Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6d60352e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6d60352e
编写于
9月 13, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add soft-label support for cross-entropy operator.
上级
0f42e564
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
205 addition
and
99 deletion
+205
-99
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+38
-26
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+81
-38
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+61
-31
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+1
-1
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+23
-2
python/paddle/v2/framework/tests/test_mnist.py
python/paddle/v2/framework/tests/test_mnist.py
+1
-1
未找到文件。
paddle/operators/cross_entropy_op.cc
浏览文件 @
6d60352e
...
@@ -17,48 +17,62 @@ limitations under the License. */
...
@@ -17,48 +17,62 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
class
Onehot
CrossEntropyOp
:
public
framework
::
OperatorWithKernel
{
class
CrossEntropyOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"
l
abel"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"
L
abel"
);
PADDLE_ENFORCE_EQ
(
X
->
dims
().
size
(),
2
,
"X's dimension must be 2."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"X's rank must be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
1
,
"label's dimension must be 1."
);
PADDLE_ASSERT
(
label
->
dims
().
size
()
==
1
||
label
->
dims
().
size
()
==
2
);
PADDLE_ENFORCE_EQ
(
X
->
dims
()[
0
],
label
->
dims
()[
0
]);
if
(
label
->
dims
().
size
()
==
2
)
{
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
({
X
->
dims
()[
0
]});
// soft cross entropy
PADDLE_ENFORCE_EQ
(
x
->
dims
(),
label
->
dims
());
}
else
{
// normal cross entropy
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
]);
}
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
({
x
->
dims
()[
0
]});
}
}
};
};
class
Onehot
CrossEntropyGradientOp
:
public
framework
::
OperatorWithKernel
{
class
CrossEntropyGradientOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
d
X
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
d
x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
d
X
->
Resize
(
X
->
dims
());
d
x
->
Resize
(
x
->
dims
());
}
}
};
};
class
Onehot
CrossEntropyOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
CrossEntropyOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
Onehot
CrossEntropyOpMaker
(
framework
::
OpProto
*
proto
,
CrossEntropyOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The first input of
Onehot
CrossEntropyOp"
);
AddInput
(
"X"
,
"The first input of CrossEntropyOp"
);
AddInput
(
"
label"
,
"The second input of Onehot
CrossEntropyOp"
);
AddInput
(
"
Label"
,
"The second input of
CrossEntropyOp"
);
AddOutput
(
"Y"
,
"The output of
Onehot
CrossEntropyOp"
);
AddOutput
(
"Y"
,
"The output of CrossEntropyOp"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Onehot
CrossEntropy Operator.
CrossEntropy Operator.
Y[i] = -log(X[i][j])
The second input (Label tensor) supports two kinds of shapes:
1) Rank(Label) = 1, Label[i] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
2) Rank(Label) = 2, Label[i, j] indicates the soft label of class j
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
Please make sure that in this case the summuation of each row of Label
equals one. If each row of Label has only one non-zero element (equals 1),
it degenerates to a standard one-hot representation.
)DOC"
);
)DOC"
);
}
}
};
};
...
@@ -66,10 +80,8 @@ OnehotCrossEntropy Operator.
...
@@ -66,10 +80,8 @@ OnehotCrossEntropy Operator.
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOp
,
REGISTER_OP
(
cross_entropy
,
ops
::
CrossEntropyOp
,
ops
::
CrossEntropyOpMaker
,
ops
::
OnehotCrossEntropyOpMaker
,
onehot_cross_entropy_grad
,
cross_entropy_grad
,
ops
::
CrossEntropyGradientOp
);
ops
::
OnehotCrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
cross_entropy
,
ops
::
CrossEntropyOpKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy
,
REGISTER_OP_CPU_KERNEL
(
cross_entropy_grad
,
ops
::
OnehotCrossEntropyOpKernel
<
float
>
);
ops
::
CrossEntropyGradientOpKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOpKernel
<
float
>
);
paddle/operators/cross_entropy_op.cu
浏览文件 @
6d60352e
...
@@ -21,17 +21,16 @@ namespace operators {
...
@@ -21,17 +21,16 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
template
<
typename
T
>
__host__
__device__
T
clipping_log
(
const
T
x
)
{
__host__
__device__
T
tolerable_value
(
const
T
x
)
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
const
T
kApproInf
=
1e20
;
T
v
=
log
(
x
);
if
(
x
==
INFINITY
)
{
if
(
v
==
INFINITY
)
{
return
kApproInf
;
return
kApproInf
;
}
}
if
(
v
==
-
INFINITY
)
{
if
(
x
==
-
INFINITY
)
{
return
-
kApproInf
;
return
-
kApproInf
;
}
}
return
v
;
return
x
;
}
}
template
<
typename
T
>
template
<
typename
T
>
...
