
(
const
T
*
in_data
,
const
size_t
*
in_lod
,
const
size_t
lod_len
,
const
int64_t
win_size
,
const
int64_t
pad_value
,
T
*
out_data
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
in_lod
[
lod_len
-
1
])
{
int
end_idx
=
0
;
// Get LoD interval of index
for
(
int
i
=
1
;
i
<
lod_len
;
++
i
)
{
if
(
index
<
in_lod
[
i
])
{
end_idx
=
in_lod
[
i
];
break
;
}
}
for
(
size_t
i
=
0
;
i
<
win_size
;
++
i
)
{
int
word_pos
=
index
+
i
;
out_data
[
index
*
win_size
+
i
]
=
word_pos
<
end_idx
?
in_data
[
word_pos
]
:
pad_value
;
}
}
}
template
<
typename
T
,
typename
DeviceContext
>
class
SequenceEnumerateOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
int
win_size
=
context
.
Attr
<
int
>
(
"win_size"
);
int
pad_value
=
context
.
Attr
<
int
>
(
"pad_value"
);
auto
in_dims
=
in
->
dims
();
auto
in_lod
=
in
->
lod
();
PADDLE_ENFORCE_EQ
(
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
in_lod
[
0
].
back
(),
platform
::
errors
::
InvalidArgument
(
"The actual input data's size mismatched with LoD information."
"Received input data size is %d (actual) vs %d (loD information)."
,
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
in_lod
[
0
].
back
()));
/* Generate enumerate sequence set */
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
lod0
=
in_lod
[
0
];
auto
in_len
=
in
->
numel
();
auto
in_data
=
in
->
data
<
T
>
();
out
->
Resize
({
in_dims
[
0
],
win_size
});
auto
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// Copy LoD to GPU
phi
::
MixVector
<
size_t
>
mixv_lod0
(
&
lod0
);
const
size_t
*
dev_in_lod_ptr
=
mixv_lod0
.
CUDAData
(
context
.
GetPlace
());
// Calc output tensor
CalcOutPut
<<<
(
in_len
-
1
)
/
PADDLE_CUDA_NUM_THREADS
+
1
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
in_data
,
dev_in_lod_ptr
,
lod0
.
size
(),
win_size
,
pad_value
,
out_data
);
out
->
set_lod
(
in
->
lod
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
PD_REGISTER_STRUCT_KERNEL
(
sequence_enumerate
,
GPU
,
ALL_LAYOUT
,
ops
::
SequenceEnumerateOpCUDAKernel
,
int32_t
,
int64_t
)
{}
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h
0 → 100644
浏览文件 @
6e54adb4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
DeviceContext
>
class
SequenceEnumerateKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
int
win_size
=
context
.
Attr
<
int
>
(
"win_size"
);
auto
pad_value
=
static_cast
<
T
>
(
context
.
Attr
<
int
>
(
"pad_value"
));
PADDLE_ENFORCE_EQ
(
in
->
lod
().
empty
(),
false
,
platform
::
errors
::
InvalidArgument
(
"Input(X) phi::DenseTensor of SequenceEnumerateOp does not contain "
"LoD information."
));
auto
in_dims
=
phi
::
vectorize
<
int
>
(
in
->
dims
());
auto
lod0
=
in
->
lod
()[
0
];
PADDLE_ENFORCE_EQ
(
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
lod0
.
back
(),
platform
::
errors
::
InvalidArgument
(
"The actual input data's size mismatched with LoD information."
"Received input data size is %d (actual) vs %d (loD information)."
,
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
lod0
.
back
()));
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"Input(X) of SequenceEnumerate operator's rank should be 2."
"Received %d instead."
,
in_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
in_dims
[
1
],
1
,
platform
::
errors
::
InvalidArgument
(
"Input(X) of SequenceEnumerate operator's 2nd "
"dimension should be 1. Received %d instead."
,
in_dims
[
1
]));
// Generate enumerate sequence set
auto
in_data
=
in
->
data
<
T
>
();
out
->
Resize
({
in_dims
[
0
],
win_size
});
out
->
set_lod
(
in
->
lod
());
auto
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
lod0
.
size
()
-
1
;
++
i
)
{
if
(
lod0
[
i
]
==
lod0
[
i
+
1
])
continue
;
int
start
=
lod0
[
i
];
int
end
=
lod0
[
i
+
1
];
int
copy_size
=
win_size
<
end
-
start
+
1
?
