From 6cde889b5ebafc4b0e2f94770a93102502ab9f40 Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Mon, 6 Nov 2017 17:46:15 -0800 Subject: [PATCH] Add unittest, backward of array read/write op (#5409) * Use stable_sort in lod_rank_table It is easy to debug and test when use `stable_sort`and the time complexity is not changed. * Add LoDTensorArray * Stash * Better debug message for IsInitialized * Stash * Better debug message for IsInitialized * Complete array read/write op unittests * Add unittest, Gradient of array read/write * Follow comments --- paddle/framework/op_desc.cc | 11 +++- paddle/framework/operator.cc | 12 ++++- paddle/framework/shape_inference.cc | 17 ++++++ paddle/framework/shape_inference.h | 12 +++++ paddle/framework/var_type.h | 36 +++++++++++++ paddle/framework/variable.h | 5 ++ paddle/operators/sum_op.cc | 52 +++++++++++++++++-- paddle/operators/sum_op.h | 42 ++++++++++++--- .../operators/tensor_array_read_write_op.cc | 1 - python/paddle/v2/framework/layers.py | 5 +- .../tests/test_array_read_write_op.py | 41 ++++++++++++--- 11 files changed, 210 insertions(+), 24 deletions(-) create mode 100644 paddle/framework/var_type.h diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc index 495acf4c0a6..e7cba9e702c 100644 --- a/paddle/framework/op_desc.cc +++ b/paddle/framework/op_desc.cc @@ -67,8 +67,11 @@ class CompileTimeInferShapeContext : public InferShapeContext { out); in_var->SetLoDLevel(out_var->GetLodLevel()); } + bool IsRuntime() const override; + + protected: + VarDesc::VarType GetVarType(const std::string &name) const override; - private: DDim GetDim(const std::string &name) const override; void SetDim(const std::string &name, const DDim &dim) override; @@ -451,6 +454,12 @@ void CompileTimeInferShapeContext::SetDim(const std::string &name, const DDim &dim) { block_.FindVarRecursive(name)->SetShape(framework::vectorize(dim)); } +bool CompileTimeInferShapeContext::IsRuntime() const { return false; } + +VarDesc::VarType CompileTimeInferShapeContext::GetVarType( + const std::string &name) const { + return block_.FindVarRecursive(name)->GetType(); +} } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 9295d36c2b2..22a7d9728a0 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -15,7 +15,9 @@ limitations under the License. */ #include "paddle/framework/operator.h" #include #include +#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/shape_inference.h" +#include "paddle/framework/var_type.h" namespace paddle { namespace framework { @@ -365,7 +367,9 @@ class RuntimeInferShapeContext : public InferShapeContext { out_tensor->set_lod(in_tensor.lod()); } - private: + bool IsRuntime() const override { return true; } + + protected: DDim GetDim(const std::string& name) const override { Variable* var = scope_.FindVar(name); if (var->IsType()) { @@ -388,6 +392,12 @@ class RuntimeInferShapeContext : public InferShapeContext { } } + VarDesc::VarType GetVarType(const std::string& name) const override { + auto* var = scope_.FindVar(name); + return ToVarType(var->Type()); + } + + private: const OperatorBase& op_; const Scope& scope_; }; diff --git a/paddle/framework/shape_inference.cc b/paddle/framework/shape_inference.cc index 8169df8e462..0af41b164f5 100644 --- a/paddle/framework/shape_inference.cc +++ b/paddle/framework/shape_inference.cc @@ -46,6 +46,23 @@ void InferShapeContext::SetDims(const std::vector &names, SetDim(names[i], dims[i]); } } +std::vector InferShapeContext::GetInputsVarType( + const std::string &name) const { + return GetVarTypes(Inputs(name)); +} +std::vector InferShapeContext::GetOutputsVarType( + const std::string &name) const { + return GetVarTypes(Outputs(name)); +} +std::vector InferShapeContext::GetVarTypes( + const std::vector &names) const { + std::vector retv; + retv.resize(names.size()); + std::transform(names.begin(), names.end(), retv.begin(), + std::bind(std::mem_fn(&InferShapeContext::GetVarType), this, + std::placeholders::_1)); + return retv; +} } // namespace framework } // namespace paddle diff --git