@@ -42,7 +41,20 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
...
@@ -42,7 +41,20 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
D
);
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
D
);
Y
[
i
]
=
-
clipping_log
(
X
[
i
*
D
+
label
[
i
]]);
Y
[
i
]
=
-
tolerable_value
(
log
(
X
[
i
*
D
+
label
[
i
]]));
}
}
template
<
typename
T
>
__global__
void
SoftCrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
T
*
label
,
const
int
N
,
const
int
D
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
D
;
j
++
)
{
sum
+=
label
[
i
*
D
+
j
]
*
log
(
X
[
i
*
D
+
j
]);
}
Y
[
i
]
=
-
tolerable_value
(
sum
);
}
}
}
}
...
@@ -69,57 +81,89 @@ __global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
...
@@ -69,57 +81,89 @@ __global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
}
}
template
<
typename
T
>
template
<
typename
T
>
class
OnehotCrossEntropyOpCUDAKernel
:
public
framework
::
OpKernel
{
__global__
void
SoftCrossEntropyGradientKernel
(
T
*
dX
,
const
T
*
dY
,
const
T
*
X
,
const
T
*
label
,
const
int
N
,
const
int
D
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(
int
j
=
0
;
j
<
D
;
++
j
)
{
int
idx
=
i
*
D
+
j
;
dX
[
idx
]
=
-
label
[
idx
]
*
dY
[
i
]
/
X
[
idx
];
}
}
}
template
<
typename
T
>
class
CrossEntropyOpCUDAKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use GPUPlace."
);
"It must use GPUPlace."
);
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
T
*
Xdata
=
X
->
data
<
T
>
();
auto
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
const
int
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"label"
)
->
data
<
int
>
();
auto
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
Y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
Y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
x_data
=
x
->
data
<
T
>
();
T
*
Ydata
=
Y
->
data
<
T
>
();
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
y_data
=
y
->
data
<
T
>
();
int
N
=
X
->
dims
()[
0
];
int
n
=
x
->
dims
()[
0
];
int
D
=
X
->
dims
()[
1
];
int
d
=
x
->
dims
()[
1
];
int
block
=
512
;
int
block
=
512
;
int
grid
=
(
N
+
block
-
1
)
/
block
;
int
grid
=
(
n
+
block
-
1
)
/
block
;
// TODO(qingqing) launch kernel on specified stream
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
// base on ExecutionContext.
CrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
Ydata
,
Xdata
,
label_data
,
N
,
D
);
int
label_rank
=
label
->
dims
().
size
();
if
(
label_rank
==
2
)
{
// soft cross entropy
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
SoftCrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
y_data
,
x_data
,
label_data
,
n
,
d
);
}
else
{
// normal cross entropy
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
CrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
y_data
,
x_data
,
label_data
,
n
,
d
);
}
}
}
};
};
template
<
typename
T
>
template
<
typename
T
>
class
Onehot
CrossEntropyGradientOpCUDAKernel
:
public
framework
::
OpKernel
{
class
CrossEntropyGradientOpCUDAKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use GPUPlace."
);
"It must use GPUPlace."
);
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
d
X
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
d
x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
d
Y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
d
y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
label
=
ctx
.
Input
<
Tensor
>
(
"
l
abel"
);
auto
label
=
ctx
.
Input
<
Tensor
>
(
"
L
abel"
);
auto
*
dXdata
=
dX
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
dYdata
=
dY
->
template
data
<
T
>();
auto
*
dy_data
=
dy
->
data
<
T
>
();
auto
*
Xdata
=
X
->
template
data
<
T
>();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
label_data
=
label
->
data
<
int
>
();
int
N
=
X
->
dims
()[
0
];
int
n
=
x
->
dims
()[
0
];
int
D
=
X
->
dims
()[
1
];
int
d
=
x
->
dims
()[
1
];
int
block
=
512
;
int
block
=
512
;
int
grid
=
(
N
*
D
+
block
-
1
)
/
block
;
int
grid
=
(
n
*
d
+
block
-
1
)
/
block
;
zero
<
T
><<<
grid
,
block
>>>
(
dXdata
,
N
*
D
);
zero
<
T
><<<
grid
,
block
>>>
(
dx_data
,
n
*
d
);
grid
=
(
n
+
block
-
1
)
/
block
;
grid
=
(
N
+
block
-
1
)
/
block
;
// TODO(qingqing): launch kernel on specified stream
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
// base on ExecutionContext.
CrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dXdata
,
dYdata
,
Xdata
,
int
label_rank
=
label
->
dims
().
size
();
label_data
,
N
,
D
);
if
(
label_rank
==
2
)
{
// soft cross entropy
auto
*
label_data
=
label
->
data
<
T
>
();
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
n
,
d
);
}
else
{
// normal cross entropy
auto
*
label_data
=
label
->
data
<
int
>
();
CrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
n
,
d
);
}
}
}
};
};
...
@@ -127,7 +171,6 @@ class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
...
@@ -127,7 +171,6 @@ class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
onehot_cross_entropy
,
REGISTER_OP_GPU_KERNEL
(
cross_entropy
,
ops
::
CrossEntropyOpCUDAKernel
<
float
>
);
ops
::
OnehotCrossEntropyOpCUDAKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
cross_entropy_grad
,
REGISTER_OP_GPU_KERNEL
(
onehot_cross_entropy_grad
,
ops
::
CrossEntropyGradientOpCUDAKernel
<
float
>
);
ops
::
OnehotCrossEntropyGradientOpCUDAKernel
<
float
>
);
paddle/operators/cross_entropy_op.h
浏览文件 @
6d60352e
...
@@ -40,56 +40,86 @@ inline T tolerable_value(const T x) {
...
@@ -40,56 +40,86 @@ inline T tolerable_value(const T x) {
}
}
template
<
typename
T
>
template
<
typename
T
>
class
Onehot
CrossEntropyOpKernel
:
public
framework
::
OpKernel
{
class
CrossEntropyOpKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
"It must use CPUPlace."
);
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
T
*
Xdata
=
X
->
data
<
T
>
();
auto
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
const
int
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"label"
)
->
data
<
int
>
();
auto
Y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
Y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
x_data
=
x
->
data
<
T
>
();
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
y_data
=
y
->
data
<
T
>
();
T
*
Ydata
=
Y
->
data
<
T
>
();
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
int
batch_size
=
X
->
dims
()[
0
];
int
label_rank
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
();
int
class_num
=
X
->
dims
()[
1
];
if
(
label_rank
==
2
)
{
// soft cross entropy
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
class_num
;
++
j
)
{
sum
+=
label_data
[
index
]
*
std
::
log
(
x_data
[
index
]);
y_data
[
i
]
=
-
tolerable_value
(
sum
);
index
++
;
}
}
}
else
{
// normal cross entropy
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
int
index
=
i
*
class_num
+
label_data
[
i
];
Ydata
[
i
]
=
-
tolerable_value
(
std
::
log
(
Xdata
[
index
]));
y_data
[
i
]
=
-
tolerable_value
(
std
::
log
(
x_data
[
index
]));
}
}
}
}
}
};
};
template
<
typename
T
>
template
<
typename
T
>
class
Onehot
CrossEntropyGradientOpKernel
:
public
framework
::
OpKernel
{
class
CrossEntropyGradientOpKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
"It must use CPUPlace."
);
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
d
X
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
d
x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
d
Y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
d
y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
label
=
ctx
.
Input
<
Tensor
>
(
"
l
abel"
);
auto
label
=
ctx
.
Input
<
Tensor
>
(
"
L
abel"
);
auto
*
dXdata
=
dX
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
dYdata
=
dY
->
template
data
<
T
>();
auto
*
dy_data
=
dy
->
data
<
T
>
();
auto
*
Xdata
=
X
->
template
data
<
T
>();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
label_data
=
label
->
data
<
int
>
();
const
int
batch_size
=
X
->
dims
()[
0
];
int
batch_size
=
x
->
dims
()[
0
];
const
int
class_num
=
X
->
dims
()[
1
];
int
class_num
=
x
->
dims
()[
1
];
int
label_rank
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
();
// TODO(qingqing): make zero setting an common function.
