From 6b7448668d85ad9f831ea13a3a0c134a9ae99984 Mon Sep 17 00:00:00 2001 From: tangwei12 Date: Thu, 1 Apr 2021 10:18:38 +0800 Subject: [PATCH] fix en doc for emb (#31980) * fix en doc for emb, test=document_fix; Change-Id: I4757e67caacd7189f068493ed45a7445f87ffb40 --- python/paddle/nn/functional/input.py | 4 +--- python/paddle/nn/layer/common.py | 14 ++++++-------- 2 files changed, 7 insertions(+), 11 deletions(-) diff --git a/python/paddle/nn/functional/input.py b/python/paddle/nn/functional/input.py index bf389717518..b88a2b042ff 100644 --- a/python/paddle/nn/functional/input.py +++ b/python/paddle/nn/functional/input.py @@ -148,9 +148,7 @@ def embedding(x, weight, padding_idx=None, sparse=False, name=None): sparse(bool): The flag indicating whether to use sparse update. This parameter only affects the performance of the backwards gradient update. It is recommended to set True because sparse update is faster. But some optimizers does not support sparse update, - such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` , - :ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` , - :ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` . + such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`. In these cases, sparse must be False. Default: False. padding_idx(int|long|None): padding_idx needs to be in the interval [-weight.shape[0], weight.shape[0]). If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted diff --git a/python/paddle/nn/layer/common.py b/python/paddle/nn/layer/common.py index 60c846f9f76..86a6fae0d68 100644 --- a/python/paddle/nn/layer/common.py +++ b/python/paddle/nn/layer/common.py @@ -1229,7 +1229,7 @@ class Embedding(layers.Layer): For specific usage, refer to code examples. It implements the function of the Embedding Layer. This layer is used to lookup embeddings vector of ids provided by :attr:`x` . It automatically constructs a 2D embedding matrix based on the - input :attr:`num_embeddings` and attr:`embedding_dim`. + input :attr:`num_embeddings` and :attr:`embedding_dim`. The shape of output Tensor is generated by appending an emb_size dimension to the last dimension of the input Tensor shape. @@ -1241,9 +1241,9 @@ class Embedding(layers.Layer): Case 1: - input is a Tensor. padding_idx = -1 - input.data = [[1, 3], [2, 4], [4, 127] - input.shape = [3, 2] + x is a Tensor. padding_idx = -1 + x.data = [[1, 3], [2, 4], [4, 127] + x.shape = [3, 2] Given size = [128, 16] output is a Tensor: out.shape = [3, 2, 16] @@ -1261,7 +1261,7 @@ class Embedding(layers.Layer): Parameters: num_embeddings (int): Just one element which indicate the size of the dictionary of embeddings. - embedding_dim: Just one element which indicate the size of each embedding vector respectively. + embedding_dim (int): Just one element which indicate the size of each embedding vector respectively. padding_idx(int|long|None): padding_idx needs to be in the interval [-num_embeddings, num_embeddings). If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup @@ -1270,9 +1270,7 @@ class Embedding(layers.Layer): sparse(bool): The flag indicating whether to use sparse update. This parameter only affects the performance of the backwards gradient update. It is recommended to set True because sparse update is faster. But some optimizer does not support sparse update, - such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` , - :ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` , - :ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` . + such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`. In these case, sparse must be False. Default: False. weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition, -- GitLab