a/paddle/framework/shape_inference.h b/paddle/framework/shape_inference.h index 6f19900ef1a..7d36ead2ca8 100644 --- a/paddle/framework/shape_inference.h +++ b/paddle/framework/shape_inference.h @@ -16,6 +16,7 @@ limitations under the License. */ #include "paddle/framework/attribute.h" #include "paddle/framework/ddim.h" +#include "paddle/framework/framework.pb.h" namespace paddle { namespace framework { @@ -26,6 +27,10 @@ class InferShapeContext { virtual bool HasInput(const std::string &name) const = 0; virtual bool HasOutput(const std::string &name) const = 0; + std::vector GetInputsVarType(const std::string &name) const; + std::vector GetOutputsVarType( + const std::string &name) const; + virtual bool HasInputs(const std::string &name) const = 0; virtual bool HasOutputs(const std::string &name) const = 0; @@ -46,6 +51,8 @@ class InferShapeContext { virtual void ShareLoD(const std::string &in, const std::string &out, size_t i = 0, size_t j = 0) const = 0; + virtual bool IsRuntime() const = 0; + protected: virtual framework::DDim GetDim(const std::string &name) const = 0; virtual void SetDim(const std::string &name, const framework::DDim &dim) = 0; @@ -55,6 +62,11 @@ class InferShapeContext { void SetDims(const std::vector &names, const std::vector &dims); + + std::vector GetVarTypes( + const std::vector &names) const; + + virtual VarDesc::VarType GetVarType(const std::string &name) const = 0; }; } // namespace framework diff --git a/paddle/framework/var_type.h b/paddle/framework/var_type.h new file mode 100644 index 00000000000..d060196bb2c --- /dev/null +++ b/paddle/framework/var_type.h @@ -0,0 +1,36 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/framework.pb.h" +#include "paddle/framework/lod_rank_table.h" +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/lod_tensor_array.h" + +namespace paddle { +namespace framework { +inline VarDesc::VarType ToVarType(std::type_index type) { + if (type.hash_code() == typeid(LoDTensor).hash_code()) { + return VarDesc_VarType_LOD_TENSOR; + } else if (type.hash_code() == typeid(LoDRankTable).hash_code()) { + return VarDesc_VarType_LOD_RANK_TABLE; + } else if (type.hash_code() == typeid(LoDTensorArray).hash_code()) { + return VarDesc_VarType_LOD_TENSOR_ARRAY; + } else { + PADDLE_THROW("ToVarType:Unsupported type %s", type.name()); + } +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/variable.h b/paddle/framework/variable.h index cde5ec2413a..e5a94759f92 100644 --- a/paddle/framework/variable.h +++ b/paddle/framework/variable.h @@ -48,6 +48,11 @@ class Variable { void Clear() { holder_.reset(); } + std::type_index Type() const { + PADDLE_ENFORCE(holder_ != nullptr, "Must hold memory"); + return holder_->Type(); + } + private: struct Placeholder { virtual ~Placeholder() {} diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index d9d3dd6e37a..b1e58952fdb 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -24,10 +24,16 @@ class SumOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null"); - auto x_dims = ctx->GetInputsDim("X"); + PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of SumOp should not be null."); + if (ctx->IsRuntime() && + ctx->GetOutputsVarType("Out")[0] == + framework::VarDesc::LOD_TENSOR_ARRAY) { + return; // skip runtime infershape when is tensor array; + } + auto x_dims = ctx->GetInputsDim("X"); size_t N = x_dims.size(); PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1."); @@ -39,6 +45,28 @@ class SumOp : public framework::OperatorWithKernel { ctx->SetOutputDim("Out", in_dim); ctx->ShareLoD("X", /*->*/ "Out"); } + + protected: + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + auto x_vars = ctx.MultiInputVar("X"); + if (x_vars[0]->IsType()) { + return framework::ToDataType( + x_vars[0]->Get().type()); + } else if (x_vars[0]->IsType()) { + return framework::ToDataType( + x_vars[0]->Get().value().type()); + } else if (x_vars[0]->IsType()) { + auto& array = x_vars[0]->Get(); + for (auto& each : array) { + if (each.numel() != 0) { + return