Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6e13c86d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6e13c86d
编写于
5月 23, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enable multiple groups for cudnn conv transpose
上级
669c0df6
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
54 addition
and
19 deletion
+54
-19
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
+39
-19
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
.../paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
+15
-0
未找到文件。
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
浏览文件 @
6e13c86d
...
...
@@ -44,6 +44,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
// cudnn v5 does not support dilations
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
int
user_workspace_size
=
ctx
.
Attr
<
int
>
(
"workspace_size_MB"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
...
...
@@ -64,13 +65,13 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
// (N, M, H, W) or (N, M, D, H, W)
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
input
->
dims
()));
layout
,
framework
::
vectorize2int
(
input
->
dims
())
,
groups
);
// (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
output
->
dims
()));
layout
,
framework
::
vectorize2int
(
output
->
dims
())
,
groups
);
// (M, C, K_h, K_w) or (M, C, K_d, K_h, K_w)
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
filter
->
dims
()));
layout
,
framework
::
vectorize2int
(
filter
->
dims
())
,
groups
);
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
...
...
@@ -104,11 +105,17 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
// ------------------- cudnn conv transpose forward ---------------------
int
input_offset
=
input
->
numel
()
/
input
->
dims
()[
0
]
/
groups
;
int
output_offset
=
output
->
numel
()
/
output
->
dims
()[
0
]
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
handle
,
&
alpha
,
cudnn_filter_desc
,
filter_data
,
cudnn_input_desc
,
input_data
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_output_desc
,
output_data
));
handle
,
&
alpha
,
cudnn_filter_desc
,
filter_data
+
filter_offset
*
g
,
cudnn_input_desc
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_output_desc
,
output_data
+
output_offset
*
g
));
}
// Release the cudnn workspace
paddle
::
memory
::
Free
(
gpu
,
cudnn_workspace
);
...
...
@@ -134,6 +141,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
// cudnn v5 does not support dilations
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
int
user_workspace_size
=
ctx
.
Attr
<
int
>
(
"workspace_size_MB"
);
// ------------------- cudnn descriptors ---------------------
...
...
@@ -145,13 +153,13 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
// Input: (N, M, H, W) or (N, M, D, H, W)
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
input
->
dims
()));
layout
,
framework
::
vectorize2int
(
input
->
dims
())
,
groups
);
// Output: (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
output_grad
->
dims
()));
layout
,
framework
::
vectorize2int
(
output_grad
->
dims
())
,
groups
);
// Filter (M, C, K_h, K_w) or (M, C, K_d K_h, K_w)
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
filter
->
dims
()));
layout
,
framework
::
vectorize2int
(
filter
->
dims
())
,
groups
);
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
...
...
@@ -205,15 +213,22 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
// ------------------- cudnn conv backward data ---------------------
// FIXME(typhoonzero): template type T may not be the same as cudnn call.
int
input_offset
=
input
->
numel
()
/
input
->
dims
()[
0
]
/
groups
;
int
output_grad_offset
=
output_grad
->
numel
()
/
output_grad
->
dims
()[
0
]
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
data_algo
,
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_filter_desc
,
filter_data
+
filter_offset
*
g
,
cudnn_conv_desc
,
data_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_input_desc
,
input_grad_data
));
input_grad_data
+
input_offset
*
g
));
}
}
// ------------------- cudnn conv backward filter ---------------------
...
...
@@ -221,11 +236,16 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset filter_grad.
// Gradient with respect to the filter
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
,
cudnn_input_desc
,
input_data
,
cudnn_conv_desc
,
filter_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_filter_desc
,
filter_grad_data
));
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_input_desc
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
filter_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_filter_desc
,
filter_grad_data
+
filter_offset
*
g
));
}
}
// Release the cudnn workspace
paddle
::
memory
::
Free
(
gpu
,
cudnn_workspace
);
}
...
...
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
浏览文件 @
6e13c86d
...
...
@@ -227,6 +227,21 @@ class TestCUDNNWithStride(TestWithStride):
self
.
op_type
=
"conv2d_transpose"
class
TestCUDNNWithGroups
(
TestWithGroups
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
2
self
.
input_size
=
[
2
,
4
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
3
,
3
,
3
]
def
init_op_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"conv2d_transpose"
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
# class TestCUDNNWithDilation(TestWithDilation):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录