win_size
:
end
-
start
+
1
;
int
mid
=
end
+
1
-
copy_size
;
int
pad_num
=
win_size
-
copy_size
;
copy_size
*=
sizeof
(
T
);
for
(
int
idx
=
start
;
idx
<
mid
;
++
idx
)
{
std
::
memcpy
(
out_data
,
in_data
+
idx
,
copy_size
);
out_data
+=
win_size
;
}
for
(
int
idx
=
mid
;
idx
<
end
;
++
idx
)
{
copy_size
-=
sizeof
(
T
);
pad_num
++
;
std
::
memcpy
(
out_data
,
in_data
+
idx
,
copy_size
);
T
*
pdata
=
out_data
+
copy_size
/
sizeof
(
T
);
for
(
int
i
=
0
;
i
<
pad_num
;
++
i
)
{
pdata
[
i
]
=
pad_value
;
}
out_data
+=
win_size
;
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/sequence_ops/unity_build_rule.cmake
浏览文件 @
6e54adb4
...
@@ -8,6 +8,7 @@ register_unity_group(
...
@@ -8,6 +8,7 @@ register_unity_group(
cc
cc
sequence_concat_op.cc
sequence_concat_op.cc
sequence_conv_op.cc
sequence_conv_op.cc
sequence_enumerate_op.cc
sequence_erase_op.cc
sequence_erase_op.cc
sequence_expand_op.cc
sequence_expand_op.cc
sequence_mask_op.cc
sequence_mask_op.cc
...
@@ -24,6 +25,7 @@ register_unity_group(
...
@@ -24,6 +25,7 @@ register_unity_group(
sequence_conv_op.cu.cc
)
sequence_conv_op.cu.cc
)
register_unity_group
(
register_unity_group
(
cu
cu
sequence_enumerate_op.cu
sequence_erase_op.cu
sequence_erase_op.cu
sequence_expand_op.cu
sequence_expand_op.cu
sequence_pad_op.cu
sequence_pad_op.cu
...
...
test/cpp/inference/api/analyzer_pyramid_dnn_tester.cc
0 → 100644
浏览文件 @
6e54adb4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "test/cpp/inference/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
query_basic
,
query_phrase
,
title_basic
,
title_phrase
;
std
::
vector
<
size_t
>
lod1
,
lod2
,
lod3
,
lod4
;
size_t
batch_iter
{
0
},
batch_size
{
1
},
num_samples
;
// total number of samples
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
Load
(
path
);
}
DataRecord
NextBatch
()
{
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
query_basic
.
size
())
{
GetInputPerBatch
(
query_basic
,
&
data
.
query_basic
,
&
data
.
lod1
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
query_phrase
,
&
data
.
query_phrase
,
&
data
.
lod2
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
title_basic
,
&
data
.
title_basic
,
&
data
.
lod3
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
title_phrase
,
&
data
.
title_phrase
,
&
data
.
lod4
,
batch_iter
,
batch_end
);
}
batch_iter
+=
batch_size
;
return
data
;
}
void
Load
(
const
std
::
string
&
path
)
{
std
::
ifstream
file
(
path
);
std
::
string
line
;
int
num_lines
=
0
;
while
(
std
::
getline
(
file
,
line
))
{
std
::
vector
<
std
::
string
>
data
;
split
(
line
,
';'
,
&
data
);
// load query data
std
::
vector
<
int64_t
>
query_basic_data
;
split_to_int64
(
data
[
1
],
' '
,
&
query_basic_data
);
std
::
vector
<
int64_t
>
query_phrase_data
;
split_to_int64
(
data
[
2
],
' '
,
&
query_phrase_data
);
// load title data
std
::
vector
<
int64_t
>
title_basic_data
;
split_to_int64
(
data
[
3
],
' '
,
&
title_basic_data
);
std
::
vector
<
int64_t
>
title_phrase_data
;
split_to_int64
(
data
[
4
],
' '
,
&
title_phrase_data
);
// filter the empty data
bool
flag
=
data
[
1
].
size
()
&&
data
[
2
].
size
()
&&
data
[
3
].
size
()
&&
data
[
4
].
size
();
if
(
flag
)
{
query_basic
.
push_back
(
std
::
move
(
query_basic_data
));
query_phrase
.
push_back
(
std
::
move
(
query_phrase_data
));
title_basic
.
push_back
(
std
::
move
(
title_basic_data
));
title_phrase
.
push_back
(
std
::
move
(
title_phrase_data
));
num_lines
++
;
}
}
num_samples
=
num_lines
;
}
};
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
PaddleTensor
query_basic_tensor
,
query_phrase_tensor
,
title_basic_tensor
,
title_phrase_tensor
;
query_basic_tensor
.
name
=
"query_basic"
;
query_phrase_tensor
.
name
=
"query_phrase"
;
title_basic_tensor
.