framework::ToDataType(each.type()); + } + } + } + PADDLE_THROW("Unexpected branch. Input type is %s", + x_vars[0]->Type().name()); + } }; class SumOpMaker : public framework::OpProtoAndCheckerMaker { @@ -63,18 +91,32 @@ class SumOpVarTypeInference : public framework::VarTypeInference { void operator()(const framework::OpDescBind& op_desc, framework::BlockDescBind* block) const override { auto& inputs = op_desc.Input("X"); - auto default_var_type = framework::VarDesc::SELECTED_ROWS; + auto var_type = framework::VarDesc::SELECTED_ROWS; bool any_input_is_lod_tensor = std::any_of( inputs.begin(), inputs.end(), [block](const std::string& name) { return block->Var(name)->GetType() == framework::VarDesc::LOD_TENSOR; }); - if (any_input_is_lod_tensor) { - default_var_type = framework::VarDesc::LOD_TENSOR; + + auto is_tensor_array = [block](const std::string& name) { + return block->Var(name)->GetType() == + framework::VarDesc::LOD_TENSOR_ARRAY; + }; + + bool any_input_is_tensor_array = + std::any_of(inputs.begin(), inputs.end(), is_tensor_array); + bool all_inputs_are_tensor_array = + std::all_of(inputs.begin(), inputs.end(), is_tensor_array); + + if (any_input_is_tensor_array) { + PADDLE_ENFORCE(all_inputs_are_tensor_array); + var_type = framework::VarDesc::LOD_TENSOR_ARRAY; + } else if (any_input_is_lod_tensor) { + var_type = framework::VarDesc::LOD_TENSOR; } auto out_var_name = op_desc.Output("Out").front(); - block->Var(out_var_name)->SetType(default_var_type); + block->Var(out_var_name)->SetType(var_type); } }; diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h index ad441a59804..4ca15611392 100644 --- a/paddle/operators/sum_op.h +++ b/paddle/operators/sum_op.h @@ -11,6 +11,7 @@ limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" +#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/selected_rows_functor.h" @@ -28,7 +29,7 @@ using EigenVector = framework::EigenVector; template class SumKernel : public framework::OpKernel { public: - void Compute(const framework::ExecutionContext& context) const override { + void Compute(const framework::ExecutionContext &context) const override { auto in_vars = context.MultiInputVar("X"); int N = in_vars.size(); auto out_var = context.OutputVar("Out"); @@ -36,7 +37,7 @@ class SumKernel : public framework::OpKernel { bool in_place = out_var == in_vars[0]; if (out_var->IsType()) { - auto* out = context.Output("Out"); + auto *out = context.Output("Out"); out->mutable_data(context.GetPlace()); auto result = EigenVector::Flatten(*out); @@ -51,11 +52,11 @@ class SumKernel : public framework::OpKernel { // If in_place, just skip the first tensor for (int i = in_place ? 1 : 0; i < N; i++) { if (in_vars[i]->IsType()) { - auto& in_t = in_vars[i]->Get(); + auto &in_t = in_vars[i]->Get(); auto in = EigenVector::Flatten(in_t); result.device(place) = result + in; } else if (in_vars[i]->IsType()) { - auto& in_t = in_vars[i]->Get(); + auto &in_t = in_vars[i]->Get(); functor(context.device_context(), in_t, out); } else { PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); @@ -63,8 +64,8 @@ class SumKernel : public framework::OpKernel { } } else if (out_var->IsType()) { PADDLE_ENFORCE(!in_place, "SelectedRows not support inplace sum now"); - auto* out = context.Output("Out"); - auto* out_value = out->mutable_value(); + auto *out = context.Output("Out"); + auto *out_value = out->mutable_value(); // Runtime InferShape size_t first_dim = 0; @@ -88,9 +89,36 @@ class SumKernel : public framework::OpKernel { offset, out); offset += in_vars[i]->Get().value().numel(); } + } else if (out_var->IsType()) { + auto &out_array = *out_var->GetMutable(); + for (size_t i = in_place ? 