Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6bfa339c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6bfa339c
编写于
9月 15, 2020
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update yolo_box support h != w. test=develop
上级
264e76ca
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
22 addition
and
16 deletion
+22
-16
paddle/fluid/operators/detection/yolo_box_op.cu
paddle/fluid/operators/detection/yolo_box_op.cu
+10
-7
paddle/fluid/operators/detection/yolo_box_op.h
paddle/fluid/operators/detection/yolo_box_op.h
+12
-9
未找到文件。
paddle/fluid/operators/detection/yolo_box_op.cu
浏览文件 @
6bfa339c
...
@@ -26,8 +26,9 @@ __global__ void KeYoloBoxFw(const T* input, const int* imgsize, T* boxes,
...
@@ -26,8 +26,9 @@ __global__ void KeYoloBoxFw(const T* input, const int* imgsize, T* boxes,
T
*
scores
,
const
float
conf_thresh
,
T
*
scores
,
const
float
conf_thresh
,
const
int
*
anchors
,
const
int
n
,
const
int
h
,
const
int
*
anchors
,
const
int
n
,
const
int
h
,
const
int
w
,
const
int
an_num
,
const
int
class_num
,
const
int
w
,
const
int
an_num
,
const
int
class_num
,
const
int
box_num
,
int
input_size
,
bool
clip_bbox
,
const
int
box_num
,
int
input_size_h
,
const
float
scale
,
const
float
bias
)
{
int
input_size_w
,
bool
clip_bbox
,
const
float
scale
,
const
float
bias
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
T
box
[
4
];
T
box
[
4
];
...
@@ -51,8 +52,9 @@ __global__ void KeYoloBoxFw(const T* input, const int* imgsize, T* boxes,
...
@@ -51,8 +52,9 @@ __global__ void KeYoloBoxFw(const T* input, const int* imgsize, T* boxes,
int
box_idx
=
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
0
);
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
0
);
GetYoloBox
<
T
>
(
box
,
input
,
anchors
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
GetYoloBox
<
T
>
(
box
,
input
,
anchors
,
l
,
k
,
j
,
h
,
w
,
input_size_h
,
grid_num
,
img_height
,
img_width
,
scale
,
bias
);
input_size_w
,
box_idx
,
grid_num
,
img_height
,
img_width
,
scale
,
bias
);
box_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
4
;
box_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes
,
box
,
box_idx
,
img_height
,
img_width
,
clip_bbox
);
CalcDetectionBox
<
T
>
(
boxes
,
box
,
box_idx
,
img_height
,
img_width
,
clip_bbox
);
...
@@ -86,7 +88,8 @@ class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -86,7 +88,8 @@ class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
const
int
w
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size
=
downsample_ratio
*
h
;
int
input_size_h
=
downsample_ratio
*
h
;
int
input_size_w
=
downsample_ratio
*
w
;
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
int
bytes
=
sizeof
(
int
)
*
anchors
.
size
();
int
bytes
=
sizeof
(
int
)
*
anchors
.
size
();
...
@@ -111,8 +114,8 @@ class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -111,8 +114,8 @@ class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
KeYoloBoxFw
<
T
><<<
grid_dim
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
KeYoloBoxFw
<
T
><<<
grid_dim
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
imgsize_data
,
boxes_data
,
scores_data
,
conf_thresh
,
input_data
,
imgsize_data
,
boxes_data
,
scores_data
,
conf_thresh
,
anchors_data
,
n
,
h
,
w
,
an_num
,
class_num
,
box_num
,
input_size
,
anchors_data
,
n
,
h
,
w
,
an_num
,
class_num
,
box_num
,
input_size
_h
,
clip_bbox
,
scale
,
bias
);
input_size_w
,
clip_bbox
,
scale
,
bias
);
}
}
};
};
...
...
paddle/fluid/operators/detection/yolo_box_op.h
浏览文件 @
6bfa339c
...
@@ -27,17 +27,18 @@ HOSTDEVICE inline T sigmoid(T x) {
...
@@ -27,17 +27,18 @@ HOSTDEVICE inline T sigmoid(T x) {
template
<
typename
T
>
template
<
typename
T
>
HOSTDEVICE
inline
void
GetYoloBox
(
T
*
box
,
const
T
*
x
,
const
int
*
anchors
,
int
i
,
HOSTDEVICE
inline
void
GetYoloBox
(
T
*
box
,
const
T
*
x
,
const
int
*
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
j
,
int
an_idx
,
int
grid_size_h
,
int
input_size
,
int
index
,
int
stride
,
int
grid_size_w
,
int
input_size_h
,
int
input_size_w
,
int
index
,
int
stride
,
int
img_height
,
int
img_width
,
float
scale
,
int
img_height
,
int
img_width
,
float
scale
,
float
bias
)
{
float
bias
)
{
box
[
0
]
=
(
i
+
sigmoid
<
T
>
(
x
[
index
])
*
scale
+
bias
)
*
img_width
/
grid_size
;
box
[
0
]
=
(
i
+
sigmoid
<
T
>
(
x
[
index
])
*
scale
+
bias
)
*
img_width
/
grid_size
_w
;
box
[
1
]
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
])
*
scale
+
bias
)
*
img_height
/
box
[
1
]
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
])
*
scale
+
bias
)
*
img_height
/
grid_size
;
grid_size
_h
;
box
[
2
]
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
box
[
2
]
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
input_size
;
input_size
_w
;
box
[
3
]
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
box
[
3
]
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
input_size
;
img_height
/
input_size
_h
;
}
}
HOSTDEVICE
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
HOSTDEVICE
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
...
@@ -99,7 +100,8 @@ class YoloBoxKernel : public framework::OpKernel<T> {
...
@@ -99,7 +100,8 @@ class YoloBoxKernel : public framework::OpKernel<T> {
const
int
w
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size
=
downsample_ratio
*
h
;
int
input_size_h
=
downsample_ratio
*
h
;
int
input_size_w
=
downsample_ratio
*
w
;
const
int
stride
=
h
*
w
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
...
@@ -134,8 +136,9 @@ class YoloBoxKernel : public framework::OpKernel<T> {
...
@@ -134,8 +136,9 @@ class YoloBoxKernel : public framework::OpKernel<T> {
int
box_idx
=
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
);
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
);
GetYoloBox
<
T
>
(
box
,
input_data
,
anchors_data
,
l
,
k
,
j
,
h
,
input_size
,
GetYoloBox
<
T
>
(
box
,
input_data
,
anchors_data
,
l
,
k
,
j
,
h
,
w
,
box_idx
,
stride
,
img_height
,
img_width
,
scale
,
bias
);
input_size_h
,
input_size_w
,
box_idx
,
stride
,
img_height
,
img_width
,
scale
,
bias
);
box_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
box_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes_data
,
box
,
box_idx
,
img_height
,
img_width
,
CalcDetectionBox
<
T
>
(
boxes_data
,
box
,
box_idx
,
img_height
,
img_width
,
clip_bbox
);
clip_bbox
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录