diff --git a/python/paddle/incubate/autograd/composite_rules.py b/python/paddle/incubate/autograd/composite_rules.py index 750e1219605f8a433d075711a05d754f75725312..1d92d18cf347ac60a5b929247c83c2fbfd19da7e 100644 --- a/python/paddle/incubate/autograd/composite_rules.py +++ b/python/paddle/incubate/autograd/composite_rules.py @@ -33,8 +33,8 @@ def softmax_composite(x, axis): max_temp = max(x, axis, keepdim=True) max_temp.stop_gradient = True molecular = exp(x - max_temp) - sqrt_var = sum(molecular, axis=axis, keepdim=True) - res = divide(molecular, sqrt_var) + denominator = sum(molecular, axis=axis, keepdim=True) + res = divide(molecular, denominator) return res @@ -105,7 +105,7 @@ def composite_batchnorm( @REGISTER_COMPOSITE('layer_norm') def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis): - axis = np.arange(begin_norm_axis, len(x.shape)) + axis = tuple(range(begin_norm_axis, len(x.shape))) mean_ = mean(x, axis=axis, keepdim=True) difference = x - mean_ var_tmp1 = pow(difference, 2.0)