name
=
"pos_title_basic"
;
title_phrase_tensor
.
name
=
"pos_title_phrase"
;
auto
one_batch
=
data
->
NextBatch
();
// assign data
TensorAssignData
<
int64_t
>
(
&
query_basic_tensor
,
one_batch
.
query_basic
,
one_batch
.
lod1
);
TensorAssignData
<
int64_t
>
(
&
query_phrase_tensor
,
one_batch
.
query_phrase
,
one_batch
.
lod2
);
TensorAssignData
<
int64_t
>
(
&
title_basic_tensor
,
one_batch
.
title_basic
,
one_batch
.
lod3
);
TensorAssignData
<
int64_t
>
(
&
title_phrase_tensor
,
one_batch
.
title_phrase
,
one_batch
.
lod4
);
// Set inputs.
input_slots
->
assign
({
query_basic_tensor
,
query_phrase_tensor
,
title_basic_tensor
,
title_phrase_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
tensor
.
dtype
=
PaddleDType
::
INT64
;
}
}
void
SetConfig
(
AnalysisConfig
*
cfg
)
{
cfg
->
SetModel
(
FLAGS_infer_model
);
cfg
->
DisableGpu
();
cfg
->
SwitchSpecifyInputNames
();
cfg
->
SwitchIrOptim
();
cfg
->
SetCpuMathLibraryNumThreads
(
FLAGS_cpu_num_threads
);
if
(
FLAGS_zero_copy
)
{
cfg
->
SwitchUseFeedFetchOps
(
false
);
}
}
void
SetInput
(
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
*
inputs
)
{
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
std
::
vector
<
PaddleTensor
>
input_slots
;
int
epoch
=
FLAGS_test_all_data
?
data
.
num_samples
/
FLAGS_batch_size
:
1
;
LOG
(
INFO
)
<<
"number of samples: "
<<
epoch
*
FLAGS_batch_size
;
for
(
int
bid
=
0
;
bid
<
epoch
;
++
bid
)
{
PrepareInputs
(
&
input_slots
,
&
data
,
FLAGS_batch_size
);
(
*
inputs
).
emplace_back
(
input_slots
);
}
}
// Easy for profiling independently.
TEST
(
Analyzer_Pyramid_DNN
,
profile
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
outputs
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
TestPrediction
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
input_slots_all
,
&
outputs
,
FLAGS_num_threads
);
if
(
FLAGS_num_threads
==
1
&&
!
FLAGS_test_all_data
&&
!
FLAGS_zero_copy
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
,
paddle
::
platform
::
errors
::
Fatal
(
"The size of output should be greater than 0."
));
auto
output
=
outputs
.
back
();
PADDLE_ENFORCE_EQ
(
output
.
size
(),
1UL
,
paddle
::
platform
::
errors
::
Fatal
(
"The size of output should be equal to 1."
));
size_t
size
=
GetSize
(
output
[
0
]);
PADDLE_ENFORCE_GT
(
size
,
0
,
paddle
::
platform
::
errors
::
Fatal
(
"The size of output should be greater than 0."
));
float
*
result
=
static_cast
<
float
*>
(
output
[
0
].
data
.
data
());
// output is probability, which is in (0, 1).
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_GT
(
result
[
i
],
0
);
EXPECT_LT
(
result
[
i
],
1
);
}
}
}
// Check the fuse status
TEST
(
Analyzer_Pyramid_DNN
,
fuse_statis
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
int
num_ops
;
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
>
(
cfg
);
auto
fuse_statis
=
GetFuseStatis
(
static_cast
<
AnalysisPredictor
*>
(
predictor
.
get
()),
&
num_ops
);
}
// Compare result of NativeConfig and AnalysisConfig
TEST
(
Analyzer_Pyramid_DNN
,
compare
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
CompareNativeAndAnalysis
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
input_slots_all
);
}
// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
TEST
(
Analyzer_Pyramid_DNN
,
compare_zero_copy
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
AnalysisConfig
cfg1
;
SetConfig
(
&
cfg1
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
std
::
vector
<
std
::
string
>
outputs_name
;
outputs_name
.
emplace_back
(
"cos_sim_2.tmp_0"
);
CompareAnalysisAndZeroCopy
(
reinterpret_cast
<
PaddlePredictor
::
Config
*>
(
&
cfg
),
reinterpret_cast
<
PaddlePredictor
::
Config
*>
(
&
cfg1
),
input_slots_all
,
outputs_name
);
}
// Compare Deterministic result
TEST
(
Analyzer_Pyramid_DNN
,
compare_determine
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
CompareDeterministic
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
input_slots_all
);
}
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录