// TODO(qingqing): make zero setting an common function.
memset
(
dXdata
,
0
,
sizeof
(
T
)
*
batch_size
*
class_num
);
if
(
label_rank
==
2
)
{
// soft cross entropy
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
j
=
0
;
j
<
class_num
;
++
j
)
{
dx_data
[
index
]
=
-
label_data
[
index
]
*
dy_data
[
i
]
/
x_data
[
index
];
index
++
;
}
}
}
else
{
// normal cross entropy
auto
*
label_data
=
label
->
data
<
int
>
();
memset
(
dx_data
,
0
,
sizeof
(
T
)
*
batch_size
*
class_num
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
PADDLE_ASSERT
(
label_data
[
i
]
>=
0
||
label_data
[
i
]
<
class_num
);
int
index
=
i
*
class_num
+
label_data
[
i
];
int
index
=
i
*
class_num
+
label_data
[
i
];
dXdata
[
index
]
=
-
tolerable_value
(
dYdata
[
i
]
/
Xdata
[
index
]);
dx_data
[
index
]
=
-
dy_data
[
i
]
/
x_data
[
index
];
}
}
}
}
}
};
};
...
...
paddle/pybind/pybind.cc
浏览文件 @
6d60352e
...
@@ -32,7 +32,7 @@ limitations under the License. */
...
@@ -32,7 +32,7 @@ limitations under the License. */
namespace
py
=
pybind11
;
namespace
py
=
pybind11
;
USE_OP
(
add
);
USE_OP
(
add
);
USE_OP
(
onehot_
cross_entropy
);
USE_OP
(
cross_entropy
);
USE_OP
(
sgd
);
USE_OP
(
sgd
);
USE_OP
(
mul
);
USE_OP
(
mul
);
USE_OP
(
mean
);
USE_OP
(
mean
);
...
...
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
6d60352e
...
@@ -5,13 +5,13 @@ from op_test import OpTest
...
@@ -5,13 +5,13 @@ from op_test import OpTest
class
TestCrossEntropy
(
OpTest
):
class
TestCrossEntropy
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"
onehot_
cross_entropy"
self
.
op_type
=
"cross_entropy"
batch_size
=
30
batch_size
=
30
class_num
=
10
class_num
=
10
X
=
numpy
.
random
.
uniform
(
0.1
,
1.0
,
X
=
numpy
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
(
class_num
/
2
)
*
numpy
.
ones
(
batch_size
).
astype
(
"int32"
)
label
=
(
class_num
/
2
)
*
numpy
.
ones
(
batch_size
).
astype
(
"int32"
)
self
.
inputs
=
{
'X'
:
X
,
'
l
abel'
:
label
}
self
.
inputs
=
{
'X'
:
X
,
'
L
abel'
:
label
}
Y
=
[]
Y
=
[]
for
i
in
range
(
0
,
batch_size
):
for
i
in
range
(
0
,
batch_size
):
Y
.
append
(
-
numpy
.
log
(
X
[
i
][
label
[
i
]]))
Y
.
append
(
-
numpy
.
log
(
X
[
i
][
label
[
i
]]))
...
@@ -24,5 +24,26 @@ class TestCrossEntropy(OpTest):
...
@@ -24,5 +24,26 @@ class TestCrossEntropy(OpTest):
self
.
check_grad
([
'X'
],
'Y'
)
self
.
check_grad
([
'X'
],
'Y'
)
class
TestCrossEntropySoftLabel
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
30
class_num
=
10
X
=
numpy
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
numpy
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
/=
label
.
sum
(
axis
=
1
,
keepdims
=
True
)
self
.
inputs
=
{
'X'
:
X
,
'Label'
:
label
}
Y
=
(
-
label
*
numpy
.
log
(
X
)).
sum
(
axis
=
1
)
self
.
outputs
=
{
'Y'
:
numpy
.
array
(
Y
).
astype
(
"float32"
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.05
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/v2/framework/tests/test_mnist.py
浏览文件 @
6d60352e
...
@@ -128,7 +128,7 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None):
...
@@ -128,7 +128,7 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None):
def
cross_entropy_layer
(
net
,
input
,
label
):
def
cross_entropy_layer
(
net
,
input
,
label
):
cost_name
=
"cross_entropy_%d"
%
uniq_id
()
cost_name
=
"cross_entropy_%d"
%
uniq_id
()
cross_entropy_op
=
Operator
(
cross_entropy_op
=
Operator
(
"
onehot_
cross_entropy"
,
X
=
input
,
label
=
label
,
Y
=
cost_name
)
"cross_entropy"
,
X
=
input
,
label
=
label
,
Y
=
cost_name
)
net
.
append_op
(
cross_entropy_op
)
net
.
append_op
(
cross_entropy_op
)
scope
.
new_var
(
cost_name
)
scope
.
new_var
(
cost_name
)
net
.
infer_shape
(
scope
)
net
.
infer_shape
(
scope
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录