1 : 0; i < in_vars.size(); ++i) { + PADDLE_ENFORCE(in_vars[i]->IsType(), + "Only support all inputs are TensorArray"); + auto &in_array = in_vars[i]->Get(); + + for (size_t i = 0; i < in_array.size(); ++i) { + if (in_array[i].numel() != 0) { + if (i >= out_array.size()) { + out_array.resize(i + 1); + } + if (out_array[i].numel() == 0) { + out_array[i].CopyFrom(in_array[i], in_array[i].place(), + context.device_context()); + out_array[i].set_lod(in_array[i].lod()); + } else { + PADDLE_ENFORCE(out_array[i].lod() == in_array[i].lod()); + auto in = EigenVector::Flatten(in_array[i]); + auto result = EigenVector::Flatten(out_array[i]); + result.device(context.GetEigenDevice()) = result + in; + } + } + } + } + } else { + PADDLE_THROW("Unexpected branch, output variable type is %s", + out_var->Type().name()); } } }; - } // namespace operators } // namespace paddle diff --git a/paddle/operators/tensor_array_read_write_op.cc b/paddle/operators/tensor_array_read_write_op.cc index 11eebfe9e6f..50824032ca0 100644 --- a/paddle/operators/tensor_array_read_write_op.cc +++ b/paddle/operators/tensor_array_read_write_op.cc @@ -115,7 +115,6 @@ class WriteToArrayInferVarType : public framework::VarTypeInference { public: void operator()(const framework::OpDescBind &op_desc, framework::BlockDescBind *block) const override { - VLOG(10) << "I am here?"; for (auto &out_var : op_desc.OutputArgumentNames()) { VLOG(10) << "Set Variable " << out_var << " as LOD_TENSOR_ARRAY"; block->Var(out_var)->SetType(framework::VarDesc::LOD_TENSOR_ARRAY); diff --git a/python/paddle/v2/framework/layers.py b/python/paddle/v2/framework/layers.py index 3cde9526dbd..917d3d93886 100644 --- a/python/paddle/v2/framework/layers.py +++ b/python/paddle/v2/framework/layers.py @@ -801,12 +801,13 @@ def zeros(shape, dtype, main_program=None): def increment(x, value=1.0, main_program=None): helper = LayerHelper("increment", **locals()) + tmp = helper.create_tmp_variable(dtype=x.data_type) helper.append_op( type='increment', inputs={'X': [x]}, - outputs={'Out': [x]}, + outputs={'Out': [tmp]}, attrs={'step': value}) - return x + return tmp def array_write(x, i, array=None, main_program=None): diff --git a/python/paddle/v2/framework/tests/test_array_read_write_op.py b/python/paddle/v2/framework/tests/test_array_read_write_op.py index d0bf3d62f9c..b2a2ff2b821 100644 --- a/python/paddle/v2/framework/tests/test_array_read_write_op.py +++ b/python/paddle/v2/framework/tests/test_array_read_write_op.py @@ -1,10 +1,10 @@ import unittest - -import numpy import paddle.v2.framework.core as core - import paddle.v2.framework.layers as layers from paddle.v2.framework.executor import Executor +from paddle.v2.framework.backward import append_backward_ops +from paddle.v2.framework.framework import g_main_program +import numpy class TestArrayReadWrite(unittest.TestCase): @@ -21,16 +21,20 @@ class TestArrayReadWrite(unittest.TestCase): i = layers.zeros(shape=[1], dtype='int64') arr = layers.array_write(x=x[0], i=i) - layers.increment(x=i) + i = layers.increment(x=i) + i.stop_gradient = True arr = layers.array_write(x=x[1], i=i, array=arr) - layers.increment(x=i) + i = layers.increment(x=i) + i.stop_gradient = True arr = layers.array_write(x=x[2], i=i, array=arr) i = layers.zeros(shape=[1], dtype='int64') a0 = layers.array_read(array=arr, i=i) - layers.increment(x=i) + i = layers.increment(x=i) + i.stop_gradient = True # index should not calculate gradient a1 = layers.array_read(array=arr, i=i) - layers.increment(x=i) + i = layers.increment(x=i) + i.stop_gradient = True a2 = layers.array_read(array=arr, i=i) mean_a0 = layers.mean(x=a0) @@ -61,6 +65,29 @@ class TestArrayReadWrite(unittest.TestCase): scope=scope)) self.assertEqual(outs[0], outs[1]) + total_sum = layers.sums(input=[a_sum, x_sum]) + total_sum_scaled = layers.scale(x=total_sum, scale=1 / 6.0) + + append_backward_ops(total_sum_scaled) + + g_vars = map(g_main_program.global_block().var, + [each_x.name + "@GRAD" for each_x in x]) + g_out = [ + item.sum() + for item in map( + numpy.array, + exe.run(feed={'x0': tensor, + 'x1': tensor, + 'x2': tensor}, + fetch_list=g_vars)) + ] + g_out_sum = numpy.array(g_out).sum() + + # since our final gradient is 1 and the neural network are all linear + # with mean_op. + # the input gradient should also be 1 + self.assertAlmostEqual(1.0, g_out_sum, delta=0.1) + if __name__ == '__main__': unittest.main() -- GitLab